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Abstract 

An analytical model of packet-pair bandwidth-

probing under heterogeneous traffic is compared 

with a discrete-event simulation. The arrival of each 

packet-type is governed by an independent Poisson 

process, such that the aggregate distribution is 

approximately Gaussian. The waiting-time can be 

resolved into two components: A transient 

component representing the emptying process, and 

an equilibrium component representing the return 

to a steady-state distribution. The simulated 

waiting-time and dispersion characteristics agree 

closely the model’s predictions. 

1. Introduction

If a network path has a capacity l  bits/s, and 

carries cross-traffic c  bits/s, then the utilization 

lc  and the bandwidth available for new users 

clAB  . Reliable AB estimates are useful to 

network clients who require a minimum bandwidth 

for real-time applications, and system administrators 

for achieving optimal performance [1]. 

The packet-pair technique of Melander et al. [2] 

gauges available bandwidth in terms the dispersion 

between probe-packets transmitted in closely-spaced 

pairs. In the original model, cross-traffic was 

assumed to behave as a continuous "fluid", such that 

the individual packet service time was zero. If the 

first packet in a pair contains pS bits, it blocks the 

channel for lSp seconds, creating a backlog of 

lSc p  bits. If the second packet arrives before this 

backlog clears, it is delayed by the residual waiting 

time and the time separation between the packet 

deliveries increases. By plotting the dispersion ratio 

(i.e. the ratio of output to input packet separation) 

against the probing rate, l , c  and thus the available 

bandwidth can (in principle) be determined. 

An earlier paper [5] presented a model of the 

packet-pair probing event, which agreed closely with 

the results of a discrete-event simulation for both 

single and multi-hop network paths. However, this 

model assumed that the network cross-traffic was 

composed of identical uniform-sized packets. The 

current paper extends the model to cover more 

realistic traffic, composed of different sized packets. 

2. The Packet-Pair Probing Event

2.1  The Fluid-Traffic Model 

This analysis concentrates on the “tight link” of a 

network path, i.e. the link with the smallest AB 

which dictates the overall path capacity. The 

derivation below differs from the original [2] in that 

individual packet arrivals are considered in the time 

domain.  If the first packet in a pair (#1) arrives at 

the instant 0t ,  the buffer suddenly acquires pS  

bits, which complete service at time lSt p . 

Meanwhile cross-traffic arrives at c  bits/s, so the 

subsequent waiting-time1 profile is 

    0,1max tlclStw p  . If Packet #2 arrives 

at time int  , then it leaves the server when 

  lSwt pin  . It can be seen from Figure 1 that 

  lSwlS pininoutp  , which can be 

re-arranged to obtain the dispersion ratio: 
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since     0,1max inpin lclSw  , it is easy 

to show that: 

1 “Virtual Waiting Time” (VWT) w(t) is the time packet 

arriving at time t takes to reach the server. Here it was 

gauged by measuring the sojourn times of “virtual” (zero 

size) packets. 
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where r  is the “probing rate”, given by inpS 

bits/s. In principle, the graph of D  against r  

(Figure 2) remains flat at 1D  for all clr   (the 

effective bandwidth), and increases linearly with a 

slope l1  for all clr  . The values of l  and c  

can therefore be determined by linear regression. 

Figure 1. Virtual waiting-time profile during the 
packet-pair arrival under fluidic cross-traffic. 

Figure 2. Ideal graph of dispersion ratio vs. 
probing rate for one congestible link. 

Figure 3. Fluid model and simulation data 
obtained using various traffic processes. 
(Server rate 1Mbit/s, cross traffic 500kbit/s, 
available bandwidth 500kbit/s, probe packets 
1000 bytes.) 

2.2  Limitations of the Fluid Model 

Figure 3 compares the model with simulation 

data obtained using three cross-traffic scenarios. 

While the 1-byte packets2 (which are of negligible 

size compared to the 1000-byte probe packets) 

conform to the fluid model, the dispersions obtained 

using larger variable-size packets tend to be greater 

than the model’s predictions, especially when the 

probe-rate is close to the available bandwidth 

(500kbit/s). This is a well-documented effect known 

as “probing bias” [3], which causes an under-

prediction of the available bandwidth and an over-

prediction of the link capacity. 

