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Abstract

Compressive sensing (CS) is a new methodology to capture signals at
lower rate than the Nyquist sampling rate when the signals are sparse or
sparse in some domain. The performance of CS estimators is analyzed in
this paper using tools from statistical mechanics, especially called replica
method. This method has been used to analyze communication systems
like Code Division Multiple Access (CDMA) and multiple input multi-
ple output (MIMO) systems with large size. Replica analysis, now days
rigorously proved, is an efficient tool to analyze large systems in general.
Specifically, we analyze the performance of some of the estimators used
in CS like LASSO (the Least Absolute Shrinkage and Selection Oper-
ator) estimator and Zero-Norm regularizing estimator as a special case
of maximum a posteriori (MAP) estimator by using Bayesian framework
to connect the CS estimators and replica method. We use both replica
symmetric (RS) ansatz and one-step replica symmetry breaking (1RSB)
ansatz, clamming the latter is efficient when the problem is not convex.
This work is more analytical in its form. It is deferred for next step to
focus on the numerical results.

1 Introduction

Recently questions like, why go to so much effort to acquire all the data when
most of what we get will be thrown away?;Can we not just directly measure the
part that will not end up being thrown away?, that were paused by Donoho [I]
and others, triggered a new way of sampling or sensing called compact (”com-
pressed”) sensing (CS).

In CS the task is to estimate or recover a sparse or compressible vector
x? € RN from a measurement vector y € RM. These are related through the
linear transform y = Ax". Here, x° is a sparse vector and M < N. In the
seminal papers [1] - [3], x° is estimated from y, by solving a convex optimization
problem [4], [5]. Others have used greedy algorithms, like subspace pursuit
(SP) [6], orthogonal matching pursuit (OMP) [7] to solve the problem. In this
paper the focus is rather on the convex optimization methods. And we consider
the noisy measurement system and the linear relation becomes

y = AxX? + oow. (1.1)
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Here, y and x° are as in above where as the noise term, w ~ N(0,I). There
exists a large body of work on how to efficiently obtain an estimate for x°. And
the performances of such estimators are measured using metrics like Restricted
Isometric Property (RIP) [§], Mutual Coherence (MC) [9], yet there is appar-
ently no consensus on the bounds in using such metrics. The tool used in this
paper gives performance bounds of large size CS systems [10].

Generally the linear model (I)) is used to describe a multitude of linear sys-
tems like code division multiple access (CDMA) and multiple antenna systems
like MIMO, to mention just a few. Tools from statistical mechanics have been
employed to analyze large CDMA [I1] and MIMO systems [12] [I3], and on in
this paper the same wisdom is applied to analyze the performance of estimators
used in CS. Guo and et al in [I0] used a Bayesian framework for statistical
inference with noisy measurements and characterize the posterior distribution
of individual elements of the sparse signal by describing the mean mean square
error(MSE) exactly. To do so, they consider (L)) in a large system and applied
the decoupling principle using tools from statistical mechanics.

One can find also works that have used the tools from statistical mechanics to
analyse CS system performances. To mention some, in [10] as stated above, Guo
and et al used the tools to describe the minimum mean square error (MMSE)
estimator, in [I4] Rangan and others used the maximum a posterior(MAP)
estimator of CS systems. These are referred as Replica MMSE claim and Replica
MAP claim in [T4].

In [16] - [20] authors have used Belief propagation and message passing
algorithms for probabilistic reconstruction in CS using replica methods includ-
ing RS. Especially, in [I8] one finds excellent work about phase diagrams in
CS systems while [21I] generalizes replica analysis using free random matrices.
Kabashima and et. al in [22], Ganguli and Sompolinsky in [23] and Takeda and
Kabashima [24] - [26] have shown statistical mechanical analysis of the CS by
considering the noiseless recovery problem and they indicated that RSB analy-
sis is needed in the phase regimes where the RS solution is not stable. In this
paper the performance of those CS estimators, considered as MAP estimator, is
shown for the noisy problem by using the replica method including RS and RSB
as in [27] - [29], where the RSB ansatz gives better solution when the replica
symmetry (RS) solution is unstable. This work is kind of an extension of [29]
from MIMO systems to the CS systems.

The paper is organized as follows. In section [2] the estimator in CS system
are presented and redefined using the Bayesian framework, and based on that
we present our basis of analysis in section [3] which is the replica method from
the statistical physics and apply it on the different CS estimators which are
presented generally as a MAP estimator. In section ] we showed our analysis
using a paricular example, and section [f] presents conclusion and of future work.

2 Bayesian framework for Sparse Estimation

Beginning with a given vector of measurements y € RM and measurement
matrix A € RM*N  assuming noisy measurement with w € RM being i.i.d.



