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School of Computer Science

University of Nottingham
Jubilee Campus
Wollaton Road

Nottingham, NG8 1BB, UK
Email: {psxwgj, ender.ozcan, psxjd2} @nottingham.ac.uk

Abstract—Hyper-heuristics are high-level search methodolo-
gies used to find solutions to difficult real-world optimisation
problems. Hyper-heuristics differ from many traditional optimi-
sation techniques as they operate on a search space of low-level
heuristics, rather than directly on a search space of potential
solutions. A traditional iterative selection hyper-heuristic relies
on two core components, a method for selecting a heuristic to
apply at a given point and a method to decide whether or not
to accept the result of the heuristic application. Raising the level
of generality at which search methods operate is a key goal in
hyper-heuristic research. Many existing selection hyper-heuristics
make use of complex acceptance criteria which require problem
specific expertise in controlling the various parameters. Such
hyper-heuristics are often not general enough to be successful
in a variety of problem domains. Late Acceptance is a simple yet
powerful local search method which has only a single parameter
to control. The contributions of this paper are twofold. Firstly,
we will test the effect of the set of low-level heuristics on the
performance of a simple stochastic selection mechanism within
a Late Acceptance hyper-heuristic framework. Secondly, we will
introduce a new class of heuristic selection methods based on
roulette wheel selection and combine them with Late Acceptance
acceptance criteria. The performance of these hyper-heuristics
will be compared to a number of methods from the literature
over six benchmark problem domains.

I. INTRODUCTION

Solving real-world NP-hard [1] optimisation problems such
as timetabling, bin-packing and vehicle routing is an ongoing
research challenge. Finding the optimal solution to such prob-
lems by exhaustively enumerating the search space is infeasible
in practice for many cases due to the exponential amount of
time that is required to do so. Heuristic and meta-heuristic
methods are often applied to these problems sacrificing some
guarantee of solution quality for an improvement in the time
taken to execute. Hyper-heuristics are a class of high-level
search techniques which aim to raise the level of generality
at which search methods operate [2], [3]. Unlike traditional
search methods which operate on a search space of solutions,
hyper-heuristics operate on a search space of heuristics or
heuristic components. Cowling et al. [4] presented the first
work to use the term ‘hyper-heuristic’ in the field of com-
binatorial optimisation however methods which show hyper-
heuristic properties can be traced back to the early 1960’s [5].

Hyper-heuristic methodologies are split into two main
categories, methods which select from a set of low-level

heuristics which to apply at a given time in a search and those
methods which generate new heuristics from existing heuristics
or heuristic components [6], [7]. Here we are concerned with
the first category, selection hyper-heuristics. Selection hyper-
heuristics have previously been applied to a wide range of
real-word optimisation problems such as bin packing [8], [9],
dynamic environments [10], [11], knapsack problems [12],
scheduling [4], [5], [8], [13], [14], timetabling [9], [13], [15],
[16], [17], [18], [19], [20] and vehicle routing [8], [21], [22].

The HyFlex [23] framework was initially developed for the
first Cross-domain Heuristic Search Challenge (CHeSC) [8]
and is a software framework “designed to enable the devel-
opment, testing and comparison of iterative general-purpose
heuristic search algorithms (such as hyper-heuristics)”. This
framework provides six pre-implemented problem domains
allowing researchers to concentrate on the development and
analysis of high-level search methodologies for cross-domain
search rather than on the implementation details of various
problem domains and low-level heuristics.

In this paper, we will introduce a number of new heuris-
tic selection strategies and compare their performance to a
baseline Simple Random selection strategy when paired with
Late Acceptance move acceptance criteria over a number of
problem domains provided by the HyFlex framework. Özcan
et al. [15] used Late Acceptance as a move acceptance cri-
teria in hyper-heuristics applied to examination timetabling
benchmarks. This work suggested that Late Acceptance could
be successful when paired with Simple Random selection
however it was unable to perform as well when used with
‘intelligent’ selection methods such as Choice Function and
Reinforcement Learning. We show that it is possible to design
simple ‘intelligent’ selection methods which can outperform
random heuristic selection over a number of benchmarks.

