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Abstract— This paper presents the latest research and 

developments in Modular Technology. That is, the 

optimized repetition of the same geometry or module, 

for the generation of large virtual environments for the 

simulators that are designed by CITEF. The current 

trend is on redirecting the maximum possible share of 

graphical calculation to the GPU to lighten the load of 

the CPU as far as possible, as this is slower and less 

suitable for graphic calculation. Modular Technology, 

which has been successfully used for some time in 

driving training simulators, is particularly suitable for 

the implementation of operations in the GPU through 

programming shaders. In this way a substantial 

reduction in the number of geographical entities in the 

environment can be attained and an increase in the 

diversity and flexibility of the environment. This is 

achieved by discretizing the environment into a series of 

instantiated modules and using shaders in an 

appropriate manner based only on a few parameters. 

There are many advantages to be had from this form of 

generation: savings in scene size, loading times and 

resource requirements, greater flexibility and clarity of 

the scene graph and a more substantial upgrade capacity 

of the environment.

Keywords-component; geometric modelling; virtual 

environments; driving simulators; shaders. 

I. INTRODUCTION

The use of virtual driving simulators as a learning and 
training tool is a strongly established procedure that is 
becoming more and more widespread with a whole range of 
possibilities going from high and medium to low-cost. All 
this is a result of the rapid progress in hardware which has 
led to like increases in the demands for realism in virtual 
display scenes.  

The high processing capacity of present-day GPUs 
means that the CPU can be freed of tasks, which is vitally 
important in terrain driving simulation. The geometric load 
to be rendered can be increased making the CPU-GPU 
communication bus the new bottle-neck.  

In response to this change of priorities in scene 
optimisation, a new generation of algorithms has begun to 
appear to adapt the level of detail (lods) whose work 
primitive has ceased to be the triangle [1]. Blocks of 
triangles (batches), are used instead. These are optimised in 
pre-load time to ensure optimal spatial organisation 
(stripping) thereby speeding up the CPU-GPU transfer.  

Following this latest line of research, Modular 
Technology, a methodology used for building virtual 
environments in CITEF (Research Centre on Railway 
Technologies), has converted the module into its base 
primitive. After searching for some repetitive patterns in the 
environment, geometric as well as functional, Modular 
Technology discretizes the scene into a finite number of 
modules or portions of the environment, which after being 
instantiated and subjected to a series of geometric 
transformations using shaders, are meticulously assembled to 
reproduce the virtual scene. 

II. BUILDING LARGE ENVIRONMENTS IN PRESENT-DAY 

TERRAIN DRIVING SIMULATORS

By constructive methodology of a virtual environment 
we mean a set of procedures that allow interpreting, 
processing, analysing, modelling, optimising and virtually 
displaying certain initial information. 

When it comes to choosing the most ideal methodology 
for generating large virtual environments in terrain driving 
simulators, it is imperative to choose the data structures that 
will respond to the constraints imposed by the environment 
to be displayed and minimise CPU consumption and 
maximise the resources offered by current GPUs. 

In the case of overland driving simulations, the kind of 
paths to be driven over will be a decisive factor in the choice 
of the most ideal types of data structures. Depending on this, 
two environment types can be differentiated: 
•    Undetermined route environments.  

This is the case with combat simulations in military training. 

Since the paths do not impose any geometric constraint, the 

data structures are more flexible (regular or irregular) and 

the variety of algorithms for creating multiresolution models 

is very wide. In this field, the latest trends, as stated in the 

introduction, point to lightening the CPU load and speeding 
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up CPU-GPU transfer using the new work component: the 

batch [2][3]. The batches or tiles are constructed in the pre-

load time optimising to the maximum the organisation of 

the triangles they contain (strips).Thanks to the batch the 

selection metrics are no longer evaluated at a vertex level, 

but are performed at a batch level, enormously reducing the 

load of the CPU. Although this means the number of 

polygons to be displayed is less optimised, the high 

processing capacity of current GPUs means this is not a 

problem. 

• Pre-determined route environments.  

 This is the case with the railway and urban driving 

simulation dealt with in this paper. The enormous realism 

required for the path surroundings can only be achieved 

through the geometric insertion of the paths into the 

landscape. This has large repercussions on the choice of 

data structures to be used. Inserting this geometry involves a 

readjustment and a retriangulation of the terrain mesh in the 

geometry surroundings [4], so that it can be adapted to the 

highest path resolution. This supposes a notable increase in 

the number of calculations to be performed, but also an 

ensuing increase in the main drawback posed by the 

continuous levels of detail adaptation algorithms 

(continuous lods) and the heavy use of the CPU. Discrete 

levels of detail [5] a [7]  therefore, become the preferred 

alternative, their main drawbacks being: 

• The high memory consumption required to store the 

geometry associated with the different levels of detail 

during the pre-load time.  

• Little constructive flexibility.  

• Failure to make full use of the functionalities offered by 

present-day GPUs. 
Modular Technology has arisen to meet the latest needs. 