Gaussian random variables with zero mean and covariance matrix I, estimating
the sparse vector x° € RY is the problem that we are considering where these
variables are related by the linear model (LIJ).

2.1 Sparse Signal Estimation

Various methods for estimating x° may be used. The classical approach to
solving inverse problems of such type is by least squares (LS) estimator in which
no prior information is used and its closed form is

x0 = (ATA)'ATy, (2.1)

which performs very badly for the CS estimation problem we are considering
since it does not find the sparse solution. Another approach to estimate x° is
via the solution of the unconstrained optimization problem

~ 1
x0 = min — — A |2 +uf(x° 2.2
min 2y~ A 3 +uf (), (22)
where uf(x?) is a regularizing term, for some non-negative u. By taking
f(x%) =|| x° ||, emphasis is made on a solution with LP norm, and || x° ||, is
defined as a penalizing norm. When p = 2, we get

. 1
x0= min - ||y — Ax° ||§ +u || x II2 - (2.3)

This is penalizing the least square error by the L2 norm and this performs badly
as well, since it does not introduce sparsity into the problem. When p = 0, we
get the LO norm, which is defined as

HXOHO =k= #{Z € {172a t aN}|:C? 7£ 0}7
the number of the non zero intries of x°, which actually is a partial norm since
it does not satisfy the triangle inequality property, but can be treated as norm
by defining it as in [I4], and get the L0 norm regularizing estimator

. 1
x0 = min = ||y — Ax" |3 +u | x° o (2.4)

which gives the best solution for the problem at hand since it favors sparsity in
xY. Nonetheless, it is an NP- hard combinatorial problem. Instead, it has been
a practice to approximate it using L1 penalizing norm to get the estimator

- 1

X0 = min Sy = A" 3+ < 1 (25)
which is a convex approximation to the L0 penalizing solution 224 The best
solution for estimate of the sparse vector x is given by the zero-norm regu-
larized estimator which is a hard combinatorial problem. These estimators,
23) - 23, can equivalently be presented as solutions to constrained optimiza-
tion problem [I]- [3]. This constrained optimization version of ([23) is known
as the L1 penalized L2 minimization called LASSO (Least Absolute Shrinkage
and Selection Operator) or BPDN(Basis Persuit Denoising), which can be set



as Quadratic Programing (QP) and Quadratic Constrained Linear Program-
ing (QCPL) optimization problems. B I the following subsection the above
estimators are presented as a MAP estimator in Bayesian framework.

2.2 Bayesian framework for Sparse signal

Equivalently, the estimator of x° in (2.2)) can generally be presented as MAP es-
timator under the Bayesian framework. Assume a prior probability distribution
for x to be

e y
Pu(x) = T (2.6)

xexN emIdx’

where the cost function f : y — R is some scalar-valued, non negative function

with x € R and
N

76 =3 Flay). (2.7)

i=1

such that for sufficiently large u, [, . exp(—uf(x))dx is finite as in [I4]. And
let the assumed variance of the noisexbe given by

~
o2 =~
u

where « is system parameter which can be taken as v = o2u where o2 is

the assumed variance for each component of n. Note that we incorporate the
sparsity in the prior pdf via f(x). By () the probability density function of
y given x is given by

1 hy-Ax3
Pyix(y |35 A) = ¢ 2g T (2.8)

2ma2)N/2 ’ ’

and prior distribution of x by ([2]), the posterior distribution for the measure-
ment channel () according to Bayes law is

oW ly—Ax[l3+f(x))

JA) = . 2.9
Pxiy(x [y A) [ e Iy AXIERT00) gy (29)
xXEX™
Then the MAP estimator can be shown to be
1
KMAP — argmin— ||y — Ax ||2 +£(x). (2.10)
xexn 27

Now, as we choose different penalizing function in (ZI0) we get the different
estimators defined above in equations (2.3)), (24), and (2.5) but this time under
the Bayesian framework as a MAP estimator [14].

1. Linear Estimators: when f(x) =|| x ||3 I0) reduces to

Xy, = AT(AAT +41) 1y, (2.11)

XLinear

which is the LMMSE estimator.

n this paper we consider the former and leave the later as they are equivalent algorithms.



2. LASSO Estimator: when f(x) =|| x || we get the LASSO estimator and
@I0) becomes

5 1
XTasso = argmino— |y — Ax |5+ | x |1 (2.12)
xex™ &7
3. Zero-Norm regularization estimator: when f(x) = ||x||o , we get the Zero-

Norm regularization estimator and (ZI0) becomes

N 1
Xero = argming~ ||y — Ax 13+ 1o - (2.13)
X XTI,

Whether these minimization problems are solvable or not the replica analysis
results can provide the asymptotic performances of all the above estimators via
replica method as showed in [10], [I4], [22], [23] and [24]. We apply RS ansatz
as used by Miiller and et al in [27] and RSB ansatz as used by Zaidel and et
al [29] on vector precoding for MIMO. Actually, this work is an extension of the
RSB analysis to MIMO systems done in [29] to the CS system.