II. SELECTION HYPER-HEURISTICS

Özcan et al. [24] decomposed single-point search selection
hyper-heuristics into two key components; a selection mecha-
nism and a move acceptance criteria. Hyper-heuristics of this
nature will often be referred to as selection method-acceptance
criteria in this paper herein. In such a framework, selection
hyper-heuristics have an iterative cycle between heuristic se-
lection and move acceptance. Operating on a single solution, a
low-level heuristic is selected and applied at each point before



Fig. 1. A traditional selection hyper-heuristic framework

a decision is made whether to accept the modification made
by the selected low-level heuristic. This process is repeated
until some termination criteria is met. A traditional single-
point search selection hyper-heuristic framework is shown
in Figure 1. Section II-A and Section II-B will introduce a
number of standard selection methods and move acceptance
criteria from the literature respectively.

A. Heuristic Selection Mechanisms

There are a large number of other heuristic selection
methods for which a complete review is far beyond the scope
of this paper. Here we will introduce a number of the most
popular techniques from the literature.

In their early hyper-heuristic work, Cowling et al. [4]
experimented with Simple Random (SR), Greedy and Choice
Function (CF) heuristic selection methods. Since that time a
large number of papers in the literature have used Simple Ran-
dom [10], [11], [12], [15], [17], [19], [20], [25], Greedy [4],
[10], [15], [17], [20] or Choice Function [10], [12], [15], [17],
[20], [26] as heuristic selection methods. Simple Random is
a pure stochastic selection method which selects a heuristic
to apply randomly from the set of low-level heuristics avail-
able. In Greedy selection, all available heuristics are applied
to the given solution with the best move made considered
by the move acceptance criteria. The Choice Function is a
more elegant selection method which gives each heuristic
a score based on three measures. The heuristic to apply is
then chosen by a strategy based on these scores. The first
measure records the previous performance of each heuristic
while the second measure captures any pair-wise dependencies
between heuristics by monitoring the performance of each
heuristic when invoked immediately following the previously
selected heuristic. The final measure is simply the time elapsed
since the individual heuristic was last selected by the Choice
Function.

Reinforcement learning (RL) [27] is a classic machine
learning technique explored as a heuristic selection method
by Nareyek [28] and a number of other papers in the litera-
ture [10], [11], [12], [15], [16], [17], [29]. In such a framework
all heuristics are given a utility weight. If a heuristic improves
a solution this weight is increased by an amount defined by
the chosen adaptation function, conversely if a heuristic does
not improve a solution this weight is decreased accordingly.
Heuristic selection at the next step of the search is then based
on these values.

B. Move Acceptance Criteria

As with heuristic selection methods there are a large
number of move acceptance criteria presented in the literature,
many of which are based on general optimisation techniques.

Dueck [30] introduced Great Deluge (GD) as a general
optimisation technique and has shown to be a promising
acceptance criteria in hyper-heuristics [10], [16], [25]. When
used as an acceptance criteria, Great Deluge always accepts
improving moves and accepts worsening moves which are
below a certain threshold which is lowered over time at a linear
rate.

Late Acceptance (LA) is a relatively new general purpose
optimisation strategy proposed by Burke and Bykov [31]
widely used as an acceptance criteria in selection hyper-
heuristics [12], [15], [19], [22]. Late Acceptance promotes a
general trend of improvement throughout the search process
by comparing a candidate solution to one generated a specified
number of steps before kept in memory.

Simulated Annealing (SA) [32] is another generic meta-
heuristic technique for optimisation often used as an accep-
tance criteria in hyper-heuristics [9], [10], [12], [19], [20]. In
Simulated Annealing, any move which results in a solution of
equal or greater quality than the previous move is accepted. If
a move yields a poorer quality solution, the move is accepted
probabilistically based on how much poorer the neighbouring
solution is and the current temperature (a parameter which de-
creases over time). The acceptable level of worsening solutions
will decrease as the temperature decreases and the probability
of moving to a worse solution will reduce over time.

