
Modular Technology in the modelling of large virtual environments in driving

simulators.

Carlota Tovar; Ginés Jesús Jimena ; José Mª Cabanellas; Carlos Zoido.

Departamento de Ingeniería Mecánica y Fabricación.

CITEF Research Centre on Railway Technologies.

Universidad Politécnica de Madrid.

Madrid, Spain.

ctovar@etsii.upm.es; citef-gjimena@etsii.upm.es; jmcabanellas@etsii.upm.es; czoido@etsii.upm.es.

Abstract— This paper presents the latest research and

developments in Modular Technology. That is, the

optimized repetition of the same geometry or module,

for the generation of large virtual environments for the

simulators that are designed by CITEF. The current

trend is on redirecting the maximum possible share of

graphical calculation to the GPU to lighten the load of

the CPU as far as possible, as this is slower and less

suitable for graphic calculation. Modular Technology,

which has been successfully used for some time in

driving training simulators, is particularly suitable for

the implementation of operations in the GPU through

programming shaders. In this way a substantial

reduction in the number of geographical entities in the

environment can be attained and an increase in the

diversity and flexibility of the environment. This is

achieved by discretizing the environment into a series of

instantiated modules and using shaders in an

appropriate manner based only on a few parameters.

There are many advantages to be had from this form of

generation: savings in scene size, loading times and

resource requirements, greater flexibility and clarity of

the scene graph and a more substantial upgrade capacity

of the environment.

Keywords-component; geometric modelling; virtual

environments; driving simulators; shaders.

I. INTRODUCTION

The use of virtual driving simulators as a learning and
training tool is a strongly established procedure that is
becoming more and more widespread with a whole range of
possibilities going from high and medium to low-cost. All
this is a result of the rapid progress in hardware which has
led to like increases in the demands for realism in virtual
display scenes.

The high processing capacity of present-day GPUs
means that the CPU can be freed of tasks, which is vitally
important in terrain driving simulation. The geometric load
to be rendered can be increased making the CPU-GPU
communication bus the new bottle-neck.

In response to this change of priorities in scene
optimisation, a new generation of algorithms has begun to
appear to adapt the level of detail (lods) whose work
primitive has ceased to be the triangle [1]. Blocks of
triangles (batches), are used instead. These are optimised in
pre-load time to ensure optimal spatial organisation
(stripping) thereby speeding up the CPU-GPU transfer.

Following this latest line of research, Modular
Technology, a methodology used for building virtual
environments in CITEF (Research Centre on Railway
Technologies), has converted the module into its base
primitive. After searching for some repetitive patterns in the
environment, geometric as well as functional, Modular
Technology discretizes the scene into a finite number of
modules or portions of the environment, which after being
instantiated and subjected to a series of geometric
transformations using shaders, are meticulously assembled to
reproduce the virtual scene.

II. BUILDING LARGE ENVIRONMENTS IN PRESENT-DAY

TERRAIN DRIVING SIMULATORS

By constructive methodology of a virtual environment
we mean a set of procedures that allow interpreting,
processing, analysing, modelling, optimising and virtually
displaying certain initial information.

When it comes to choosing the most ideal methodology
for generating large virtual environments in terrain driving
simulators, it is imperative to choose the data structures that
will respond to the constraints imposed by the environment
to be displayed and minimise CPU consumption and
maximise the resources offered by current GPUs.

In the case of overland driving simulations, the kind of
paths to be driven over will be a decisive factor in the choice
of the most ideal types of data structures. Depending on this,
two environment types can be differentiated:
• Undetermined route environments.

This is the case with combat simulations in military training.