3 A Statistical Physics Analysis

The performance of the Bayesian estimators like MMSE and MAP can be done
using the pdf of the error vector. The error is random and it should be centered
about zero for the estimator to perform well. Kay showed in that way (see
section 11.6 in [30]) the performance analysis of MMSE estimator. We believe
in general that inference for the asymptotic performance of MAP estimators is
best done with statistical mechanical tools including RSB assumption and this
is done in the sense of the mean square error (MSE).

The posterior distribution ([Z9) is a sufficient statistics to estimate x° [10]
and the denominator is called the normalizing factor or evidence in Bayesian
inference according to [31] and Partition function in statistical mechanics. Ac-
tually, it is this connection, which gives the ground to apply the tools, which
are used in statistical mechanics. So the task of evaluating the above estimators
for the sparse vector x" can be translated to the statistical physics framework.
And let us justify first how the analysis using statistical mechanical tool is able
to do it.

Define the Gibbs-Boltzmann distribution as

1 _ X
px(x) = ge BH(x) (3.1)

where [ is a constant known as the inverse temperature in the terminology of
physical systems. For small 3, the prior probability becomes flat, and for large
5, the prior probability has sharp modes. H, which is an expression of the total
energy of the system, is called the Hamiltonian in physics literature and Z is
the partition function given by

Z=>Y e PHMx, (3.2)
XN



Often the Hamiltonian can be given by a quadratic form like

H(x) = x7 JIx, (3.3)

with J being a Random matrix of dimension N x N. Then the minimum average
energy per component of x can be given by

1
£ =— min H(x) (3.4)
XGXN
For our system that we considered to address, which is given by (ZI0) or equiv-
alently by (2.2)), the Hamiltonian becomes

1

= 5.2
203

Hx) = =5 (y — AX)T(y — AX) + uf (x). (3.5)
Compared to [B3]), the Hamiltonian in ([B.5]) has regularizing term in addition
to the quadratic form, which is the energy of the error, in which the regu-
larizing term f(x) is accountable for addressing the problem in the CS. The
Gibbs-Boltzman distribution is a solution to (ZI0) or to ([Z2) in general, after
plugging (32) and B3] since they are equivalent problems. The normalizing
factor ( aslo called the partition function) of this distribution is central for cal-
culating many important variables and we shall begin from this term to analyse
the CS estimators performance.

Assuming that x° and x being drawn from the same discrete set (we shall
later provide an example from such a set). The partition function of the posterior
distribution given in ([B.I]) becomes

2= % e—B[ﬁlly—AXHiJruf(X)}, (3.6)

xexN

by using B2) and B3&). The posterior distribution (ZI0) depends on the
predetermined random variables y and A called quenched states in physics
literature [25], [26]. That is, we use fixed states y = Ax" + w instead of y
for the large system limit, as N, M — oo, while maintaining N/M fixed. We
then calculate the nth moment of the partition function Z with respect to the
predetermined variables, n replicas, hence the name replica method came from.
The replicated partition function is then given by

e e O St 61)

{x}

where > = > ... > . And after substituting y, it becomes

{x*}  xiexV  xpexV

Zn=3 e_ﬂ{ﬁ 3 (G —x)+wlE)+ 2% 3 f(x“>].

a=1 a=1 (3_8)
{x*}
Averaging over the noise n first, we get
A0 1T fﬁ[%TTJL(nH% > f<x8>]
[, ez S B )

{x2}



where J = AT A and it is assumed to decompose into
J=0D0!, (3.10)

and D is a diagonal matrix while O is N x N orthogonal matrix assumed to be
drawn randomly from the uniform distribution defined by the Haar measure on
the orthogonal group. For more clarity on this one can see — in [25]. And L(n)
is given by

a=1 u

T
L(n)=—2 5 (xo—xa)(xo—x”)T-i-U%(o;iing%) (ail(xo—x”)> <b§jl(x°—xb)> . (3.11)

Further averaging what we get on the right side of (B3] over the cross correlation
matrix J, by assuming the eigenvalue spectrum of J to be self-averaging, we get

o ~s[aTrame 35 56|
=52 =)

{x=}
=523 f(x® - {lTrJLn:|
Y Py} >?<e 8|5TrIL(n) (3.12)

