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Abstract 
 

Analytical expressions were obtained for the mean 

and standard deviation virtual waiting time profiles 

of a single-server FIFO queuing buffer loaded with 

heterogeneous (non-uniform packet-size) Poisson 

traffic disturbed by the passage of a bandwidth 

probing packet. The predictions were compared 

with the results of a computer simulation, using both 

Poisson and batch-Pareto (ON/OFF) cross-traffic 

arrival mechanisms. The model accurately predicted 

the simulated behaviour under Poisson traffic, 

though it showed a slight but consistent tendency to 

under-predict the standard deviation. For the 

scenarios reported, the Pareto results also showed 

reasonably close agreement with the model, though 

without the tendency towards under-prediction.      

 

List of Symbols 
 

w   Virtual waiting time (VWT) (s). 

   Arrival rate (packets/s). 

st   Packet service time (s). 

PSSS ..., 21  Cross-traffic packet sizes (bits). 

j  Proportion of the total traffic carried 

by packets of size jS . 

i  Proportion of the total packet 

population being of size iS . 

cS  Mean cross-traffic packet size (bits) 

weighted by j . 

  Coefficient of variation for cross-

traffic packet size weighted by j . 

pS   Probe packet size (bits). 

c   Cross-traffic rate (bits/s). 

l   Link bandwidth (bits/s). 

   Server utilization ( lc ). 

 tw  Mean VWT at time t (s). 

 t2  VWT variance at time t. 

 wf   Equilibrium distribution for w . 

w , 2  Mean and variance of  wf . 

 twf ,
~

 Transient component distribution 

for w  at time t. 

 tw~ ,  t2~  Mean and variance of the transient 

VWT distribution after the probe-

packet arrival, but before there is 

any significant chance of the queue 

being empty. 

 n
t wE

~
 n’th  moment of the transient 

component distribution at time t. 

 n
t wE  n’th moment of the equilibrium 

component distribution at time t. 

 

1. Introduction 
 

Several algorithms (e.g. [1]) have been devised 

to monitor the properties of network links by 

injecting probe packets and measuring the resulting 

disturbances. Analysis of such information requires 

an accurate model of the behavior of transient 

queuing systems. Though an accurate model was 

devised by Park et al. [2], this was based on the 

M/D/1 queuing system which is only applicable 

under homogeneous (constant packet-size) traffic. A 

simpler approximate model was proposed by one of 

the authors [3] and later extended to heterogeneous 

(variable packet-size) scenarios [4]. However, these 

models primarily addressed the mean queuing 

behavior whilst ignoring the statistical variance.  

Here we devise a more generalized model, which 

yields expressions for the mean and standard 

deviation profiles of the queue’s waiting time. The 

model’s predictions are compared with the results of 

computer simulation.  



2. Equilibrium Queue Behavior 
 

We assume firstly that the probed network link 

can be modelled as a FIFO (first in first out) queuing 

system which begins in a state of statistical 

equilibrium. In the generalised M/G/1 system with 

arrival rate   and utilisation  , the first and 

second moments of the equilibrium virtual waiting-

time1 (VWT) are given by 
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where st  is the packet service time [5]. If j  is the 

ratio of the total traffic (bits/s) carried by packets of 

size jS  then  


Pj jj Sc
..1
 . Now if i  is the 

ratio of the number of packets of size iS  to the total 

population, then the n’th moment of service-time is 

given by      


Pi

n
ii

nn
s SltE

..1
1  . Since 

    iiPj jjiii ScSS     ..1
, the 

mean waiting time can easily be shown to be 
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and the corresponding variance 
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Now if the packet size has a weighted mean 

 


Pi iic SS
..1
  with a coefficient of variation 

1
2

..1

2
   cPi ii SS  then the equilibrium 

mean and variance become: 
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1 “Virtual waiting time” at time t is the time a hypothetical 

packet entering the system at time t would take to reach the 

server.   
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(5) 

 

This equilibrium is abruptly disturbed by the first 

probe packet of a sequence, and the residue of this 

disturbance carries information about the link’s 

properties. The modelling of this disturbance is 

considered next. 