This problem has been studied at a deterministic 

“sample-path” level [3] and using probabilistic 

packet-arrival models [4,5]. Park et al. [4] used an 

exact model of M/D/1 queuing dynamics, while 

Tunnicliffe et al. [5] developed simpler (though 

nonetheless accurate) approximation. 

However, both these models assume that the 

cross-traffic is Poisson and composed of uniform-

size packets. Here we develop an extended version 

for heterogeneous traffic composed of different 

sized packets, and compare the predictions with 

simulation data. 

3. Approximate Stochastic Model

3.1  Modeling Heterogeneous Traffic 

For the purposes of this paper, cross-traffic will 

be assumed to be highly “modal”, i.e. composed of a 

finite number P  of independent arrival processes 

with their own characteristic packet-sizes 

PSSS ...., 21  bits. Let i be the proportion of packets 

which are of size iS , and i  be the proportion of 

the total traffic (in bits/s) which consists of packets 

of size iS . The quantities i  and i  are related by 

the formulae: 
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Table I shows the three packet-size distributions 

used in this work. Profile 1 was borrowed from [6], 

while Profiles 2 and 3 were arbitrarily chosen. 

2 The simulation software (written in C++) is not 

constrained to the limitations of IP, whose packets are 

typically 46-1500 bytes for the Ethernet protocol. 
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Table I: The three packet-size distributions 

Profile 1 ( 1298effS  bytes) 

Packet Size 

(bytes) 

% of Total 

Traffic 

% of Total 

Packets 

60 4.77 46 

148 2.81 11 

500 9.50 11 

1500 82.92 32 

Profile 2 ( 639effS  bytes) 

Packet Size 

(bytes) 

% of Total 

Traffic 

% of Total 

Packets 

50 14.88 60 

108 10.71 20 

500 24.80 10 

1000 49.60 10 

Profile 3 ( 2218effS  bytes) 

Packet Size 

(bytes) 

% of Total 

Traffic 

% of Total 

Packets 

500 2.56 10 

1000 5.13 10 

1500 15.38 20 

2500 76.92 60 

 

3.2  Equilibrium Queue Model 
 

Now if all the arrival processes are assumed to 

be Poisson, the bottleneck node may be considered 

an M/G/1 queue, whose average equilibrium 

behavior can be modeled using the Pollaczek-

Khintchine (P-K) equation [7]. According this 

formula, the mean equilibrium waiting time is: 
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where the packet service time lSts   and   is the 

aggregate packet arrival rate jjPj Sc ..1 . Thus 
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and using Eqn.(3) to eliminate i  yields 
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The quantity iiPi S..1  can be regarded as the 

“effective packet size” effS , and is computed for all 

three packet-size distributions in Table I. 

The variance of the waiting time is somewhat 

more problematic: Exact models exist for the M/D/1 

queuing distribution (which could be applied to the 

M/G/1 system by analogy) but these require some 

detailed numerical computation. 

According to the Heavy Traffic Approximation 

(HTA), the cumulative queue-size distribution is 

approximately exponential [8], suggesting that the 

mean and standard deviation should be 

approximately equal. This observation was utilized 

in an earlier paper [5], where (combined with the 

other approximations in the model) it yielded fairly 

reasonable results. However, Figure 4(a) shows that 

the values only truly converge under very high 

utilization ( 8.0 ), and elsewhere the mean 

provides a significant under-prediction of the 

standard deviation. 
(a) 

 
(b) 

 
Figure 4. Standard deviation VWT under 
equilibrium conditions. (a) Simulated standard 
deviation compared with the Heavy Traffic 
Approximation (HTA). (b) Simulated standard 
deviation compared with hybrid delta-
function/HTA model. (Server speed was 1Mbit/s 
in all cases.) 

 



In order to achieve a better approximation, we 

observe that for lower utilizations an arriving packet 

has a chance 1  of finding the buffer empty, and 

thus experiencing no waiting-time. This component 

of the waiting-time PDF can be represented by a 

delta function at 0t , with a magnitude 1 . If an 

exponential function is assumed for all finite queue-

sizes, the waiting-time PDF becomes: 
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(7) 

 

and the standard deviation can thus be computed: 
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Figure 4(b) compares this with the simulated 

results for all three packet-size distributions. There 

is now a slight tendency to over-predict w , but this 

is only significant under very low utilizations, where 

the equilibrium waiting-time could for most 

practical purposes be ignored. 