The inner expectation in (3I2) is the Harish -Chandra -Itzykoson-Zuber
integral (again see in [27] and [29] and the references therein). The plan here
is to evaluate the fixed-rank matrices L(n) as N — oco. Further following the

explanation in [29] (B12) becomes

—8y ¥ x*) — SN [Aa —w)dw+o
£ () - 3 7 BB e e

{x*}

(3.13)

where R(w) is the R-transform of the limiting eigenvalue distribution of the
matrix J( see, definition 1 in [27] of R-transform or in [I2] and [I3] for better
understanding of R-transform) and {\,} denote the Eigenvalues of the n x n
matrix SQ , with Q defined through

b.
I
-

T
Qu=4 %_ﬁ(m?m;l)T(m?x?HM’%(ﬁ(x?x?)) <_§l<x?xi’>>]y (3.14)

fora,b=1,---,n.
After applying replica trick, the average free energy can be given by

_ 1
=~ lim — E {log Z
7 == Jim 5 B llos 2}

R S n
= - 3 s o B (2 319)



and the energy of the error can be calculated from the average free energy as

_ 1 -
£= lim —F (3.16)

1
- hm — lim — E {log Z}

B—00 3 N—oo N

1 0 1
= L5 o N 8 (P (347

(1

n

where we get (310 by using one of the assumptions used in replica calculations,
after interchanging the order of the limits we assumed we get the same result.
Further, for =,, we have
_ 1 =51 35 f(x) 3 [ R(-w)dw
Sn = _ngnooﬁ log <{z:}e = ea=1"" . (3.18)
x(l

Since the additive exponential terms of order o(N) have no effect on the results
when taking saddle point integration in the limiting regime as N — oo due to
the factor ~ + outside the logarithm in (BI8) any such terms are dropped further
for notational simplicity as in [29).

In order to find the summation in [I8) we employed the procedure in [29)
and the nN dimensional space spanned by the replicas is split into subshells,

defined through n x n matrix Q

S(Q) = {xl, e X (xO — x“)T(xO — xb) = %Qab}. (3.19)

The limit N — oo able us to use saddle point integration. Hence we can have
the following general result as similar to [29] but extended in this work with the
term, which pertains to CS, where we have given the expression that helps to
evaluate the performances of the CS estimators using equation (B.4]).

Proposition 1 The energy € from B4), for any inverse temperature 8, any
structure of Q consistent with 319), and any R-transform R(.) such that R(Q)
is well-defined, is given by
- 1

& =—-lim—Tr[QR(-8Q)], (3.20)

n—0n
where Q s the solution to the saddle point equation

(201-5)TQ(201-%)— 22 %

(291-%)(201-5)T e o2
{xEX"}
Q= / (@01-2)T Q(201-%)— 2 % dFxo () (3'21)

oG

e
{XEX"}

Proof 1 See Appendiz[B.

Further, to get specific results we need to assume simple structure onto
the n X n cross correlation matrix Q at the saddle point. So we assume two
different assumptions for the entries of Q called ansatz: replica symmetry(RS)
and replica symmetric breaking (RSB) ansatz. Then compare the above limiting
energy for the different estimators considered in this paper using the two types
of ansatz for the CS system. That is the main purpose that we want to show in
this paper. And we took the structures similar to [29] :



1. replica symmetry ansatz :

b
Q =qolyxn + EOIan (322)

2. one replica symmetry breaking ansatz :

Q:(hlan +p11ﬂ><"_ﬂ ®1’L1><ﬂ +b_11n><n (323)
AN R
Applying these assumptions we found some results as given in the following
subsections. In the first subsection we assume the RS ansatz which can be
considered as the extension of [27]. In the last two subsections we assume RSB
ansatz as an extension of [29] to CS.

3.1 LASSO estimator with RS ansatz

Consider the LASSO estimator given in (2I2), which is equivalent to the solu-
tion of the main unconstrained optimization problem (Z2]) in {1 penalized sense.
Its performance can be expressed in terms of the limiting energy penalty per
component using two macroscopic variables gy and by given by

2
Qo = / /‘xo - \111‘ DzdFxo(2°), (3.24)
R JR
(3.25)
1
by = — / / RS 2® — Wy 2% DzdFxo(2?), (3.26)
Jo Jr Jr
where
U = argmin ’—zfo + 2e0(2? — 2) — l2 , (3.27)
PASH'YS O'u
1 —by
= 2L pr (b 3.29
fo= 12027 (3, (3.29)

and Dz is refering about integration over Gaussian measure, while dF'xo refers to
integration over the pdf of 20 (See Appendix B). Under RS ansatz assumptions
we then get the following statement.

Proposition 2 Given the LASSO estimator in [212) and the macroscopic
variables qo and by, in addition given the conditions in proposition 1 , the energy

in B20) simplifies to

glasso _ g—%R(;—?) - %R’(;—?) (3.30)

Proof 2 See Appendiz B.