In addition to move acceptance criteria based on generic
optimisation techniques, a number of simple criteria have also
been proposed. Cowling et al. [4] experimented with accept All
Moves (AM) and accept Only Improving moves (OI). Along
with accepting Improving or Equal moves (IE) [10], [11], [19]
AM [10], [11], [26] and OI [12] have been widely adopted in
the literature.

III. LATE ACCEPTANCE-BASED SELECTION
HYPER-HEURISTICS

Late Acceptance (LA) is a generic optimisation
method [31] which is an extension of simple hill-climbing. In
hill-climbing, a solution is accepted if it is of better quality
than the one immediately preceding it, Late Acceptance
accepts a solution if it is of better quality than the solution
n iterations previously, where n is the size of a memory
of previously seen solutions. Late Acceptance has shown
to perform as well as other powerful optimisation methods



including Simulated Annealing and Great Deluge [15],
[31], but only relies on the setting of one parameter, the
length of the memory. As a result it is less problem specific
and more general purpose, requiring less parameter tuning
than the methods mentioned previously and therefore more
independent of human expertise. Although only a single
parameter is required, it is still important that this parameter
is set up appropriately. The length of the memory can affect
performance when using Late Acceptance, if it is too short
the search will converge on a sub-optimal point quickly, if
the memory is too long the search will stagnate.

Two selection methods will be explored in this paper. The
first is Simple Random selection which chooses a heuristic to
apply at each step randomly from the set of available low-level
heuristics. The second is a new fitness proportionate selection
mechanism based on the relative ranking points scoring system
previously used by Formula 1 motor racing.

A. Relative ranking inspired heuristic selection

The original Formula 1 ranking system (2003-2009) as-
signs a number of points to different competitors based on
their performance. The first place competitor is awarded 10
points, the second 8 points and then each further heuris-
tic is awarded 6, 5, 4, 3, 2, 1 and 0 points respectively.
Formula 1 Fitness Proportional Selection (F1FPS) ranks
each heuristic from 1 to N where N is the total num-
ber of heuristics. The ranks are then mapped to scores
based on the Formula 1 ranking system (Rank, Points),
{(1, 10), (2, 8), (3, 6), (4, 5), (5, 4), (6, 3), (7, 2), (8, 1)}. If a
rank is shared by multiple heuristics, the score is evenly
distributed to those heuristics. These scores are then used
to calculate the probability of selecting each heuristic using
Roulette Wheel selection. In Roulette Wheel selection each
heuristic i is selected with a probability pi proportional to its
utility weight calculated as:

pi =
fi∑N
j=1 fj

(1)

where the fitness function fi returns the scores mapped
from their respective ranks for each heuristic. A reinforcement
learning mechanism is used to update the rank of each heuristic
following each iteration of the search process.

A number of variants of this selection method combined
with Late Acceptance move acceptance criteria will be tested
to take into consideration a number of factors. We will consider
combinations of all of the options outlined below.

As we are using a discrete ranking system, some method
needs to be determined in order for the reinforcement learning
mechanism to rank each heuristic. Initially the ranking of each
heuristic is determined arbitrarily as the order of the low-
level heuristics in the heuristic set. Subsequent rankings are
updated for the heuristic applied at each stage using one of
three learning mechanisms described in Table I.

Previous work has shown that counter-intuitively, a rein-
forcement learning scheme which rewards a heuristic obtaining
a worsening solution can outperform simply rewarding im-
proving solutions [33]. In addition to the standard ranking

TABLE I. DESCRIPTION OF LEARNING MECHANISMS USED TO UPDATE
HEURISTIC RANKINGS

Learning
Mechanism Heuristic Promotion Heuristic Demotion

Acceptance

Promote the heuristic if it
generated a candidate solu-
tion which was accepted by
the move acceptance criteria

Demote the heuristic if it
generated a candidate solu-
tion which was not accepted
by the move acceptance cri-
teria.

