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Abstract—A hyper-heuristic is a high level methodology which
performs search over the space of heuristics each operating on
the space of solutions to solve hard computational problems.
This search process is based on either generation or selection
of low level heuristics. The latter approach is used in selection
hyper-heuristics. A generic selection hyper-heuristic has two main
components which operate successively: heuristic selection and
move acceptance methods. An initially generated solution is
improved iteratively using these methods. At a given step, the
most appropriate heuristic is selected from a fixed set of low level
heuristics and applied to a candidate solution producing a new
one. Then, a decision is made whether to accept or reject the new
solution. This process is repeated until the termination criterion
is satisfied. There is strong empirical evidence that the choice of
selection hyper-heuristic influences its overall performance. This
is one of the first studies to the best of our knowledge that suggests
and explores the use of group decision making methods for move
acceptance in selection hyper-heuristics. The acceptance decision
for a move is performed by multiple methods instead of a single
one. The performance of four such group decision making move
acceptance methods are analysed within different hyper-heuristics
over a set of benchmark functions. The experimental results
show that the group decision making strategies have potential
to improve the overall performance of selection hyper-heuristics.

I. INTRODUCTION

Hyper-heuristics are high level methodologies that search
the heuristics-space rather than the solutions, directly in prob-
lem solving. One of the earliest studies on hyper-heuristics
aiming at exploiting the strengths of multiple neighbourhood
operators is provided in [1]. Since then there is a growing
interest in hyper-heuristics [2], [3], [4]. There are two main
classes of hyper-heuristics in the literature: methodologies
to generate heuristics and methodologies to select heuristics.
This study focusses on the latter type of methodologies. A
perturbative heuristic processes and returns a complete solu-
tion. Figure 1 illustrates a selection hyper-heuristic framework
performing a single point search based on perturbative low
level heuristics [5]. In this framework, the hyper-heuristic layer
interacts with the problem domain and heuristic layers through
problem independent measures, such as the quality change in
a candidate solution when the selected heuristic is employed.
[6], [7] identify two key stages in the hyper-heuristic layer:
heuristic selection and move acceptance. An instance of a
selection hyper-heuristic will be denoted by a pair as “heuristic
selection method” “move acceptance criterion” from this point

forward. A selection hyper-heuristic selects a heuristic from a
set of n perturbative low level heuristics {H1,H2, ..., Hn},
then applies the chosen heuristic to the candidate solution.
Afterwards, it decides whether to accept or reject the new
solution at each step. An initially generated solution goes
through this process repetitively until a set of termination
criteria is satisfied. Finally, the best solution at hand is returned
for a given problem.

 

1. generate initial candidate solution p 

2. best=p 

3. while (termination criteria not satisfied){ 

4.    select a heuristic h from {H1, ..., Hn} 

5.    generate a new solution s=h(p) 

        by applying h to p 

6.    decide whether to accept s or not 

7.    if (s is accepted) then 

8.         p=s;  

9.    if (p is better than best) then 

10.         best=p;  

11. } 

12. return best 

Hyper-heuristic Layer 

(Steps 4 & 6) 

Low level heuristics  H1 Hn 

Domain Barrier 

Problem Domain Layer  

(Steps 1 & 5) 

Fig. 1. Layers in a generic hyper-heuristic framework and pseudocode of a
selection hyper-heuristic

Most of the selection hyper-heuristics in the literature fea-
ture a filter, referred to as domain barrier which does not allow
any domain specific information to be passed from the problem
domain layer to the hyper-heuristic layer [5], [4]. Hence,
selection hyper-heuristics, once implemented, are reusable gen-
eral methods, applicable to different unseen instances from a
specific domain as well as different domains. Even the heuristic
selection and move acceptance components of hyper-heuristics
are reusable. Although [8] implied that hyper-heuristics are
problem independent approaches, [7], [6] showed that different
combinations of hyper-heuristic components, namely heuristic
selection and move acceptance methods might yield differ-
ent performances even for different problem instances. This
observation is crucial, since it implies that another level can
be introduced on top of the hyper-heuristics for managing
them. Then the question arises: “How are we going to end
this hierarchical growth in the levels”.