Since the paths do not impose any geometric constraint, the

data structures are more flexible (regular or irregular) and

the variety of algorithms for creating multiresolution models

is very wide. In this field, the latest trends, as stated in the

introduction, point to lightening the CPU load and speeding

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UKSIM.2010.23

463

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UKSIM.2010.23

463

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UKSIM.2010.93

458

2010 12th International Conference on Computer Modelling and Simulation

978-0-7695-4016-0/10 $26.00 © 2010 IEEE

DOI 10.1109/UKSIM.2010.92

468

up CPU-GPU transfer using the new work component: the

batch [2][3]. The batches or tiles are constructed in the pre-

load time optimising to the maximum the organisation of

the triangles they contain (strips).Thanks to the batch the

selection metrics are no longer evaluated at a vertex level,

but are performed at a batch level, enormously reducing the

load of the CPU. Although this means the number of

polygons to be displayed is less optimised, the high

processing capacity of current GPUs means this is not a

problem.

• Pre-determined route environments.

 This is the case with the railway and urban driving

simulation dealt with in this paper. The enormous realism

required for the path surroundings can only be achieved

through the geometric insertion of the paths into the

landscape. This has large repercussions on the choice of

data structures to be used. Inserting this geometry involves a

readjustment and a retriangulation of the terrain mesh in the

geometry surroundings [4], so that it can be adapted to the

highest path resolution. This supposes a notable increase in

the number of calculations to be performed, but also an

ensuing increase in the main drawback posed by the

continuous levels of detail adaptation algorithms

(continuous lods) and the heavy use of the CPU. Discrete

levels of detail [5] a [7] therefore, become the preferred

alternative, their main drawbacks being:

• The high memory consumption required to store the

geometry associated with the different levels of detail

during the pre-load time.

• Little constructive flexibility.

• Failure to make full use of the functionalities offered by

present-day GPUs.
Modular Technology has arisen to meet the latest needs.

Modular Technology uses route tracking as the starting point
of its work from which it generates the surrounding
environment using the assembly and repetition of a finite
number of modules. It thus exploits one of the basic tools for
resource optimisation: instantiation. Calculating the number
and optimum geometric design of the modules as well as the
variety of their families will be decisive in obtaining the
realism and refresh speed required in these simulations. It
also takes advantage of the priori knowledge of these paths
to generate discrete pseudo-variant levels of detail with the
view point. This is achieved by discretizing the environment
transversally to the path.

The outcome is a scene with all the realism required by
driving simulations with the desired refresh speeds, with a
comfortable communication interface with the simulation
module and graphic engine. All this is done automatically
and with the possibility of easily inserting any environmental
restructuring, something that is essential in this kind of
virtual display. Moreover, the main problems associated up
to now with the discrete level of detail adaptation algorithms
(discrete lods) are eliminated:
• Thanks to instantiation and the shaders a straight

module of each family need only be stored during the pre-

load time, which means that memory ceases to be a

problem.

• The scene is synthesised from a set of repetitive

parameters, which means modelling is simplified.

• The modules are subjected to geometric transformations

using shaders during execution time which lets the

realism of these scenes be enhanced. These

transformations will be defined during the pre-load time

by means of a set of parameters integrated next to the

scene graph.

• The modularity of the environment endows it with high

constructive flexibility with a high range of virtual

scenes being able to be generated with a minimum of

constructive parameters.

III. MODULAR TECHNOLOGY

Modular Technology synthesises the construction of the
environment to calculate a set of transversal profiles and a
set of guidelines that will act as extrusion axes for these
profiles. To define these profiles repetitive patterns will be
sought so that the environment can be defined by taking a
set of lofts, which from now on we shall call modules,
which correctly instantiated and positioned reproduce the
scene.

Therefore, the pillars on which Modular Technology is
built are: the module, which is its work primitive, and the
guidelines, both of which will be taken for calculating the
geometric site for inserting the modules.

However, finding a guideline for the environment is not
always possible. This has led Modular Technology to
classifying the environment into two types of zones:

• Modular zones:

These are generated by the assembly and repetition of a

finite number of modules. As already stated, the modules

are portions of environment which, correctly positioned and

hierarchised in a scene graph, let this environment be

partially or totally virtually displayed.

The Figure 1. shows an example of how these modules are

used for constructing virtual environments.

Figure 1. Example of module usage.