Fitness

Promote the heuristic if it
generated a candidate so-
lution whose fitness was
strictly less than the fitness
of the solution previously
accepted by the move ac-
ceptance criteria.

Demote the heuristic if it
generated a candidate so-
lution whose fitness was
greater than or equal to the
fitness of the solution previ-
ously accepted by the move
acceptance criteria.

Combined

Promote the heuristic if it
generated a candidate so-
lution whose fitness was
strictly less than the fitness
of the solution previously
accepted by the move ac-
ceptance criteria or if it gen-
erated a solution which was
accepted by the move ac-
ceptance criteria.

Demote the heuristic if it
generated a candidate so-
lution whose fitness was
greater than or equal to the
fitness of the solution previ-
ously accepted by the move
acceptance criteria and if it
generated a solution which
was not accepted by the
move acceptance criteria.

system described above we consider a reverse Formula 1
ranking system. That is, each of the heuristics are ranked in
reverse order. Using a reverse technique, we demote heuristics
which generate solutions which intensify or diversify the
solution too often based on the learning mechanism used.
With a reverse approach, acceptance-based and combined
learning will demote heuristics which continually improve the
solution in hand thus increasing the frequency of a natural
diversification of the search. This will hopefully encourage
short intervals of intensification and diversification which will
favour longer convergence times and better results. Fitness-
based acceptance however will promote heuristics that cause
micro-reheats, potentially causing too much diversification to
occur.

As the standard Formula 1 ranking system allocates scores
to the top 8 ranked contestants, heuristics which are ranked
≥ 9th position will experience starvation from the set of
heuristics which can be chosen from. Unless a particular
heuristic is especially bad, this starvation is detrimental to the
search procedure as any one of these might become a good
heuristic to use in a later stage of the search. Therefore two
schemes are tested, the first stays true to the original rankings
and gives heuristics ≥ 9th position a score of 0. The second
scheme instead assigns a score of 1 to all heuristics ≥ 9th

position giving all heuristics a positive probability of selection.

If multiple heuristics share the same ranking, methods
to distinguish between the two should exist, we consider a
‘fair’ system and an ‘unfair’ system to manage these cases.
In the ‘fair’ system the scores for those heuristics are evenly
distributed. Some low-level heuristics are very fast operations
and can have 10s of thousands of applications per minute.
Sharing the scores between equal ranks in this way is a
very expensive operation relative to the time taken to apply a
heuristic. To try and produce a faster score allocation method
such that the number of iterations of the hyper-heuristic in a
fixed time frame will be greatly increased, an ‘unfair’ scoring
system is used. The ‘unfair’ score allocation assigns ranks to
heuristics as they appear when ordered by their reinforcement



fitness scores. This means that for example, if two heuristics
both share 1st place, the first heuristic found will gain a score
associated with rank 1 and the second heuristic found will gain
a score associated with rank 2.

IV. EXPERIMENTATION AND RESULTS

In order to test and compare our hyper-heuristics we
will use the benchmarks provided by the HyFlex framework.
The HyFlex [8] framework (Available to download from
http://www.asap.cs.nott.ac.uk/external/chesc2011/index.html)
offers a common framework in which to test heuristic search
algorithms over a broad set of problem domains. This
framework was used to support an international research
competition, the Cross-domain Heuristic Search Challenge
(CHeSC) [34]. In total six problem domains are provided;
boolean satisfiability (MAX-SAT), one dimensional bin
packing, personnel scheduling and permutation flow shop, the
vehicle routing problem (VRP) and the travelling salesman
problem (TSP). For each problem domain a set of black-box
low-level heuristics are defined and characterised as either
ruin-recreate, mutation, local search or crossover.