There are successful approaches that adapt group decision
making models in different ways for solving engineering and
optimisation problems [9], [10]. In [11], ant colony optimi-
sation approach for global optimisation was proposed. In the
approach, the ants leave pheromones on the trails that they pass
and strengthen link between two objects in the representation.



This process can be considered a voting mechanism. [12]
emphasised the role of combining decision rules within the
scatter search to derive additional trial solutions. Scatter search
is a different optimisation method using a single heuristic
as a neighbourhood operator and exploits adaptive memory.
In this study, four different move acceptance methods which
are derived from well known group decision making models
are investigated within the selection hyper-heuristics for the
first time in the literature. The proposed strategies combine
the decisions of a group of independent move acceptance
mechanisms while deciding to accept or reject a single solution
at each step. The use of a group decision making strategy
allows all member mechanisms to operate at the same level and
flattens the hierarchical growth in the hyper-heuristic levels for
the move acceptance.

Hyper-heuristics that combine seven heuristic selection
methods with the proposed move acceptance strategies are
tested over fourteen benchmark functions. Section II provides
an overview of the selection hyper-heuristics related to this
study. Section III explains group decision making and the pro-
posed hyper-heuristics. The benchmark functions and design
of selection hyper-heuristics are overviewed in Section IV. The
computational results are discussed in Section V. Section VI
concludes the study with a summary and discussion.

II. SELECTION HYPER-HEURISTICS

Many researchers and practitioners have been progressively
involved in hyper-heuristic studies for solving difficult real
world combinatorial optimisation problems. There is a growing
number of empirical studies indicating the effectiveness of
hyper-heuristics as general solvers [4]. A recent theoretical
study also shows that mixing heuristics (operators) could per-
form exponentially faster search than the stand-alone heuristics
on some problems [13].

[5] investigated most of the selection hyper-heuristic com-
ponents. Simple Random (SR) randomly chooses a low level
heuristic based on a uniform probability distribution at each
step. Random Descent (RD) selects the heuristic in the same
manner as SR, but applies it repeatedly until no improvement
is achieved. Random Permutation (RP) generates a random
initial permutation of the low level heuristics and at each step
applies a low level heuristic in the provided order sequentially.
Random Permutation Descent (RPD) processes the low level
heuristics in the same manner as RP, but proceeds in the same
manner as RD without changing the order of heuristics. The
Greedy (GR) method applies all heuristics to a given candidate
solution and selects the one that generates the most improved
solution. Choice Function (CF) uses a learning mechanism
that scores low level heuristics based on their individual
and pair-wise performances. The heuristic having the best
score is selected at each step and applied to the candidate
solution. Two naive acceptance criteria were used to combine
with the aforementioned heuristic selection mechanisms [5].
The All Moves (AM) acceptance criterion accepts all the
generated solutions, while Only Improving (OI) accepts only
better quality solutions. Improving and Equal (IE) accepts
non-worsening moves. The experimental results showed the
superior performance of the CF AM hyper-heuristic. [14]
presented a variant of CF.

[15] compared different Monte Carlo based move accep-
tance criteria which allow the acceptance of non-improving
moves using different probability formula. These strategies are
similar to the simulated annealing move acceptance [16] yet
without a cooling schedule. The authors reported the success
of the Exponential Monte Carlo with Counter (EMCQ) with
Simple Random heuristic selection. EMCQ uses the probability
of e−∆f×m/Q for accepting non-improving moves, where
∆f is the fitness change at a given step, m is the duration
of the selected heuristic execution and Q is the number of
successive worsening moves. Q is reset whenever there is an
improvement.