464464459469

Figure 2. Example of the combined use of modules and

meshes.

• Meshable zones.

It is not always possible to assimilate an environmental

fragment to a set of repeated elements. The existence of

irregular geometries where it is not possible to establish a

guideline impedes the use of this technology, so these zones

are modelled using meshes. Figure 2. shows examples of

zones where modules are not applicable and can only be

done by using meshes.

IV. THE MODULE AND THE MODULE FAMILY

The module originates from a basic design made up of a
straight longitudinal portion of the environment. This basic
design is curved into a set of degrees forming what is called
a basic set of modular components or modules (Figure 3.).
In this way the basic set is characterised by the existence of a
finite number of modules of fixed curvature and discrete
curvature values.

Figure 3. Basic set of modules.

 The module comprises three basic components: a
longitudinal path and a set of transversal profiles with their
corresponding textures (Figure 4.).

Figure 4. Components of a tunnel module.

Figure 5. Components of a family.

The base set of modules together with a suitable
positioning algorithm allows reproducing any geometry
without holes or overlaps.

The next problem arises when attempting to calculate the
transversal profiles of these modules so that they can
reproduce any environment. So, the concept of a family of
modules now appears as the base set of modules and shares
the same definition of transversal profiles (Figure 5.). These
families will verify relationships of compatibility, which will
be what ensures there are no incoherencies or discontinuities
after the modules have been correctly positioned.

In order to ensure these families are correctly positioned,
the guidelines are divided into intervals. Each interval is
associated with a different family type.

V. MODULAR POSITIONING ALGORITHM

There are several factors to be borne in mind if maximum
benefit is to be had from this system of instantiation. The
modular positioning algorithm is responsible for this, which
means it has to solve the following issues [8]:

• The optimum number of modules, responsible for a
higher or lower graphic load and a better or worse scene
graph path optimisation.

• The type of module to be placed at each point of the
scene: if the module curvature is wrong, spatial and
tangential discontinuities are produced. Figure 6. shows
the visual appearance resulting from inserting a rail
module with a greater or lesser curvature than
appropriate.

Figure 6. Undercurved and overcurved modules

465465460470

• Scaling each module. The modules can be subjected to
an X, Y and/or Z scale. The maximum scale admitted
will vary depending on the length of the module (basic
length, LB). Exceeding this scale leads to an excessive
deformation of the overlapping and texture. On the other
hand, excessive scaling leads to a noticeable variation in
module curvature that results in defective module
coupling. These scaling tolerances can only be
overcome by shaders to correct these distortions. In
these circumstances Modular Technology will calculate
these deformation parameters through the graphic
engine, which will be responsible for managing the
execution time. Figure 7. shows the visual appearance of
a path made up of modules subjected to excessive
scaling.

• The positioning coordinates of each module. The
geometric positioning site for modules is called a
polygon site and consists of a set of points obtained by
interpolation on the said biarc. The modules are
positioned at the mid-point of their left end and orient
their chord in line with the polygon segment on which
they are positioned, taking in the angle of arc included
between both ends of its chord. Thus the modules
circumscribe the guideline as can be seen in the
following Figure 8. Figure 9. shows how a set of railway
platform modules is put in place in accordance with the
positioning algorithm. Each module appears on the left
in a different colour so that the correct coupling between
them can be more clearly seen since in the right-hand
image the perfection of the coupling makes it impossible
to discern this joint.

Figure 8. Positioning algorithm.

Figure 9. Railway platform and rail modules positioned

according to the positioning algorithm.

Determining the module to be inserted at each point of
the polygon from those that the geometric discretization has
deemed to be a basic set of modules, will be determined by
the biarc angle of embrace between the two points of the
polygon:

R

Larc=α

where Larc is the length of the mid-line of the module and

R the radius of the biarc.

The longitudinal scaling to which the module will be

subjected is:

basic

chord

L

L
e =

where Lbasic is the basic length taken for constructing the

module family and Lchord the polygon segment length or

module chord length.