Modular Technology uses route tracking as the starting point 
of its work from which it generates the surrounding 
environment using the assembly and repetition of a finite 
number of modules. It thus exploits one of the basic tools for 
resource optimisation: instantiation. Calculating the number 
and optimum geometric design of the modules as well as the 
variety of their families will be decisive in obtaining the 
realism and refresh speed required in these simulations. It 
also takes advantage of the priori knowledge of these paths 
to generate discrete pseudo-variant levels of detail with the 
view point. This is achieved by discretizing the environment 
transversally to the path. 

The outcome is a scene with all the realism required by 
driving simulations with the desired refresh speeds, with a 
comfortable communication interface with the simulation 
module and graphic engine. All this is done automatically 
and with the possibility of easily inserting any environmental 
restructuring, something that is essential in this kind of 
virtual display. Moreover, the main problems associated up 
to now with the discrete level of detail adaptation algorithms 
(discrete lods) are eliminated:  
• Thanks to instantiation and the shaders a straight 

module of each family need only be stored during the pre-

load time, which means that memory ceases to be a 

problem. 

• The scene is synthesised from a set of repetitive 

parameters, which means modelling is simplified. 

• The modules are subjected to geometric transformations 

using shaders during execution time which lets the 

realism of these scenes be enhanced. These 

transformations will be defined during the pre-load time 

by means of a set of parameters integrated next to the 

scene graph. 

• The modularity of the environment endows it with high 

constructive flexibility with a high range of virtual 

scenes being able to be generated with a minimum of 

constructive parameters. 

III. MODULAR TECHNOLOGY

Modular Technology synthesises the construction of the 
environment to calculate a set of transversal profiles and a 
set of guidelines that will act as extrusion axes for these 
profiles. To define these profiles repetitive patterns will be 
sought so that the environment can be defined  by taking a 
set of  lofts, which from now on we shall call modules, 
which correctly instantiated and positioned reproduce the 
scene.  

Therefore, the pillars on which Modular Technology is 
built are: the module, which is its work primitive, and the 
guidelines, both of which will be taken for calculating the 
geometric site for inserting the modules.  

However, finding a guideline for the environment is not 
always possible. This has led Modular Technology to 
classifying the environment into two types of zones: 

• Modular zones: 

These are generated by the assembly and repetition of a 

finite number of modules. As already stated, the modules 

are portions of environment which, correctly positioned  and 

hierarchised in a scene graph, let this environment be 

partially or totally virtually displayed.  

The  Figure 1.  shows an example of how these modules are 

used for constructing virtual environments. 

Figure 1. Example of module usage. 
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Figure 2. Example of the combined use of modules and 

meshes. 

• Meshable zones. 

It is not always possible to assimilate an environmental 

fragment to a set of repeated elements. The existence of 

irregular geometries where it is not possible to establish a 

guideline impedes the use of this technology, so these zones 

are modelled using meshes. Figure 2. shows examples of 

zones where modules are not applicable and can only be 

done by using meshes. 

IV. THE MODULE AND THE MODULE FAMILY  

The module originates from a basic design made up of a 
straight longitudinal portion of the environment. This basic 
design is curved into a set of degrees forming what is called 
a basic set of modular components or modules (Figure 3. ). 
In this way the basic set is characterised by the existence of a 
finite number of modules of fixed curvature and discrete 
curvature values.  

Figure 3. Basic set of modules. 

 The module comprises three basic components: a 
longitudinal path and a set of transversal profiles with their 
corresponding textures (Figure 4. ).  

        

Figure 4. Components of a tunnel module. 

Figure 5. Components of a family. 

The base set of modules together with a suitable 
positioning algorithm allows reproducing any geometry 
without holes or overlaps.  

The next problem arises when attempting to calculate the 
transversal profiles of these modules so that they can 
reproduce any environment. So, the concept of a family of 
modules now appears as the base set of modules and shares 
the same definition of transversal profiles (Figure 5. ). These 
families will verify relationships of compatibility, which will 
be what ensures there are no incoherencies or discontinuities 
after the modules have been correctly positioned.  

In order to ensure these families are correctly positioned, 
the guidelines are divided into intervals. Each interval is 
associated with a different family type. 

V. MODULAR POSITIONING ALGORITHM

There are several factors to be borne in mind if maximum 
benefit is to be had from this system of instantiation. The 
modular positioning algorithm is responsible for this, which 
means it has to solve the following issues [8]: 

• The optimum number of modules, responsible for a 
higher or lower graphic load and a better or worse scene 
graph path optimisation. 

• The type of module to be placed at each point of the 
scene: if the module curvature is wrong, spatial and 
tangential discontinuities are produced. Figure 6. shows 
the visual appearance resulting from inserting a rail 
module with a greater or lesser curvature than 
appropriate. 