3.2 LASSO estimator with 1RSB ansatz

Moving to the very purpose of the present paper, we use RSB ansatz instead of
RS and we repeat what has been done in the above subsections. The limiting
energy in this case involves four macroscopic variables like by, p1, g1, and pq,
which can be given by the following fixed point equations as n — 0 and 3 — oo,
as showed in appendix D, and using the compact notation as in [29]. Let

—p1 mingey — 20—z z* * e1(z°—z 27—2 T
Ay, 2) =e Ha ex —2R{( )(f1z"+g1y™) Her( 1 \, (y,2) € R2
(3.31)
and its normalized version
A A(ya Z)
A = 3.32
R AT 532

b1 + p1p1 = %//(CZ ?R{:co — (\Ilg)z*}A(y,z)DyDzdFXo (%) (3.33)

1 -
bi + (g1 +p1)u1 = ;/ §R{:EO - (\Pg)y*}A(y, 2)DyDzdFxo(z°) (3.34)
CQ

1 _
w+m = [ [ 192PA@2)DyDzdFyo(a) (3.35)
(CZ
where ”
Uy = argmin ‘—(flz* +g1y) +e1(2® — ) — = s
reEX oy
and

bi1t+ripy

b+ H1p1)

- *H?((ih +p1)9%+p1f12)

+//Clog(/ Aly.2)Dy) DzdFyxo(a®),  (3.36)

C

where the other variables e, f1, and g1, are given by

1 —by —b1 — pap1
g1 = (o2 R(U—Z) - R(Uiﬁ) ) (3-38)
fl_fog\/(hR’(%) (3.39)

Then the following two statements are the extensions of the propositions in [29]
to CS problems.

Proposition 3 Given the LASSO estimator in [212)) and suppose the ran-
dom matriz J satisfies the decomposability property BI0). Then under some
technical assumptions, including one-step replica symmetry breaking, and the

10



macroscopic variables given by the above fized point equations, the effective en-
ergy penalty per component converges in probability as N, M — oo, N/M < oo
, to

51[’7;15%’0 =2 (q1hprh ) R(=PAAEL) — s R(— b
+q1(b1t’;,;1p1 )R/( 7171;;1171 ) (340)

Proof 3 See Appendices D.

3.3 Zero-Norm regularizing estimator with 1RSB ansatz

The LASSO estimation is considered as the convex relaxation of the Zero-Norm
regularizing estimation. Since the latter is a non-convex problem its performance
is better evaluated when we use RSB ansatz. So extending proposition () to
this estimator we get the following statement.

Proposition 4 Given the Zero-Norm regularizing estimator in [2I3) and sup-
pose the random matriz J satisfies the decomposability property BI0). Then
under some technical assumptions, including one-step replica symmetry break-
ing, the effective energy penalty per component converges in probablity as N,
M — 0o, N/M < o , to

ZeTo-norm
1

=1 by —bi—pmipiy_ b1 _ b1
rsh oz (‘Zl-i-l)l-i-M )R( o2 ) p1oZ R( g%)

+q1(b1+UL;1P1)R/(*51;2MlP1) (3.41)

Proof 4 See Appendix D.

4 Particular Example: Bernoulli-Gaussian Mix-
ture Distribution

Assume the original vector x° € RY follows a Bernoulli-Gaussian mixture dis-
tribution. So following the Bayesian framework analysis in section Bl let x be
composed of random variables with each component obeying the pdf

N(0,1) with probability p

ple) ~ { 0 with probability 1 — p, (4.1)

where p = k/n, with k being the number of non zero entries of x. With out
loss of generality, let p = 0.1, M/N and k/N vary between 0.2 and 1. Also
lets assume that the entries of the measurement matrix A follow i.i.d. Gaussian
random variable of mean zero and variance 1/M. In addition let o2 be such that
the signal to noise ratio is —10dB.

We have simulated equations (2.7) and (2.8). Figure 1 shows MSE ver-
sus M/N of the two estimators, where we se that the Iy penalizing estimator,
LMMSE, is not as good as the [; penalizing estimator in general. Figure 2
shows MSE versus k/N of the two estimators and we see that LMMSE is not
sensitive to the sparsity of the vector as compared to the [; penalizing estimator.
Note that we have plotted the [;-penalizing estimator using different algorithms:
LASSO, L1-LS, Log-Bar.

11



MSE(dB)

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
M/N

Figure 1: This figure shows the the normalized mean squared error for the different
eastimators in (2.7) and (2.8) versus measurment ration M /N simulated using different
algorithms like LASSO, LOG-BAR, L1-LS as L1 penalazing family and LMMSE for
the the L2 penalayizing.