 

3.2  Transient Queue Behavior 
 

At the instant the first probe-packet arrives 

( 0t ), the buffer contains lwSp   bits with a 

standard deviation lw  bits. For 0t , two 

competing processes occur: the backlog is cleared 

by the server and additional cross-traffic arrives. 

Using the arrival model developed earlier, the 

number of packets of size iS  to arrive by time t  

must have a mean ii Sct and variance ii Sct . 

(A Poisson distribution’s variance is equal to its 

mean.) Thus the mean total arrived bits is 

ctctiPi   ..1  variance tcStcS effiiPi   ..1  and 

(before there is any significant chance of the queue 

emptying completely) the mean number of stored 

bits is  tcllwS p   with variance 

22
ltcS weff  . If the distribution is approximated 

by a Gaussian, the waiting-time PDF is given by: 
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(9) 

However, as this applies only for 0w  (the 

queue cannot empty below zero), the resulting 

contribution to the mean waiting-time must be 
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The 0n  portion of the Gaussian distribution 

(Eqn.9) represents the set of possibilities in which 

the queue has already completely emptied and is 

recovering its equilibrium state (see Figure 5). 

Although equilibrium is in reality achieved 

gradually, for the purposes of the model we will 

assume that it occurs abruptly eqt  seconds (the 

“effective equilibrium time”) after w reaches zero. 

Thus the waiting-time contribution from equilibrium 

recovery for eqtt   is given by: 
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(for all eqtt  ) and the overall mean virtual waiting 

time becomes: 
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It is convenient to define eqt  as the time taken 

for the mean waiting time of an initially empty 

queue to reach half its equilibrium value. For the 

M/D/1 system, this was empirically found to follow 

the equation 

 

 cklkSt ceq 21   (13) 

 

where 1k = 3.22 s-1, 2k = 3.89 s-1 and cS  is the 

constant packet-size [5]. Figure 6 shows that the 

equation approximately holds for the three traffic 



profiles in Table I (setting effc SS  ) for utilizations 

up to about 0.75. (For utilizations above 0.75, the 

residual bandwidth is likely to be of poor quality 

anyway, and of limited use to real-time 

applications.) Figure 7 shows some simulated mean 

virtual waiting time profiles (averaged over 1000 

simulations), compared with the model predictions.  

 

 
Figure 5. Representation of the Gaussian 
waiting-time PDF’s during buffer emptying. 

 
Figure 6. Effective relaxation time as a function 
of server utilization. 
 

3.3 Packet Pair Dispersion 
 

It is simple to map Eqn.12 to the mean inter-

packet dispersion ratio D: It can be seen from Figure 

8 that   lSwlSw pininoutp  , so 
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where rSpin  . Figure 9 compares the mean D 

vs. r characteristics obtained using this model with 

the results of simulation, showing a close agreement 

between the two. 

 

 

(a) Traffic Profile 1 

 
(b) Traffic Profile 2 

 
(c) Traffic Profile 3 

 
Figure 7. Mean VWT profiles obtained using 
the three traffic profiles of Table I during the 
passage of a 1500-byte probe packet. The ×’s 
represent ρ=0.3 and the +’s 0.6. Solid  lines 
indicate the predictions of Eqn.12. (Server 
speed was 1Mbit/s.) 



Figure 8. Packet-pair under discrete traffic. 

(a) Traffic Profile 1

(b) Traffic Profile 2

(c) Traffic Profile 3

Figure 9. Simulated dispersion profiles 
(discrete points) compared with analytical 
predictions (broken lines). The server rate was 
1Mbit/s and the available bandwidth 700kbit/s. 

4. Conclusions

The model previously developed for the M/D/1 

system [5] has been extended to cover a more 

generalized traffic model, and the predictions agree 

closely with the results of discrete-event simulation. 

However, the arrival process is still assumed to be 

Poisson, while real-world traffic is often better 

represented by long-range-dependent Pareto activity 

[9]. Part of the model relies on an empirical 

relationship which breaks down under very high 

utilization: The model ceases to apply rigidly when 

75.0 . However, connections under such 

conditions would be likely to experience high 

latency, jitter, and even data loss, making them 

unsuitable for most real-time applications. 

Future work will ultimately focus on the reverse-

use of this model, i.e. determining the bottleneck 

capacity and cross-traffic from experimental data, 

and thus monitoring the effective bandwidth. 
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