Figure 6. Undercurved and overcurved modules 
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• Scaling each module. The modules can be subjected to 
an X, Y and/or Z scale.  The maximum scale admitted 
will vary depending on the length of the module (basic 
length, LB). Exceeding this scale leads to an excessive 
deformation of the overlapping and texture. On the other 
hand, excessive scaling leads to a noticeable variation in 
module curvature that results in defective module 
coupling. These scaling tolerances can only be 
overcome by shaders to correct these distortions. In 
these circumstances Modular Technology will calculate 
these deformation parameters through the graphic 
engine, which will be responsible for managing the 
execution time. Figure 7. shows the visual appearance of 
a path made up of modules subjected to excessive 
scaling. 

• The positioning coordinates of each module. The 
geometric positioning site for modules is called a 
polygon site and consists of a set of points obtained by 
interpolation on the said biarc. The modules are 
positioned at the mid-point of their left end and orient 
their chord in line with the polygon segment on which 
they are positioned, taking in the angle of arc included 
between both ends of its chord. Thus the modules 
circumscribe the guideline as can be seen in the 
following Figure 8. Figure 9. shows how a set of railway 
platform modules is put in place in accordance with the 
positioning algorithm. Each module appears on the left 
in a different colour so that the correct coupling between 
them can be more clearly seen since in the right-hand 
image the perfection of the coupling makes it impossible 
to discern  this joint. 

Figure 8. Positioning algorithm. 

Figure 9. Railway platform and rail modules positioned  

according to the positioning  algorithm. 

Determining the module to be inserted at each point of 
the polygon from those that the geometric discretization has 
deemed to be a basic set of modules, will be determined by 
the biarc angle of embrace between the two points of the 
polygon:

        

R

Larc=α

where Larc is the length of the mid-line of the  module and  

R the radius of the biarc. 

The longitudinal scaling to which the module will be 

subjected is: 

basic

chord

L

L
e =

where Lbasic is the basic length taken for constructing the 

module family and Lchord the polygon segment length or 

module chord length. 

VI. MODULAR TECHNOLOGY AND SHADERS 

The use of shaders lets each modular family be formed 
during the pre-load time by a single straight module. In 
execution time the shader will take charge of deforming this 
module until it attains the desired geometry. Thus, modelling 
effort is reduced as well as initial load times and the modular 
positioning algorithm is made more versatile since the shader 
is capable of deforming the start and end sections of each 
module so that they fit perfectly without any spatial or 
tangential discontinuities. As a result, each family goes on to 
be formed in execution time by infinite modular components. 

Modular Technology starts out from a straight module of 
basic length LB. This length is measured in the direction of 
the axis i1, as Figure 10. shows.  

Figure 10. Straight module deformed by the shader. 

Figure 7. Excessive scaling of modules.

466466461471



Figure 11. Positioning the module in the environment. 

The axis i1 in turn, coincides with the direction marked by 
the guideline that positions it, while its direction is marked 
by the increasing pks, as Figure 11. shows. 

Using the composite transformation shader, Modular 
Technology seeks to subject the module to a deformation 
that will guarantee perfect coupling with the adjacent 
modules after being positioned by the modular positioning 
algorithms.  

To do this, firstly a dimensionless parameter s must be 
defined as the relationship between the x0 coordinate and the 
basic length LB. The parameter s will vary between 0 and 1. 
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What is sought is to define a function that will ensure 
zero displacement at the ends of the module and whose 
tangent angles coincide with those required (those defined by 
modular positioning algorithm).  

In this way, the function calculating the displacement at y 
to which the module points have to be subjected, should 
verify: 
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In the above equation xR represents the actual module 

coordinate after scaling. The relation with x0, the module 
path coordinate before deformation and with s is: 
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The group of equations (1) bearing in mind (2) may be 
re-written as: 
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The functions f1 and f2 have the following properties: 
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By correctly putting together the requirements of (3) and 

the results of (4) a suitable function for f∆∆∆∆y is obtained: 
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For the increases in z, f∆∆∆∆z the conditions for (3) will need 
to be appropriately adapted: 
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Where the sign is negative it indicates that rotation  is in 
the opposite direction to the derivative. The displacement 
function is finally given as: 
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There are no deformations through deformation in the 
direction of x, except the scaling. 

The rotations (s), (s) and (s) that are coherent with the 
displacement functions described are obtained by deriving. A 
simple reflection shows us that the derivative in respect of xR

of the displacement function at z corrected by the cos  also 
gives the angle (s). The slope angle is a linear extrapolation 
of the initial and final slopes. 
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For the angle (s): 
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 For the angle (s) a linear interpolation is used: 
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VII. CONCLUSIONS

Ten years of successful results in the generation of virtual 
environments for renowned driving simulators have proved 
the validity of Modular Technology. Applying shaders 
increases the possibilities of modularity, reducing memory 
consumption, loading times and modelling efforts and 
increasing the flexibility in the construction of these 
environments. With ever more powerful hardware the quality 
of virtual environments will increase spectacularly in the 
near future.  

Future developments will be to apply geometric shaders 
that create the full modular geometry in execution time so 
that the scene is inserted parametrically in line with the 
profiles and paths with only the most singular and least 
modular geometry being loaded. Real-time generation would 
therefore be adaptive. The greater the capacity for geometric 
calculation, the greater the complexity and quality of the 
environment. 
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