—— LASSO
—=— LMMSE
-5r| —=— Log Bar
—o—L1-LS
—+— CLASSO

~ [ ]

-30 L L L L L L L L
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

KIN

Figure 2: This figure shows the the normalized mean squared error for the different
eastimators in (2.7) and (2.8) versus sparsity ratio k/N simulated using different al-
gorithms like LASSO, LOG-BAR, L1-LS as [; penalazing family and LMMSE for the
the l2 penalayizing for M=50 and N=100.
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Figure 3: This figure shows the the Median squared error against measurment ratio
for the eastimators in (2.7)-(2.9) as simulated by Rangan and others [14] ploted against
M/N instead of N/M and the replica simulation points are included.

In both figures, we see that the least square estimator is not good for the
compressive sensing problem. In addition, we also observed that simulating
the [y penalizing estimator is hard. However, it is possible to apply statistical
physics tools, including replica methods, to analayze the performances of all the
estimators mentioned above, including zero norm estimator. In [I4], median
square error was used to compare the different estimators given by 2.11))-(2.13)
as shown here in figure 3. What we do here is that we include 1RSB ansatz
analysis of the performance of the CS estimators as each of them are presented
here as a MAP estimator. Actually it is one of the conjuctures made by Miiller
and others that the performance of MAP estimators is best done using one step
RSB. And we showed it here via the minimized energy expressions as given in

the propositions by the equations (3.)), (3:40), and (341).
4.1 Replica symmetry analysis

Considering the macroscopic variables given by ([8:24)) and ([3.26) and pluging
the assumed distributions above and simplyfying it one more step, the fixed
point equations become

QOP—Q//
2T RJR
2 Zf +l 02, .2
P 1 0 * 0 o * =t 0
bg = —— R 1-— _— dzdz”. 4.3
0 QWfO/lR/R {x( z)+( 200 )z}e 2 dzdx (4.3)

Using these macroscopic variables in we find the limiting energy numerically
which is given under propostion Bl and the result is shown in figure [l

3:02+22

2
e 2 dzda, (4.2)

zfo+ %
260
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Figure 4: This figure shows the minimum energy for the error resulting from the RS
ansatz for lasso versus the measurment ratio M/N.

4.2 Replica symmetry Breaking analysis

Considering the same Bernoulli-Gaussian mixture distribution ([@I]) assumed
in this section we consider the macroscopic variables which arises from one
step replica symmetry breaking (1RSB) ansatz. Then the minimum energy per
component as M — oo, N — oo, while M/N is finite ratio, which are given
by F40) and B4 are dependent up on four macroscopic variables given by
B33) -(336). The ther first are simplified further as follows:

We can further simplify ([B.33))-(B.36) as follows

b1+ pip = % / / /(C 2 é)%{ (J:O - \Ilg)z*}DyDzdFX (2)dFxo (950()4 )

by + (g1 + p1)ps = 9_11 / / /C 2 ?R{(xo - \Ilg)z*}DyDzdFX(z)dFXo (zo()4 .

1
@ +p= g_/// |Us|? DyDzdFx (x)dFxo (2°) (4.6)
1 cz

It is possible to simplify these results further and give numerical results.
But this is deferred for further work. We expect that the free energy from The
RSB ansatz to be greater than the free energy from the RS ansatz for the Zero-
Norm regularizing, which can be seen from the analytical terms which have more
parameters in ([41]). However, for LASSO these free energy, hence the energy
error, will be quite similar since for convex minimization problems there is one
global minimum and RS ansats is sufficient enough to produce the solution.
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5 Conclusion

In this paper we have used the replica method to analyze the performance of
the estimators used in compressed sensing which can be generalized as MAP
estimators. And the performance of MAP estimators can well be shown using
replica method including one-step replica breaking ansatz. It is a philosophical
standpoint that 1RSB enough to analyze the estimators like MAP. We have only
showed here for one particular example for the CS problem, i.e. for Bernoulli-
Gaussian distribution. One may be interested to verify it using different ex-
amples. In addition we have only compared the estimators performance based
on the free energy, but one can also use other metrics such as comparing the
input/out put distribution using replica analysis as it is done in [29]. The main
result of this paper is analytical analysis for the performance of the estimators
used in CS and many things can be extended including efficient algorithms in
implementing the numerical analysis.
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A  Important Definitions

A.1 Green’s function

In Classical probability theory (CPT) one is concerned with the densities, mo-
ments and comulants of elements of random matrices. Where as in Random ma-
trix theory (RMT) also called (Free Random Variable calculus), one is engaed
in finding the spectral densities, moments and cumilants ( By Professor Maciej
A. Novak). As Fourier transfom is the generating function for the moments
in CPT, Green’s function ( also called Stieltjes transform) is the generating
function for the spectral moments defined as

_ L Lo _ [~
G(Z)N<Trzlz\/—X>/Z—)\d)\nzoznﬂjwn7 (A1)

where X is N x N random matrix and 1y is of the same size unit matrix, A
are the eigenvalues, and M,, is the spectral moment. The integral is over the
support set of the eigenvalues.