[17], [7] compared the performances of different selec-
tion hyper-heuristics based on four different frameworks. It
has been observed that different combinations of heuristic
selection and move acceptance components yield different
performances. A selection hyper-heuristic using the simulated
annealing move acceptance with a linear cooling rate, denoted
as MC (Equation 1) performed the best when Choice Function
is used as the heuristic selection method.

e
− ∆f

∆F (1− t
T

) (1)

where ∆f is the fitness change at step t, T is the maximum
number of steps and ∆F is an expected range for the maximum
fitness change.

[2] proposed a hyper-heuristic combining tabu search and
ranking as a heuristic selection mechanism (TABU IE). Tabu
search was used to avoid selecting poor performing heuristics
by maintaining a tabu list of heuristics. A reinforcement
learning based ranking strategy was employed to calculate and
update the heuristics’ ranks based on their performance. The
resulting ranks were then used to choose heuristics.

[18] experimented with a hyper-heuristic with the SR
heuristic selection method and the Great Deluge (GD) accep-
tance criterion stochastic acceptance mechanism. GD is based
on a stochastic framework which allows improving moves by
default. Non-improving moves are accepted if the objective
value of the candidate solution is better or equal to an expected
objective value, named as level at each step. The objective
value of the first generated candidate solution is used as the
initial level. The level is updated at a linear rate towards a final
objective value as shown in Equation 2.

τt = f0 +∆f × (1− t

T
) (2)

where τt is the threshold level at step t in a minimisation
problem, T is the maximum number of steps, ∆f is an
expected range for the maximum fitness change and f0 is the
final objective value. Almost all move acceptance methods in
the literature, accept improving moves and they differ in how
they handle worsening moves. There is a growing number of
studies emphasising the influence of move acceptance methods
in hyper-heuristics. [19] uses late acceptance strategy which
makes the acceptance decision comparing the quality of the
current solution to the quality of another solution, produced a
fixed number of steps earlier. The threshold move acceptance
methods, such as great deluge and adaptive iteration limited
list-based threshold accepting (AILLA) [20] showed success



within the selection hyper-heuristic framework. More on se-
lection hyper-heuristics can be found in [21], [22], [7], [2],
[4].

III. GROUP DECISION MAKING HYPER-HEURISTICS

A. Group decision making

Group decision-making is defined as ”the process by which
a collective of individuals attempt to reach a required level
of consensus on a given issue” [23]. This process contains
two main phases; discussion between group members and
reaching a single group decision. The final outcome requires
an agreement based on a specified strategy as decision criteria
such as voting.

A decision making process [24] consists of a set of steps
to reach a choice. At first, the problem is identified. Then,
the factors expected to be influential on the decision are
listed. Each member of this list should be associated with a
specific weight according to its importance, that is, some kind
of priority should be established. After that, the alternatives
that can meet the requirements are considered. The effect and
performance of each alternative strategy are analysed. Among
all the alternatives, the best one is chosen and performed on
the given issue. During this process, three main circumstances
can be encountered; certainty, uncertainty and risk. From the
certainty perspective, all the possible effects of the decisions
are known. For uncertainty, information about the results of
alternatives is incomplete. Thus, a risk must be taken to get
rid of this uncertainty by associating some probabilistic values.

During the group decision making process, one of four
main decision making strategies as classified by [25] should
be chosen and applied depending on the characteristics of
a problem. One of them is the plop method. It works by
providing different ideas about a subject and arguing them,
then accepting one of them. It is very simple and commonly
used approach, but it is not appropriate for all types of group
decisions. The other one is group decision making under an
authority rule. It is a straightforward strategy depending on the
power. For instance, in a company, everyone provides some
ideas about a subject and discusses to reach a decision. The
final decision is made by an authorised person, such as, a
chairman. Another model for group decision is the minority
rule. Unlike the previous case, the discussion is rather shallow.
An authorised person asks whether the idea is accepted or not
and the silence of group members is considered the acceptance
of the proposed idea. It is also possible that everyone states an
allowed to state an opposing idea, but the final decision can be
given by a small group of people, such as, the shareholders of
a company without other board of members. The last and the
most known one is the majority rule. It can be exemplified with
two different approaches. One of them is a well known system,
i.e. voting. Everyone votes for a decision, and then the decision
received the majority of the votes is the final decision. The
other majority rule is pooling. In this case, voting is performed
twice. A discussion session is arranged in between them. If the
general opinion is the same as before the discussions, the idea
is accepted.