For each hyper-heuristic we will test a subset of 3 differ-
ent instances for each domain, using three pre-defined seeds
{1234, 5678, 101010} and taking the median score for each
instance to compare between different hyper-heuristics. The
instances chosen for each domain are; MAX-SAT {0, 10, 11},
bin packing {0, 10, 11}, personnel scheduling {0, 10, 11}, flow
shop {0, 10, 11}, VRP {0, 1, 2} and TSP {0, 8, 9}. Each in-
stance is allowed to run for 10 competition minutes as defined
by the CHeSC rules. For the Late Acceptance move acceptance
criteria, three memory lengths are tested {50, 1000, 10000}.

To compare hyper-heuristics, a modified version of the
Formula 1 points system was used which was designed to
compensate for the number of hyper-heuristics being com-
pared. This was because the Formula 1 ranking system was
designed for the number of contestants in the formula 1 racing
competition, therefore, comparison of smaller sets of hyper-
heuristics could cause all hyper-heuristics to obtain scores
which otherwise would not happen in a larger set. This could
allow hyper-heuristics which under-perform in certain areas
to gain an unfair advantage. In the unmodified version of
Formula 1 ranking, the top 8 contestants obtain scores based
on their ranks. From rank 1 → 8, the score allocation is
{10, 8, 6, 5, 4, 3, 2, 1}. In the original Formula 1 scoring system
there were around 22 contestants competing in any one race.
This meant that roughly the top 1/3rd of contestants gained
scores while the remaining 2/3rds obtained a zero score.
Inspired by this we define a generalised pattern of the relations
of scores to ranks:

• Contestant c1 scores ⌈n
3 ⌉+ 2

• Contestant c2 scores ⌈n
3 ⌉

• Contestant ci scores max((⌈n
3 ⌉ − i) + 1, 0) for i ≥ 3

We will use a generalised Compensative Formula 1 Rank-
ing System which follows the rules outlined above. For ex-
ample if we have 12 hyper-heuristics to compare, the ones
ranked 1 → 4 for a given problem instance would gain scores
{6, 4, 2, 1} for their respective ranks {1, 2, 3, 4}.

A. Simple Random - Late Acceptance hyper-heuristics with
differing heuristic subsets

Simple Random selection has shown previously to work
well when paired with Late Acceptance move acceptance
criteria in hyper-heuristics [15]. Previous work has suggested
that reducing the set of heuristics from which to choose can
lead to improved performance [35]. In light of this, we will
test the SR-LA hyper-heuristic over a number of heuristic
subsets and analyse the performance. In total four heuristic
subsets will be tested, three are static heuristic sets while
the fourth is a dynamic set updated during the search. The
first subset is simply all of the available heuristics. In the
case of crossover heuristics the operator is applied using a
single parent solution given as the current solution. The second
is using only the available mutation heuristics and the third
the set of heuristics which show mutational behaviour i.e.
mutation ∪ ruin-recreate. The final heuristic set which is
inspired by the success of selecting and applying a mutational
heuristic followed by a pre-defined hill climber before deciding
whether to accept a move in the work of Özcan et al [36]
over a number of other hyper-heuristic frameworks. Mutational
operators alone are often only effective for certain problem
domains, while other problem domains require local search
heuristics. Therefore a combination of both was designed
such that to begin with, only mutational heuristics exist to
prevent fast convergence in the search for problem domains
that actually only need mutational heuristics. If no solutions
are accepted by the late acceptance move acceptance method
for 1

2 of the length of the memory, then it is possible that
no further improvements can be made using only mutational
heuristics, therefore a random local search heuristic is added
to the set of heuristics to be chosen from in an attempt to
generate accepting solutions and progress the search. Upon
each injection of a local search heuristic, the counter for
non-accepting solutions is reset to zero and restarted such
that multiple more local search heuristics may be added if
necessary. For each heuristic subset, three different lengths of
memory for the Late Acceptance criteria are used {50, 1000,
10000}.

The results of stochastic selection of the various heuristic
subsets using the Compensative Formula 1 Ranking System
are shown in Table II.

