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Abstract - As an alternative to pdf approximation 

methods to identify modes within the dispersion data of a 

packet-pair network probing experiment, the classical 

Hough transform is used to identify straight lines within 

the output vs. input dispersion plot. These lines can then 

be mapped to the independence, rate, and distribution 

signatures of the different links within that path.  
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I. INTRODUCTION

End-to-end packet-pair dispersion has been 
studied extensively since it was first introduced in the 
late 1990’s [1]. Under the ideal conditions the 
principle is very straightforward: Sequences of two or 
more closely spaced packets are injected at the source 
and collected at the sink, and the increase in packet 
separation (dispersion) is used to determine bottleneck 
parameters. However multiple tandem links and cross-
traffic introduce additional signatures which require 
statistical filtering algorithms. Here we investigate a 
novel approach based on the Hough transform used to 
identify geometrical features in visual images. 

II. DISPERSION SIGNATURES

Figure 1 shows a portion of a network path model 
consisting of tandem chain of FIFO queuing systems, 
each independently loaded with cross-traffic. When of 

closely spaced packets ( S  and S   bits) pass along the 

chain, their dispersion   is modified at each hop: 
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where nB is the bandwidth of link n and nŵ and

nŵ are the waiting times experienced by the two

packets. The second term in (1) (“accumulation 

signature” [2]) can be suppressed by making the 
packets equal size. If there is no cross traffic on the 
link, then (1) becomes: 
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where nH (bits) and nG (seconds) are the link-layer 

header and inter-frame gap for link n . For large n

the input and output dispersions are equal 
(“independence signature” [2]). As the input 
dispersion decreases the output dispersion saturates at 

a value which does not depend on n , but on the link

parameters: This is the “rate signature” [2]. 

Figure 1. Network path consisting of a chain of queue systems, 
each carrying independent cross-traffic. 

If the initial input dispersion is in seconds then

(assuming no cross-traffic on any of the links) the 

output dispersion    bbbinout BHSG  ,max

seconds, where bG , bH and bB are the respective 

inter-frame gap (seconds), link-layer header (bits) and 
bit-rate (bits per second) of the bottleneck or “narrow” 
link. However since the effects of inter-frame gap and 
header are externally indistinguishable it is convenient 
to lump them into a single parameter 

bbbb BHGG  seconds which we term the 

“effective inter-packet gap”. Thus: 



 
Figure 2: Idealized graph of output vs. input dispersion for two 

different packet sizes. Without cross-traffic this is dictated by the 
path bottleneck. 

 
 

 

 
Figure 3: Graph of output dispersion for a loaded two-node 

network path, showing rate signature and cross-traffic modes. 
 
 

 
 

Figure 4. Simulated graphs of output vs. input dispersion for a two-
hop network path with and without cross-traffic. Input dispersion is 

randomized. 
 

 

 
 

Figure 5. Simulated network path. Cross traffic rate is 
adjustable to give different utilization levels. 

 
 
 

 bbinout BSG  ,max  . (3) 

 

By varying S  and in  and observing out  the 

values of bB  and 
bG 

 
can be determined (see Fig. 2) 

and thus the maximum effective data-rate can be 
computed from the formula: 

 

   sGBsBsB bbbeff   . (4) 

 
where s is the data packet size in bits. 

When cross-traffic is added the picture becomes 
considerably more complex. Cross-traffic packets 
become inserted between probe packets, forcing them 
apart and giving rise to the “distribution signature” 
[2]. If all the probed links have constant bandwidth, 
header size and inter-frame spacing and the probe-
packets are relatively small compared to the average 
cross-traffic packets, the output dispersion follows a 
random distribution with many sharply defined modes 
(Fig. 3). Only one of these modes corresponds to the 
simple model described above, and must therefore be 
isolated by some filtering mechanism. (In wireless 
networks, variable inter-frame gaps introduce disperse 
distributions which are more problematic [3].) While 
the distribution’s “primary mode” encodes the all-
important bottleneck parameters, other nodes carry 
useful information about network topology and traffic 
profiles which impact upon the available bandwidth. 
There is therefore a need to identify classify and 
record the development of each distribution peak. 

 
III. INTERPRETATION OF DATA 

 
The mode-positions in Fig. 3 are dynamic, and 

shift as the input dispersion and packet-size is 
changed. In an earlier paper [4] the authors attempted 
to use spacio-temporal kernel functions and Gaussian 
tracking algorithms originally developed for 
foreground classification in moving images. Here 
however we take a different approach: ignoring the 

distributions themselves we revisit  the out vs. in  

plot previously discussed (Fig. 4).  



 
 
Figure 6. Hough Transform illustration. The plane is mapped 

to an accumulator array whose members are incremented when that 
region of the plane is visited. 

 
 
 

 
 

Figure 7. Expected mapping of ideal dispersion graph with 
corresponding Hough plane. 