B. Group decision making move acceptance methods

Four different group decision making strategies are pro-
posed as a hyper-heuristic move acceptance mechanism: G-
AND, G-OR, G-VOT, G-PVO. Each one of these move accep-
tance mechanisms provides a decision whether a new candidate
solution is accepted or not by evaluating the decisions of their
member move acceptance mechanisms. Generally speaking,
improvements are always accepted and a worsening move
subject to the group decision criteria. G-OR and G-AND
are biased strategies. G-OR makes an acceptance oriented
decision. If the members willing to admit the new solution are
in the minority, still, it is accepted. Even if there is a single
member that admits the new solution, that member acts as
an authority and makes the final decision. On the other hand,
G-AND makes a rejection oriented decision. All the member
move acceptance mechanisms must be in agreement so that the
new solution gets accepted. Even if the members that reject
the new solution are in the minority, it is rejected. G-VOT
and G-PVO are based on the majority rule. G-VOT is based
on the traditional voting scheme. If the majority of members
accept the new solution, it is accepted, otherwise it is rejected.
G-AND, G-OR and G-VOT act under certainty, whereas G-
PVO is modelled favouring uncertainty to a degree using
a probabilistic framework while making the final decision.
The probability of acceptance of a new solution dynamically
changes proportional to the number of members that vote
for acceptance within the group at each step in G-PVO. For
example, assuming that there are ten members in the group and
six of them accept the new solution at a step, then this solution
is accepted by G-PVO with a probability of 0.6. None of the
group decision making move acceptance criteria requires odd
number of members, but it is preferable by G-VOT.

The proposed group decision making move acceptance
criteria can be represented by means of a more general model.
In this model, given k move acceptance methods, a move
is accepted if the inequality is satisfied by the Equation 3,
otherwise it is rejected. The contribution of each member
move acceptance mechanism towards a final decision for the
acceptance can be adjusted through a weight, referred to as
strength (si). Assuming that all si values are 1, the method
turns out to be G-AND for α = k and G-OR for α = 0.5.
If α = k/2 and all si values are 1, then the method becomes
G-VOT. If α = k × r, where r is a uniform random number
in [0,1] and all si values are 1/k, then the method becomes
G-PVO. More static, dynamic and adaptive group decision
making move acceptance strategies can be generated based on
this model, which is out of the scope of this paper.

k∑
i=1

si ×D(Mi) ≥ α (3)

where Mi denotes the ith group member (a move acceptance
mechanism), D(x) returns 1, if the strategy x accepts the new
solution and 0, otherwise, si is the strength of the decision
made by the ith member move acceptance mechanism and α
denotes a threshold value.

A move acceptance criterion used in a selection hyper-
heuristic is categorised as non-deterministic if the acceptance
decision depends on current time (iteration). If the acceptance



decision is the same for a given new and current solution at any
point during the search process, the move acceptance criterion
is considered as a deterministic criterion. Additionally, an
acceptance mechanism can be characterised as stochastic (non-
stochastic) if a probabilistic framework is (not) utilised while
accepting or rejecting a move. Existing move acceptance fall
in one of the three categories presented in Table I. A selection
hyper-heuristic using a move acceptance method based on a
group decision making model will be referred to as a group
decision making hyper-heuristic from this point on.