TABLE II. COMPARISON OF SIMPLE RANDOM - LATE ACCEPTANCE
HYPER-HEURISTICS WITH DIFFERENT LOW-LEVEL HEURISTIC SETS USING

COMPENSATIVE FORMULA 1 RANKING

Heuristic Subset Methods
Memory Length

50 1000 10000

All Heuristics 29.00 51.00 62.00

Mutation Heuristics 2.00 2.00 12.50

Heuristics with Mutational Properties 12.00 10.50 4.50

Heuristics with Mutational Properties
and Local Search Injection

17.50 24.50 4.50

For all memory lengths, stochastic selection of All Heuris-
tics outperformed all other heuristic subsets. In addition to
this it is observed that for smaller memory lengths, Mutational
Properties with Local Search Injection proved to outperform
Mutation Heuristics and Heuristics with Mutational Properties
showing that inclusion of local search heuristics within a
late acceptance hyper-heuristic are beneficial for a general-



Fig. 2. Comparison of Simple Random - Late Acceptance hyper-heuristic
with All Heuristics and CHeSC 2011 competitors

purpose hyper-heuristic. In general, stochastic selection over
a subset of heuristics was found not to be as powerful as
stochastic selection over all heuristics. This is positive in terms
of generality as the hyper-heuristic framework used can make
use of a larger set of low-level heuristics.

The best performing hyper-heuristic from this set is SR-
LA with a list length of 10,000, operating over the set of all
available instances. The performance of this hyper-heuristic
against the original competitors is shown in Figure 2. In order
to perform this comparison the hyper-heuristic is tested with
the same rules as the original CHeSC competition, performing
31 runs of the hyper-heuristic over each problem instance
using a selection of 5 problem instances from each of the
available problem domains (30 instances in total). The median
score of each of the 31 runs for each instance is taken and
the original Formula 1 scoring system applied to the hyper-
heuristic competitors (21 in total). The hyper-heuristic is given
10 competition minutes to solve each instance.

From this we see that SR-LA outperforms 3 of the compe-
tition entrants, finishing 17th out of 21 hyper-heuristics. This
hyper-heuristic scores well in the personnel scheduling (10
points) and vehicle routing problem (4 points) domains scoring
16.6 points in total over all six problem domains using the
original Formula 1 ranking system.

B. Formula 1 ranking inspired fitness proportional selection
with Late Acceptance hyper-heuristics

A number of variants of the F1FPS heuristic selection
method are described in Section III-A. In total there are four
parameters to consider for the fitness proportionate selection
heuristic selection method. In addition to this we will consider
the same three different memory lengths for Late Acceptance
as described in Section IV-A.

Each hyper-heuristic will be labeled following a convention
indicating which particular parameters have been chosen. The
first character will represent whether the hyper-heuristic uses
the normal (N) Formula 1 ranking system or the reverse (R)
Formula 1 ranking system which allocates ranks in reverse
order. The second character corresponds to the ‘fair’ (F) or ‘un-
fair’ (U) distribution of scores for heuristics with equal ranks.
The third character denotes the type of learning mechanism
used, this is either acceptance-based (A), fitness-based (F) or
a combination of the two (C). The final character indicates
whether heuristics with a rank ≥ 9th are allocated a score of
zero (0) or (1). As an example, the selection method labeled
F1FPS NFA0 would be rank each heuristic using the standard
ordering, in the case of two heuristics sharing a ranking
the scores would be distributed fairly, an acceptance-based
learning mechanism is used to promote/demote heuristics and
all heuristics with a rank ≥ 9th are allocated a score of zero.
Essentially each different combination of these parameters rep-
resents a different hyper-heuristics. Each of these parameters
will be isolated at some point during the following sequence of
results to ascertain whether these components have a bearing
on the overall performance of a hyper-heuristic.