A.2 R-transform

The generating function for the cumulants of the CPT is given by the logarithm
of the Fourier transfom. In similar maner to the above section we can define
the generating function for spectral cumulants. It is called the R-transform
(Voiculescu,1986). It is given by

R(z) = Z Cp2" 1, (A.2)
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where C,, are the spectral cumulants of the random matrix X. We can relate
R-transform with Greens’s function as follows:

G(R(z) + ;) =z or R(G(z))+ G

=z. (A.3)

The spectral density of the matrix J = AT A converges almost surely to the
Marchenko-Pastur law as M = aN — oo [27]. And the R-transform of this
matrix is given by

1
R(z) = A4
() = —— (A1)
and its derivative with respect to z becomes
, @
= A.
R(D) = (4.5)

where « = N/M is system load.

B Proof of propostion [
The avarage energy penality can be derived from the average free energy given

in @I3)

€= lim fffhm—hm—E{logZ}

1 0
= - i 5l Jim o B ((2)°)- >0

(1

n

where =, is given by BI8). Using (319) as the splitting of the space, we get

2, = lim ilog/ eNENT{QY~NGIRQI DQ (B.2)
N—oo R(n+1)2
where . .
DQ=[]dQu [] dQa (B.3)
a=0 b=a+1

is the integration measure,

. (Q)
/ —w)dw (B.4)

_ /O ™ T QR(—wQ)dw (B.6)
BY X proa
=N agof(x ) and (B.7)
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n
eNZH{QY — Z H 5((X07Xa)T( NQaa H 5 X - ( Xb)*NQab)
{x2} a=0 b=a+1

(B.8)
denotes probability weight of the subshell composed of Dirac-functions in the
real line. This procedure is a change of integration variables in multiple di-
mensions where the integration of an exponential function over the replicas has
been replaced by integration over the variables Q. To evaluate eV CeNT{@} we
follow [12], [29] and represent the Dirac measure using the Fourier transform as

a x"—x x?—x?)—=NQ, ) ~a
(S((XO—Xb)T(XO—Xa)—NQab) :/ Q b(( ) ( ) Q b dQ b, (BQ)
T 27T
where a,b =0,1,--- ,n and this gives
x0 b\T (O a _ w a
JNENTIQ) _ Z / G%Qab —x")" (x"—x )7NQab)e U%W a;f(x )DQ
ey 1T
x0 x0T (x0_x@) —By i <@
:/ o~ NTT(QQ) <Ze‘§7Qab ) )e o a;f( )>ﬁQ
n2 for
(B.10)
where ~
™ ana - anb
DQ = H< 11 o (B.11)
b=a+1
Assuming f(x%) = [|x*]|1 = Z |z¢| , which is the sparsity enforcer as described

above in LASSO estunator and after doing some rearrangements, the inner
expectation of (BI0) can be given by

Vo (x°—x)T (x0—x2) =87 ¥ x2 N Db (20 —2)T (20 —z¢ By ¥ 2@
> 5 Qul =) To0x) 85 0 1 O U e R 2
{x=} i=1{zfex}
(B.12)
Now defining
) 5 Quo(a? =) @0 —a0)) 23 35 fo]
Mi(Q) = > e(a,b )4 E (B.13)
{efexy
we can get
~ N ~
—NTr(QQ)+ > log M;(Q) ~ ~
eNl:eNI{Q}:/ e (QQ)F 2 los M )DQ. (B.14)
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Following the i.i.d. assumption for the component of the sparse vector x, and
applying the strong law of large numbers as N — oo we get

log M(Q Z log M;(

% Gap (@02 T (20 —2%) = 83 32 |a| 1
%/1og Z i 7t i HdFX(za)

{erext a=0
T X) :no X 75—5( .

/log 3o AR ] dFo () (B.15)
{xexm} a=0

where, x is vector of dimention n. Next we apply the saddle point integration
concept on the remaining part of (B2), i.e., as N — oo the integrand will be
dominated by the exponential term with maximal exponent. Hence in (B.2]) only
the subshell that corresponds to this extremal value of the correlation between
the vectors {x®} is relevant for the calculation of the integral.