IV. GROUP DECISION MAKING HYPER-HEURISTICS FOR
BENCHMARK FUNCTION OPTIMISATION

Seven heuristic selection methods {SR, RD, RP, RPD, CF,
GR, TABU} are combined with four group decision making
move acceptance mechanisms {G-AND, G-OR, G-VOT, G-
PVO}, generating twenty eight hyper-heuristics. The move
acceptance mechanisms embed M1=IE (improving and equal),
M2=MC (simulated annealing) and M3=GD (great deluge) as
group members. These group members were selected due to
their high performance reported in [7]. It should be also noted
that each member falls into a different category, previously
mentioned in Table I.

A. Benchmark function test suite

Benchmark functions provide an excellent controlled en-
vironment for evaluating a new approach and comparing its
performance to the other approaches. Fourteen well known
selected benchmark functions including the De Jong’s test suite
[26] are used to investigate the performance of group decision
making hyper-heuristics. Table II provides the characteristics
of these functions. There are eleven continuous (F1-F11)
and three discrete functions (F12-F14) in the test set. The
discrete functions are deceptive functions because of the large
hamming distance between the local optima and the global
optimum. A unimodal benchmark function contains a single
optimum, whereas a multimodal benchmark function has at
least one local optimum that may cause a search method
getting trapped. Separability property determines the depen-
dency between the dimensional encoding of solutions and ease
of evaluating candidate solution. In a separable function, the
evaluation process can be divided into a set of independent
evaluations for each dimensional encoding. This process allows
delta evaluation in the case of a localised change within a
dimension eliminating the need for decoding all dimensions
to evaluate a given candidate solution.

B. Frameworks, low level heuristics and encoding for bench-
mark function optimisation

A hyper-heuristic framework (FA) without differentiating
the low level heuristics is presented in [2]. On the other
hand, [17] separate mutational heuristics and hill-climbers
and propose three additional hyper-heuristic frameworks (FB ,
FC , FD). An improved or equal quality solution is expected
from a hill climber as a local search component, while a
mutational heuristic is a methodological random perturbation.
The best performing hyper-heuristic framework, FC , applies
a predetermined hill climber right after a mutational heuristic.
Memetic algorithms [36] that hybridise genetic algorithms and
hill climbers and iterated local search utilise similar ideas [37].

The results in [7] show that a hyper-heuristic based on the FC

framework can compete with the performance of a memetic
algorithm.

The low level heuristics for benchmark function optimisa-
tion includes three mutational heuristics and three hill climbers
[7]:

• H1: mutation (MUTN) flips a randomly selected bit.

• H2: dimensional mutation (DIMM) randomly se-
lects a dimension and flips a random bit.

• H3: swap dimension (SWPD) swaps all bits between
two randomly selected dimensions.

• H4: random mutation hill climber (RMHC) flips
a randomly selected bit. If the change improves the
solution, it is accepted (otherwise rejected). This pro-
cess is repeated n times, where n is the length of a
candidate solution (number of bits).

• H5: next gradient hill climber (NGHC) starts with
the first bit and flips it. If this change improves
the solution, it is accepted (otherwise rejected), and
then the next bit is considered until all the bits are
processed.

• H6: Davis′s bit hill climber (DBHC) operates sim-
ilar to NGHC. The only difference is that DBHC uses
a random ordering of bits instead of starting from the
first bit and moving to the next one.

In this study, the traditional hyper-heuristic framework is
investigated as well as the FC framework for benchmark
function optimisation. Within the FC framework, a hyper-
heuristic controls three mutational heuristics (H1, H2 and H3).
DBHC (H6) is employed after applying a mutational heuristic.
Gray encoding is used to represent the candidate solutions for
the continuous functions.