1) Comparison of Formula 1 Parameters with acceptance-
based learning mechanism: Here we will fix the learning
mechanism used to decide whether to promote or demote a
heuristic to acceptance-based learning. The acceptance-based
learning mechanism strategy promotes or demotes heuristics
based on if the candidate solution produced is accepted by
the move acceptance criterion. Using the 18 instances over six
problem domains described at the beginning of Section IV, the
hyper-heuristics are ranked for each instance using the Com-
pensative Formula 1 Ranking System. Each hyper-heuristic
is again tested with three different memory lengths for Late
Acceptance and allowed 10 competition minutes to solve each
instance. The results are shown in Table III.

TABLE III. COMPARISON OF F1FPS HYPER-HEURISTICS WITH
ACCEPTANCE LEARNING USING THE COMPENSATIVE FORMULA 1

RANKING SYSTEM

Hyper-Heuristic
Memory Length

50 1000 10000

F1FPS NFA0 0.50 0.50 0.50

F1FPS NFA1 0.50 0.50 0.50

F1FPS NUA0 42.00 67.00 50.00

F1FPS NUA1 39.50 64.75 72.00

F1FPS RFA0 11.50 11.00 14.50

F1FPS RFA1 11.50 11.00 14.50

F1FPS RUA0 24.50 38.00 49.25

F1FPS RUA1 18.00 60.75 99.25

These results suggest that assigning a score of 1 for
heuristics with rank ≥ 9th tends to offer better performance



than assigning a score of 0 for a large memory length and that
the opposite is true for a small memory length. In general, with
the exception of F1FPS NUA0, a higher memory length is
favoured by this set of hyper-heuristics. Unfair score allocation
also yields much better results than the corresponding fair
hyper-heuristic. This could be attributed to the fact that the
unfair score allocation procedure does not suffer from the
same computational overheads that the fair score allocation
procedure does. As a result a higher number of heuristic
applications are possible within in the same time frame. In
the case of fair ranking the reverse ranking method always
yielded better hyper-heuristics. In contrast, for unfair ranking
the reverse ranking method yields worse results with the
exception of F1FPS RUA1 with memory length 10,000 which
actually outperforms all other hyper-heuristics in this set.

2) Comparison of learning mechanisms: In order to com-
pare the three learning mechanisms, the order of the ranking
system and the fairness of score distribution were fixed to N
and F respectively. Again these tests are performed over the
same 18 instances with the parameters as described previously
using three different memory lengths for the Late Acceptance
move acceptance criteria. The results are presented in Table IV.

TABLE IV. COMPARISON OF DIFFERING LEARNING MECHANISMS
USING THE COMPENSATIVE FORMULA 1 RANKING SYSTEM

Hyper-Heuristic
Memory Length

50 1000 10000

F1FPS NFA0 0.00 0.00 0.00

F1FPS NFA1 0.00 0.00 0.00

F1FPS NFF0 19.00 27.50 33.50

F1FPS NFF1 13.00 20.50 34.50

F1FPS NFFA0 0.00 0.00 0.00

F1FPS NFFA1 0.00 0.00 0.00

These results show that the fitness-based learning mecha-
nism greatly outperforms the acceptance and fitness acceptance
learning mechanisms for this set of hyper-heuristics. In line
with the results observed in Section IV-B1 the hyper-heuristics
with the largest memory size perform well.

3) Comparison of hyper-heuristics using the fitness-based
learning mechanism: As shown in Section IV-B2 the fitness-
based learning mechanism was shown to outperform the
acceptance-based and combined learning mechanisms. Here
we will combine this learning mechanism with the top four
combinations of parameters found using the acceptance-based
learning mechanism shown in Table III. Table V shows the
results of these experiments.