VI. MODULAR TECHNOLOGY AND SHADERS

The use of shaders lets each modular family be formed
during the pre-load time by a single straight module. In
execution time the shader will take charge of deforming this
module until it attains the desired geometry. Thus, modelling
effort is reduced as well as initial load times and the modular
positioning algorithm is made more versatile since the shader
is capable of deforming the start and end sections of each
module so that they fit perfectly without any spatial or
tangential discontinuities. As a result, each family goes on to
be formed in execution time by infinite modular components.

Modular Technology starts out from a straight module of
basic length LB. This length is measured in the direction of
the axis i1, as Figure 10. shows.

Figure 10. Straight module deformed by the shader.

Figure 7. Excessive scaling of modules.

466466461471

Figure 11. Positioning the module in the environment.

The axis i1 in turn, coincides with the direction marked by
the guideline that positions it, while its direction is marked
by the increasing pks, as Figure 11. shows.

Using the composite transformation shader, Modular
Technology seeks to subject the module to a deformation
that will guarantee perfect coupling with the adjacent
modules after being positioned by the modular positioning
algorithms.

To do this, firstly a dimensionless parameter s must be
defined as the relationship between the x0 coordinate and the
basic length LB. The parameter s will vary between 0 and 1.

10

0

≤≤

=

s

L

x
s

B

What is sought is to define a function that will ensure
zero displacement at the ends of the module and whose
tangent angles coincide with those required (those defined by
modular positioning algorithm).

In this way, the function calculating the displacement at y
to which the module points have to be subjected, should
verify:

==

==

=

=

≡

∆

∆

∆

∆

∆

fin

R

y

ini

R

y

y

y

y

s
dx

df

s
dx

df

f

f

sf

γ

γ

tan)1(

tan)0(

0)1(

0)0(

)((1)

In the above equation xR represents the actual module

coordinate after scaling. The relation with x0, the module
path coordinate before deformation and with s is:

ixB
R

B

x
R

xR

LEL
ds

dx

L
ds

dx

E
dx

dx

Exx

==

=

=

=

·

·

0

0

0

(2)

The group of equations (1) bearing in mind (2) may be
re-written as:

==

==

======

=

=

≡

∆

∆

∆∆∆

∆

∆

∆

fini

y

inii

y

ini

R

y

R

y

R

y

y

y

y

Ls
ds

df

Ls
ds

df

s
dx

ds

ds

df
s

ds

ds

dx

df
s

dx

df

f

f

sf

γ

γ

γ

·tan)1(

·tan)0(

tan)0()0()0(

0)1(

0)0(

)((3)

The functions f1 and f2 have the following properties:

1)0(0)1(

0)0(1)0(

)32·()()31)(1()(

0)1(0)1(

0)0(0)0(

)1·()()1·()(

21

21

21

21

21

2

2

2

1

−==

==

−=−−=

==

==

−=−=

ds

df

ds

df

ds

df

ds

df

sss
ds

df
sss

ds

df

ff

ff

sssfsssf

 (4)

By correctly putting together the requirements of (3) and

the results of (4) a suitable function for f∆∆∆∆y is obtained:

fini

y

inii

y

y

y

finiiniiy

L
ds

df

L
ds

df

f

f

LsfLsfsf

γ

γ

γγ

·tan)1(

·tan)0(

0)1(

0)0(

·tan)·(·tan)·()(21

=

=

=

=

−=

∆

∆

∆

∆

∆

For the increases in z, f∆∆∆∆z the conditions for (3) will need
to be appropriately adapted:

467467462472

−==

−==

=

=

≡

∆

∆

∆

∆

∆

fin

finiz

ini

iniiz

z

z

z

L
s

ds

df

L
s

ds

df

f

f

sf

γ

β
γ

β

cos

tan
)1(

cos

tan
)0(

0)1(

0)0(

)(

Where the sign is negative it indicates that rotation is in
the opposite direction to the derivative. The displacement
function is finally given as:

))(cos(

tan)·(tan)·(
)(

21

s

LsfLsf
sf

finiinii

z
γ

ββ +−
=∆

There are no deformations through deformation in the
direction of x, except the scaling.