V. COMPUTATIONAL RESULTS

Pentium IV 3 GHz LINUX machines having 2.00GB
memories are used for the benchmark function optimisation
experiments. Each experiment on a benchmark function is
repeated for fifty times. The experiments are terminated if
the execution time exceeds 600 CPU seconds or the expected
global optimum (see Table II) is achieved. The performance
of algorithms are evaluated based on success rate, s.r.,
denoting the ratio of the number of successful trials for
which the expected fitness (optimum) is achieved to the total
number of trials: s.r. = [number of trials in which optimum is
obtained]/[50 (trials)]. Two sets of experiments are performed
using different selection hyper-heuristic frameworks.

All twenty eight group decision making hyper-heuristics
combining {SR, RD, RP, RPD, CF, GR, TABU} with {G-
AND, G-OR, G-VOT, G-PVO} are applied to the benchmark
function optimisation problems using the traditional hyper-
heuristic framework (FA) in the first set of experiments.
The experimental results show that G-VOT as a group deci-
sion making move acceptance mechanism performs the best
considering the average success rate over all test cases as
illustrated in Figure 2(a). G-PVO, G-AND and G-OR follow
G-VOT performance-wise in that order. The heuristic selection



TABLE I. CATEGORISATION OF SOME EXISTING MOVE ACCEPTANCE METHODS USED WITHIN THE SELECTION HYPER-HEURISTICS.

deterministic non-deterministic
stochastic - Simulated Annealing variants, EMCQ

non-stochastic Accept all, Improving and Equal, Only
Improving

Great Deluge, Late Acceptance, AILTA

TABLE II. CHARACTERISTICS OF THE BENCHMARK FUNCTIONS

L
ab

el

Function Name [lb, ub] D
im

en
si

on

op
tim

um

is
C

on
tin

uo
us

is
M

ul
tim

od
al

is
Se

pa
ra

bl
e

Source
F1 Sphere [-5.12,5.12] 10 0 X x X [26]
F2 Rosenbrock [-2.048,2.048] 10 0 X x X [26]
F3 Step [-5.12,5.12] 10 0 X x X [26]
F4 Quartic with noise [-1.28,1.28] 10 1 X X X [26]
F5 Foxhole [-65.536,65.536] 2 1 X X x [26]
F6 Rastrigin [-5.12,5.12] 10 0 X X X [27]
F7 Schwefel [-500,500] 10 0 X X X [28]
F8 Griewangk [-600,600] 10 0 X X x [29]
F9 Ackley [-32.768,32.768] 10 0 X X x [30]
F10 Easom [-100,100] 6 -1 X x x [31]
F11 Schwefels Double Sum [-65.536,65.536] 10 0 X x x [28]
F12 Royal Road n/a 8 0 x n/a X [32]
F13 Goldberg n/a 30 0 x n/a X [33], [34]
F14 Whitley n/a 6 0 x n/a X [35]

methods deliver similar performances in the overall. CF as a
heuristic selection method delivers a slightly better perfor-
mance when compared to the other heuristic selection methods
with an average success rate of 0.78 over all test cases as
illustrated in Figure 2(b).

Table III provides the performance comparison of hyper-
heuristics combining CF with a different group decision mak-
ing move acceptance method with respect to success rate. The
CF G-VOT hyper-heuristic performs the best with an average
success rate of 0.92 over all benchmark functions. CF G-VOT
achieves a success rate that is greater or equal to 0.96 for
F4, F6 and F10 functions as shown in Table III. The full
success is obtained in locating the global optimum for all
functions, excluding F13. This hyper-heuristic is obviously
susceptible to deception. The global optimum is not found for
Goldberg’s deceptive function (F13) in none of the runs. On the
other hand, hyper-heuristics using G-AND locates the global
optimum for F13 at least for once when combined with any
heuristic selection method, other than CF.