TABLE V. COMPARISON OF HYPER-HEURISTICS UTILISING
FITNESS-BASED LEARNING USING THE COMPENSATIVE FORMULA 1

RANKING SYSTEM

Hyper-Heuristic
Memory Length

50 1000 10000

F1FPS NUF0 7.00 12.00 0.00

F1FPS NUF1 15.00 20.50 28.00

F1FPS RUF0 14.00 25.80 44.80

F1FPS RUF1 10.30 30.20 27.30

Again a large memory size for the Late Acceptance mech-
anism is performing well in addition to reversing the scores
assigned to each heuristic based on ranking. Unlike some of

the previous results however, a hyper-heuristic which allocates
a score of zero to heuristics ranked ≥ 9th clearly outperforms
all of the other competitors.

4) Comparison of best hyper-heuristics: As a final
comparison of the best derived hyper-heuristics, the best
hyper-heuristics from the immediately preceding sections
(IV-B1,IV-B2,IV-B3) were compared with each other and the
current best hyper-heuristic found in Section IV-A, Simple
Random - Late Acceptance with All Heuristics. The results
using the Compensative Formula 1 Ranking System are shown
in Table VI.

TABLE VI. FORMULA 1 SCORES FOR COMPARISON OF CURRENT BEST
HYPER-HEURISTICS

Hyper-Heuristic
Memory Lengths

50 1000 10000

Simple Random - Late Acceptance 14.00 16.80 21.30

F1FPS RUA1 - Late Acceptance 5.00 13.00 48.70

F1FPS NFF1 - Late Acceptance 11.00 17.00 28.20

F1FPS RUF0 - Late Acceptance 4.00 20.70 34.30

In this comparison, we see that it is necessary to have
a large memory size in order for the fitness proportionate
hyper-heuristics to outperform Simple Random selection. The
best hyper-heuristic found uses Formula 1 fitness proportionate
selection with reverse ranking, unfair score allocation, an
acceptance-based learning mechanism and assigns scores of
1 to heuristics ranked ≥ 9th (abbreviated to F1FPS RUA1
- Late Acceptance). As the best performing hyper-heuristic
overall we compare F1FPS RUA1 - Late Acceptance to the
CHeSC competitors in Figure 3. These results are calculated
using the original Formula 1 scoring system on the median
results of 31 runs on each of 30 instances taken from the six
problem domains.

These results are greatly improved over the results of
the Simple Random - Late Acceptance hyper-heuristic shown
in Figure 2. F1FPS RUA1- Late Acceptance finished 10th
out of the 21 competitors scoring 54.2 points. This hyper-
heuristic performs particularly well in the personnel scheduling
(24 points) and MAX-SAT (24.2 points) and also scores in
permutation flow shop and VRP (3 points in each domain).

V. CONCLUSIONS AND FUTURE WORK

In this work, we have analysed the effect of differing sets
of low-level heuristics on a Simple Random - Late Accep-
tance hyper-heuristic and introduced a new class of heuristic
selection mechanisms. In addition to this we have introduced
a generalised version of the Formula 1 ranking system which
can be used to measure the performance of any number of
competing techniques. It has been observed that reducing the
heuristic search space can be detrimental to the performance of
a Simple Random - Late Acceptance hyper-heuristic. A large
memory size for hyper-heuristics using Late Acceptance move
acceptance works well using the selection methods presented
here. In line with previous work in the literature although
slightly counter-intuitive, reversing the scores assigned to a
heuristic (i.e. giving the best performing hyper-heuristic the
lowest score and vice versa) can lead to improved performance
offering sufficient diversification to prevent the search from
stagnating. We have presented results for a simple stochastic



Fig. 3. Comparison of F1FPS RUA1 - Late Acceptance hyper-heuristic with
All Heuristics and CHeSC 2011 competitors

hyper-heuristic and a fitness proportionate selection mecha-
nism inspired by the Formula 1 ranking system using Late
Acceptance over a set of six benchmark problem domains.
Swan et al. [37] compared a number of variants of Late
Acceptance as an acceptance criteria applied to the Daily
Car-Pooling problem. These variants modify the values stored
within the memory of the Late Acceptance mechanism after a
given number of idle iterations. We are currently in the process
of including these variants within the existing framework in
order to assess their performance.
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