 

3. Non-Equilibrium Queue Behavior 
 

The probe packet creates transient profiles for 

both the mean and variance of the VWT. For 

simplicity we denote the packet’s arrival time 0t , 

at which  instant the queue acquires pS  bits (in 

addition to the workload it already contains). Thus 

at 0t  the mean VWT becomes wlSp   with a 

standard deviation  . For 0t  the server feeds 

upon the queue, whilst further packets arrive; 

eventually the mean rates of arrival and departure 

equalise and the equilibrium condition is restored. 

During this transient phase, the waiting-time can 

be divided into two components: The set of 

possibilities where the queue has not yet completely 

emptied, and the set of possibilities where the queue 

has fully emptied and is returning to its equilibrium 

state. Following the conventions adopted in the 

earlier papers [2,3] we refer to these as the transient 

component and the equilibrium component 

respectively. 

First let us consider the transient component: 

According to the assumed Poisson arrival model, the 

mean number of packets of size iS  arriving during 

an interval t  seconds is ii Sct with a variance 

equal to this value. Thus the total mean number of 

arrived bits is ctctPi i   ..1   and the 

corresponding variance is tcStcS cPi ii   ..1
 . 

Since during the same interval lt bits enter the 

server, the mean and variance waiting-time profiles 

are 
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before there is any significant chance of the queue 

becoming empty. With its combination of discrete 



and continuous elements, the probability distribution 

will have a complex shape. However, we can 

approximate it using a continuous Gaussian 

distribution for all positive w, and a delta-function 

for w = 0 (the empty queue): 
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for which the first and second moments are: 
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Although the empty queue recovers its 

equilibrium behaviour gradually, this is difficult to 

model analytically. We therefore use an 

approximation employed in earlier papers [3,4] 

whereby equilibrium is restored abruptly t  

seconds after the queue becomes empty. Thus the 

equilibrium components of the first and second 

moments of waiting time are given by: 
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for all tt  . The overall mean profile  tw for 0t  

is the sum of the first moments of both distributions 
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and the corresponding variance 
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The one remaining problem is to find an expression 

for the time-lag t . A convenient scheme (devised by 

one of the authors [3]) is to consider the waiting-time 

profile  tw0  for a queue released from zero-size at 

time t = 0. Replacing this with an abrupt step function 

 ttHw   is equivalent to replacing the first 

derivative  tw  with  ttw  . Aligning the 

centroids of the two functions yields the following 

expression for computing t  from  tw0 : 
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This formula was been successfully applied to 

homogeneous traffic in an earlier paper [3], where t  

was found to follow the empirical formula 
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Here we investigate the validity of this formula given 

the heterogeneous traffic profiles used in [4]2. 

                                                           
2 A less accurate technique of establishing Δt was used in 

[4] which preceded the final published version of [3]. 



Numerical estimations of  tw0  were obtained by 

averaging the results of 1,000 independent simulations 

and computing the integral of Eqn. 16 from zero to the 

earliest instant at which   wtw 0 . Figure 1 compares 

the results with the prediction of Eqn.16, showing that 

the model is still valid under heterogeneous traffic. 

(Throughout this paper, simulation was performed 

using a queue class-library written in C++.) 

 
 

Figure 1. Simulated equilibrium time lag measured for 
three traffic profiles compared with the model. (Data-points 
represent the average of 5 runs of 1,000 independent 
simulations. Error bars indicate 95% confidence intervals.) 

 

 4. Comparison with Simulation Data 
 

Figure 2 shows mean virtual waiting time 

profiles for four simulation scenarios. Figure 2(a) 

shows a homogeneous traffic scenario, in which 

pS =1500bytes, cS =100bytes and 0 . Figure 

2(b) shows the same experiment performed using 

heterogeneous traffic in which 48% of packets 

contained 40bytes, 24% 80bytes, 16% 120bytes and 

12% 160bytes. (This maintains cS =100bytes while 

making  =0.447.) Figure 2(c) and (d) illustrate the 

effect of changing the probe packet size (reducing it 

from 1500 to 500 bytes) and increasing utilization 

respectively. In all four scenarios, the measured and 

predicted mean VWT’s are almost identical. 

Figure 3 shows the standard deviation profiles 

corresponding to the mean profiles of Figure 2. 

While the model prediction is generally close to the 

data and follows a similar profile, there is a slight 

but persistent tendency towards under-prediction, 

even when the queue is in equilibrium. Though the 

authors have no explanation for this anomaly, it is 

too small to have any major practical significance. 