The experiments are repeated in the same environment
with the same settings using hyper-heuristics that combine
CF with each member move acceptance method from the
group as a stand-alone (individual) move acceptance method.
CF IE, CF GD and CF MC generate an average success rate
of 0.69, 0.88 and 0.91 over all benchmark functions, respec-
tively. CF G-VOT performs slightly better than CF G-PVO,
CF GD and CF MC. Its performance is better than CF IE,
CF G-AND, and CF G-OR and this performance difference
is statistically significant within a confidence interval of 97%
based on a two-tailed pairwise student’s t-test of success rates
over all benchmark functions.

The second set of experiments are performed using the
same experimental setting with all the decision making hyper-
heuristics based on the FC framework as described in section
IV. The results show that almost in all cases, the performance

TABLE III. PERFORMANCE COMPARISON OF DECISION MAKING
HYPER-HEURISTICS USING CHOICE FUNCTION, CF, AS A HEURISTIC
SELECTION COMPONENT OVER BENCHMARK FUNCTIONS BASED ON

SUCCESS RATE.

label G-VOT G-PVO G-AND G-OR
F1 1.00 1.00 1.00 1.00
F2 1.00 1.00 0.00 1.00
F3 1.00 1.00 1.00 0.78
F4 0.96 0.92 0.54 0.64
F5 1.00 1.00 1.00 1.00
F6 0.96 0.48 1.00 0.04
F7 1.00 1.00 1.00 0.50
F8 1.00 1.00 0.04 1.00
F9 1.00 1.00 1.00 1.00
F10 0.98 0.92 1.00 0.96
F11 1.00 1.00 0.02 1.00
F12 1.00 1.00 1.00 0.00
F13 0.00 0.00 0.00 0.00
F14 1.00 1.00 1.00 0.00
avr. 0.92 0.88 0.69 0.64

of the group decision making hyper-heuristics improves. Figure
3 illustrates the overall evaluation. Although G-AND turns out
to be the best choice compared to the other group decision
making move acceptance methods. The pair-wise performance
difference between G-AND and each approach in {G-PVO,
G-VOT} is not statistically significant. The performance of
G-OR worsens when the FC framework is used instead of
the traditional one. As a result, it is observed that majority
towards an agreement of acceptance is more valuable among
the group members. The heuristic selection methods starting
from the one having the best performance to the worst are GR,
CF, TABU, RPD, SR, RP and RD, respectively, considering
average success rates for heuristics selection methods on all
test cases. The GR G-PVO and GR G-VOT hyper-heuristics
are the best performing hyper-heuristics when the underlying
framework is of type FC generating the perfect success rate
of 1.00 locating the optimum for each test function in the
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Fig. 2. Average success rate (and the associated standard deviation) for (a)
each heuristic selection method, (b) each group decision making acceptance
mechanism over all benchmark functions when used based on the generic
selection hyper-heuristic framework of FA

benchmark across all runs. This performance is the same as
the performance of the best memetic algorithm (bMA) as
described in [7]. Changing from the underlying traditional
framework to the FC framework improves the performance
of the CF G-VOT hyper-heuristic from an average success
rate of 0.92 to 0.99 over all benchmark functions. The pair-
wise performance difference between CF G-VOT and each ap-
proach in {GR G-PVO, GR G-VOT, bMA} is not statistically
significant.

VI. CONCLUSION AND FUTURE WORK

A class of hyper-heuristics contains methodologies that
combine two consecutive processes, namely heuristic selection
and move acceptance in a single point based search framework.
An initial solution is improved iteratively by applying a set
of perturbative low level heuristics until termination. It has
already been empirically observed that the choice of move
acceptance method for a hyper-heuristic is critical. Different
combinations of a heuristic selection method and a move
acceptance criterion in a hyper-heuristic might yield different
performance across different problem domains [6], [17], [7].
This study investigates the effectiveness of group decision
making for move acceptance in hyper-heuristics. The deci-
sions of a group of independent move acceptance criteria
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Fig. 3. Average success rate (and the associated standard deviation) for each
group decision making acceptance mechanism over all benchmark function
experiments when used based on the selection hyper-heuristic framework of
FC

are combined to make a single decision whether to accept
or reject a new solution during the search process. The
experimental results show that the majority rule based group
decision making move acceptance methods can significantly
improve the performance of a selection hyper-heuristic. The
traditional AND-operator and probabilistic voting schemes
which dynamically compute the acceptance probability of a
move based on the votes from the group members are the
most successful mechanisms to be used within the selection
hyper-heuristics. If the mutational and hill climbing heuristics
can be distinguished and implemented separately for a given
problem, an additional improvement can be obtained by using
the memetic hyper-heuristic framework (FC) [7].