 
 

Figure 4 shows some results for a simulated two-
hop network path, containing one 10baseT and one 
100BaseT Ethernet link (Fig. 5), with the input 
dispersion uniformly randomized. Without cross-
traffic the graph resembles Fig. 2, but when the 
utilization is increased to 50% the distribution modes 
appear as lines in the in the two-dimensional scatter-
plot. (Cross-traffic packet sizes followed the same 
profile used in [4].) 

 Plane geometrical features such as lines, circles 
and ellipses can be identified by the Hough Transform 
[5], whose classical form detects probable straight 
lines amongst discrete data-points, and was originally 
developed for the automated analysis of cloud-
chamber images. The Hough Transform is based upon 

a very simple concept: Each data-point  yx,  is  

mapped to a function    sincos yxr   (where 

r  and   are the quantities indicated in Fig. 6) which 

represents the set of all possible lines passing through 

the point  yx, . If this function is computed for all 

data-points across the range   ,0 , the most often 

visited regions in the  ,r  plane must correspond to 

the most probable straight-line features within the 
data. In practice this is achieved by mapping r  and   

to discrete integers and using these to increment the 
contents of a two-dimensional “accumulator” array. 
Finally the local maxima within the accumulator are 
detected and mapped back to their corresponding 

 ,r  pairs. 

   There are a few important caveats: Firstly the 
accumulator must be large enough to eliminate 
significant quantization error, yet small enough that a 
significant number of “votes” fall into each relevant 
bin. A single line may in practice correspond to a 
cluster of closely-spaced maxima which must be 
grouped together for analytical purposes. Secondly the 
raw transform gives no indication of the special extent 
of the lines, which must be obtained by referring back 
to the data. 

 
IV. RESULTS 

 
Figure 7 shows the idealized mapping of the rate 

and independence signatures to their corresponding 
points in the Hough plane, and Fig. 8 shows the 
corresponding results obtained from a simulation 
without cross-traffic. It is clear that the major peaks 
correspond to the points where the signatures are 
expected to lie. Figs. 9 and 10 show how the Hough 
data changes as the utilization is increased. At 15% 
the rate and independence signatures of the 10baseT 
link (the bottleneck) are still visible, as well as a the 
10baseT’s distribution signature. Also the rate and 
distribution signatures of the 100baseT link are 
beginning to become visible. (The independence 
signature of the 100baseT is merged with that of the 
10baseT, and is not independently visible.) When the 
utilization is increased to 70% (Fig. 10) the Hough 
data is mostly dominated by the 100baseT link, the 
10baseT’s signatures appearing as secondary peaks. 

 
V. CONCLUSIONS AND FUTURE WORK 

 
This brief paper demonstrates the use of the 

Hough algorithm to interpret packet-pair dispersion 
data. The simulations are based on a relatively simple 
scenario, consisting of two queuing systems connected 
in tandem, representing 10baseT and a 100baseT 
Ethernet links. The results show the expected 
signatures of both links, though their levels of 
significance depend upon the utilization of the 
network links. 



 
 

Figure 8. Hough transform peaks obtained from simulation 
with 0% cross-traffic utilization. 

 
Figure 9. Hough transform peaks obtained from simulation 

with 15% cross-traffic utilization. 

 

 
Figure 10. Hough transform peaks obtained from simulation 

with 70% cross-traffic utilization. 

 

So far the only independent variable in the 
experiment is the input dispersion, which varies 
according to a uniform random distribution. Future 
work will investigate other variables such as the 
relative probe packet sizes, numbers of packets in a 
stream etc. 

 
REFERENCES 

 
[1] K. Lai, M. Baker, “Measuring Bandwidth”, Proc. 
IEEE INFOCOM, pp.905-14, 1999. 
[2] A. Pásztor, D. Veitch, “On the Scope of End-to-
End Probing Methods”, IEEE Communications 
Letters, 6(11), pp.509-11, 2002. 
[3] M. Hosseinpour, M. Tunnicliffe, "Packet-pair 
behavior in wired and 802.11-type wireless 
connection and the use of data clustering algorithms 
for dispersion-mode tracking", 33rd MIPRO 
International Convention, 24 May - 28 May 2010, 
Opatija, Croatia, pp. 539-543, 2010. 
[4] M. Hosseinpour, M. Tunnicliffe, "Real-Time 
tracking of packet-pair dispersion nodes ssing the 
Kernel-Density and Gaussian-Mixture models", 11th 
International Conference on Computer Modelling and 
Simulation (UKSim 2009), IEEE Computer Society, 
25 Mar - 27 Mar 2009, Cambridge, U.K., pp. 548-
552, 2009. 
[5] E.R.Davies, “Machine Vision: Theory, 
Algorithms, Practicalities” Academic Press, London, 
pp.191-206, 1990.  

  

 
 

 


	Blank Page