The rotations (s), (s) and (s) that are coherent with the
displacement functions described are obtained by deriving. A
simple reflection shows us that the derivative in respect of xR

of the displacement function at z corrected by the cos also
gives the angle (s). The slope angle is a linear extrapolation
of the initial and final slopes.

finini

finini

finini

R

y

R

y

finiinii

y

finiiniiy

sssss

ssss
dx

ds

ds

df
s

dx

df

LssLsss
ds

df

LsfLsfsf

γγγγ

γγγ

γγγ

γγ

γγ

==

−−−−=

−−−−===

−−−−=

−=

∆∆

∆

∆

)1()0(

)tan)32(tan)31)(1arctan(()(

tan)32(tan)31)(1())(tan(

tan)32(tan)31)(1()(

tan)·(tan)·()(21

For the angle (s):

finini

finini

finini

RR

z

sssss

s

ssss

dx

ds

ds

df

s

s

dx

df

ββββ

βββ

γ

ββ

γ

β

==

−−−−=

−−−−
=−=−= ∆∆

)1()0(

)tan)32(tan)31)(1arctan(()(

))(cos(

tan)32(tan)31)(1(

))(cos(

))(tan(z

 For the angle (s) a linear interpolation is used:

finini sss ααα ·)·1()(+−=

VII. CONCLUSIONS

Ten years of successful results in the generation of virtual
environments for renowned driving simulators have proved
the validity of Modular Technology. Applying shaders
increases the possibilities of modularity, reducing memory
consumption, loading times and modelling efforts and
increasing the flexibility in the construction of these
environments. With ever more powerful hardware the quality
of virtual environments will increase spectacularly in the
near future.

Future developments will be to apply geometric shaders
that create the full modular geometry in execution time so
that the scene is inserted parametrically in line with the
profiles and paths with only the most singular and least
modular geometry being loaded. Real-time generation would
therefore be adaptive. The greater the capacity for geometric
calculation, the greater the complexity and quality of the
environment.

REFERENCES

[1] E. Gobbetti.; F.Marton ;P. Cignon, C-BDAM - Compressed
Batched Dynamic Adaptive Meshes for Terrain Rendering.
Computer Graphics Forum, 25(3), Proc. Eurographics 2006.

[2] Y. Livny; Z. Kogan; J. El-Sana, Seamless Patches for GPU-
Based Terrain Rendering. WSCG 2007.

[3] R. Pajarola and E. Gobbetti., Survey on Semi-Regular
Multiresolution Models for Interactive Terrain Rendering.
The Visual Computer, 23(8) 2007, 583-605.

[4] L. P. Chew, Constrained Delaunay triangulations. In
Proceedings of the Third Annual Symposium on
Computational Geometry (Waterloo, Ontario, Canada, June
08 - 10, 1987). D. Soule, Ed. SCG '87. ACM Press, New
York, NY, 215-222.

[5] Y. Papelis; O. Ahmad; G. Watson, Scenario Definition and
Control for the National Advanced Driving Simulator. In
Proceedings of the Driving Simulation Conference North
America, Dearborn, Michigan 2003.

[6] P. Suresh and Ronald. R. Mourant, A Tile Manager for
Deploying Scenarios in Virtual Driving Environments”.
Proceedings of the Driving Simulation Conference North
America, December, 2005.

[7] V. Govil and Ronald R. Mourant, A Tile/Scenario Algorithm
for Real-Time 3D Environments. Proceedings the 32nd
International Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH 2005), Los Angeles,
California. August 2005.

[8] C. Tovar; J.M. Cabanellas; J. Félez, Procedimientos
geométricos para el ajuste de trayectorias ferroviarias en
simuladores 3d de diseño modula. Proceedings of ADM-
INGEGRAF’2003.(June).Naples,Italy.

468468463473