The use of multiple move acceptance methods based
on group decision making models within selection hyper-
heuristics appears to produce a synergy among the mem-
bers yielding a better performance when compared to the
performance of hyper-heuristics using each member method
stand-alone. The effectiveness and generality level that the
group decision making hyper-heuristics achieve will be further
investigated on other problem domains.
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[7] E. Özcan, B. Bilgin, and E. E. Korkmaz, “A comprehensive analysis
of hyper-heuristics,” Intelligent Data Analysis, vol. 12, no. 1, pp. 3–23,
2008.

[8] P. Cowling, G. Kendall, and E. Soubeiga, “A hyperheuristic approach for
scheduling a sales summit,” in Selected Papers of the Third International
Conference on the Practice And Theory of Automated Timetabling,
PATAT 2000, ser. Lecture Notes in Computer Science. Konstanz,
Germany: Springer, August 2000, pp. 176–190.

[9] J. Mottl, “Excavator optimization using the voting method,” Computer
Methods in Applied Mechanics and Engineering, vol. 98, no. 2, pp. 227
– 250, 1992.

[10] M.-S. Wang and W.-C. Chen, “A majority-voting based watermarking
scheme for color image tamper detection and recovery,” Computer
Standards & Interfaces, vol. 29, no. 5, pp. 561 – 570, 2007.
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J. R. Woodward, “Exploring hyper-heuristic methodologies with genetic
programming,” in Computational Intelligence, ser. Intelligent Systems
Reference Library, J. Kacprzyk, L. C. Jain, C. L. Mumford, and L. C.
Jain, Eds. Springer Berlin Heidelberg, 2009, vol. 1, pp. 177–201.

[22] K. Chakhlevitch and P. Cowling, “Hyperheuristics: Recent develop-
ments,” 2008, pp. 3–29.

[23] K. Eliaz, D. Ray, and R. Razin, “Group decision-making in the shadow
of disagreement,” J. Economic Theory, vol. 132, no. 1, pp. 236–273,
2007.

[24] S. P. Robbins and D. A. DeCenzo, Fundamentals of Management,
4th ed. Prentice Hall, 2003.

[25] A. E. Schwartz, “Group decision-making,” The CPA Journal, vol. 64,
no. 8, pp. 60–62, 1994.

[26] K. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, University of Michigan, 1975.

[27] L. A. Rastrigin, “Extremal control system,” in Theoretical Foundations
of Engineering Cybernetics Series, Nauka, Moscow, 1974.

[28] H.-P. Schwefel, Numerical Optimization of Computer Models. New
York, NY, USA: John Wiley & Sons, Inc., 1981.

[29] A. O. Griewangk, “Generalized descent of global optimization,” Journal
of Optimization Theory and Applications, vol. 34, no. 1, pp. 11 – 39,
1981.

[30] D. H. Ackley, “An empirical study of bit vector function optimization,”
in Davis, L. (ed.) Genetic Algorithms and Simulated Annealing, vol. 1.
London: Pitman Publishing, 1987, pp. 170–215.

[31] E. E. Easom, “A survey of global optimization techniques,” Master’s
thesis, University of Louisville, USA, 1990.

[32] M. Mitchell and S. Forrest, “Fitness landscapes: Royal road functions,”
in Handbook of Evolutionary Computation, T. Bäck, D. Fogel, and
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