 

 
(a) Sc=100bytes, γ=0, Sp=1500bytes, ρ=0.4 

 
(b) Sc =100bytes, γ=0.447, Sp =1500bytes, ρ =0.4 

 
(c) Sc =100bytes, γ=0.447, Sp =500bytes, ρ =0.4 

 
(d) Sc =100bytes, γ =0.447 Sp =1500bytes, ρ =0.6 

 
Figure 2. Mean VWT profiles. The link bandwidth in all four 
experiments was 1Mbit/s. (Data points represent the 
average of 2000 simulations, solid lines represent model 
predictions.) 
 



 
(a) Sc=100bytes, γ=0, Sp=1500bytes, ρ=0.4 

 
(b) Sc =100 bytes, γ=0.447, Sp =1500bytes, ρ =0.4 

 
(c) Sc=100bytes, γ=0.447, Sp=500bytes, ρ =0.4 

 
(d) Sc =100bytes, γ =0.447 Sp=1500bytes, ρ =0.6 

 
 

 

Figure 3. Standard deviation virtual waiting time profiles. 
The link bandwidth in all three examples was 1Mbit/s. 
(Data points represent the average of 2000 independent 
simulations, solid lines represent model predictions.) 

 
(a) Sc=100bytes, γ=0, Sp=1500bytes, ρ=0.4 

 

 

 
(b) Sc =100bytes, γ =0.447 Sp=1500bytes, ρ =0.6 

 

 

 
Figure 4. Mean and standard deviation virtual waiting time 
profiles for the system carrying Pareto ON/OFF traffic. The 
link bandwidth in all three examples was 1Mbit/s. (Data 
points represent the average of 2000 independent 
simulations, solid lines represent model predictions.) 



 

 

 
 

Figure 5. Probing results obtained from two network 
scenarios: (A) A two-hop path carrying 50byte packets and 
(B) a one-hop network path carrying 800byte packets. The 
mean dispersion ratios are practically identical, but the 
standard deviations significantly different. (Offered probe 
rate=probe packet size/packet separation) 
 

A possible weakness of the model is its 

assumption of a Poisson arrival mechanism. 

However, an interesting outcome of [2] was that a 

model based on this assumption nonetheless 

provides a reasonable approximation of a queue 

loaded with inherently bursty Pareto ON-OFF 

traffic. We therefore test our model against such a 

scenario. Pareto traffic-generation is based on a 

scheme outlined by Pitts and Schormans [6]: Pareto-

distributed ON times (during which packets were 

transmitted) were interspersed with Poisson-

distributed OFF times, mimicking the arrival of self-

similar packet-batches. Mean ON and OFF times 

were 0.03 and 0.05 seconds respectively, with a 

minimum on-time of 0.01 seconds.  

Figure 4 shows some typical results. While the 

the profiles still agree fairly well with the model 

predictions, they are not so close as the 

corresponding Poisson results. Also, there is no 

longer a consistent tendency towards 

underestimation of the standard deviation.   

5. Conclusions 
 

In this paper we have extended an earlier model 

for mean dynamic queuing response to predict the 

variance profiles of virtual waiting time, and showed 

that the results are approximately consistent with 

simulation data obtained using Poisson and Pareto 

ON/OFF traffic. We have also showed that the 

empirical formula for the queue’s empty-to-

equilibrium time-lag developed for homogeneous 

traffic in [3] remains accurate when the packet-size 

is non-uniform. 

The importance of variance information in a 

network probing experiment is illustrated in Figure 

5. In this experiment (based on [1]), the residue of a 

probe-packet’s disturbance profile is detected as an 

additional latency by one or more further probe- 

packets, and hence an increase in the packets’ 

temporal separation (or dispersion). Mean 

dispersion ratios are plotted against the offered 

probing rate (probe packet size/packet separation) 

for two scenarios: A single hop path carrying large 

packets and a two-hop path carrying much smaller 

packets. The simulations produced near-identical 

mean dispersion curves, suggesting (incorrectly) that 

the underlying scenarios were also identical. 

However, the standard deviation profiles are 

significantly different. We hope that further 

developments of the model presented in this paper 

will help to resolve such ambiguities and allow 

underlying network infrastructure and traffic to be 

correctly inferred from probing data.     
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