/ NENTIQ}~NO(Q) pQ

N
—NTr(QQ)+ 3 log M; (Q) ~ ~
:/ (/ g QA s Ml )DQ>6_NQ{Q}DQ (B.16)

Therefore, at the saddle point we have the following equations with partial
derivatives being zero (see the proof in Appendix B of [29]):

% [Q(Q) + TY(QQ)} =0 and (B.17)
9 [log M(Q) - mQQ)} = 0. (B.18)
0Q

And from the former we get

ﬁv

u

Q= BR(- ) (B.19)

and from the later, using (B:I5) we finally get

@01-0T Q01-%)—- 2% 3 |29
Tu a=1

(z01-%)(z%1-%)T e
(xexm) 0
dF B.2
Q= / (@01-9T Q0 o-L3 3 jea xo(=) (B.20)

2
U a

1
{xGX"}

C Proof of propostion

Taking the same line of taught as we do for Q, we can assume a natural repli-
cated variables for the symmetric correlation matrix Q and the 1RSB as follows:

1. replica symmetry ansatz :

Q- 62fo

1n><n _ﬁeOIan (Cl)
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2. one replica symmetry breaking ansatz :

Q ﬂQfl n><n+ﬂ gllnfxnﬂ ®171 % ﬂellnxn (02)
The variables qq, bo, q1, p1,b1, fo.€0,f1,91,€1, and pp are called the macroscopic
variables and they are all functions of n. They all can be calculated from the
saddel point equations that we shortly will derive. First let us try to prove
propostion 2] using the ansatz in (322 and (CI). We do it using equations
(BI), (C3) and (BIG) and we apply the saddelpoint integration rule. What
matters most becomes the argument of the exponential in (BI6). So we first
find Tr(QQ), G(Q), log M(Q) and in addition we will find the macroscopic
parametrs mentioned before since our limiting energy penality expressions for
the different estimators considered in this paper are calculated interms of the
macroscopic variables. Hence using ([3.22) and (CJ)) we get

52f0 (” 1)

Tr(QQ) = n(qo + 3 )( — Beo) + ———q0B°f3 (C.3)

and using (BI3) and (CI]) again we get

~ 52
Mi(Q)= ) e ne (C.4)
{zfext
ﬂ2f2 ( n 2 n 8 n
= (13*1?)) —eoB 2 (af —af)?=ZF 3 |af|
= Z e 2 agl 0 agl ua;1 (05)
{zfext
Jé] foR{(z°—z$)z*}—eo (2§ —2¢)? — L |2
Z /e azlo {( #)z" Y —eo(zf —2f) =y lDZ (C.6)
{zfex}
20—28)2* Y 4eoB(a’—2)2— L2 |z "
:/< Z SFoR{(—aD)z o’ —a)* = 2| ) Ds. (.7
{wex}

From (B.4) to (B.7) we apply completing the square on the exponential of the
argument and the Hubbard-Stratonovich transform,

elel® :/62%{“*}D2, (C.8)
C

where Dz is Gaussian measure defined as before, to linearize the exponential
argument. And we finally transformed the problem to a singele integral and a
single summation problem. To evaluate G(Q) we should first find the eigenvalues
of the matrix L(n). Under the RS ansatz the matrix L(n) has three types of
eigenvalues: \; = —(02 + nod)~1(bo + nBqo), A2 = —(02)"Lby and A3 = 0, and
the numbers of degeneracy for each are 1, n-1, and N-n, respectively. Thus we
get

(b02+n13<1§) b%
6(Q) = / T pCw)dw + (n— 1) / T Rcwydw  (C9)
0 0
The integral in (B.I6) is dominated by the maximum argument of the exponen-

tial function. Therefore, the derivative of

G(Q) + Tr(QQ) (C.10)
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with respect to qo and by must vanish as N — oo. Plugging (C3) and (C9)
into (CI0) and taking the partial derivatives we get

grz a2 e =0 ()

pn QR(éb04nﬂ%ﬂ) n ( 1)

2 2
oy +noj

oy +nog)
1 —(bo +nfgo)y , 1 —bo Bfs .\ _
o2 +HO‘8R( (02 4+ nod) ) + o2 (n 1)R< o2 ) +n( 2 €) =0, (C.12)

respectively. After algebraic simplification and solving for ey and fy we get

1 —bo

€yp = U_ER(U—E)’ (013)

2 |1 b 1 —(bo + nfqo)
_ (2| L pzhoy R : C.14
fo nf [UZR( o2 ) 02 + no? ( (02 4+ nod) ) (C.14)

and with the limit for n — 0

202 _/—b Bqoo2 + byo? —b

n—0 | 2190 p(—00Y , P40% T 0095 p (Y0
fos Ié; laﬁR( o2 ) + ob R ( o2 ) ’ (C.15)

By substituting (C3) into (BI8) and doing the partial derivative of
log M(eo, fo) — Tr(QQ)
01-%)TQ(2°1-%)— 2 %
/10g Z (z"1—x%) Q( 1-%)— o2 deo(.’L'O)

{x€x '}
2

-1

— (n(an+ 2 (EL gy + 2V g 52 2) (©16)
8 2
/10g/< Z BfoR{(z°—z)z" }+eoB(z’—z)? — z) DZdFXo(:EO)
{zex}

2 n(n—1

~ (nlao + (L — ey + 2D g2 12), (©17)
I3 2 2
with respect to eg and fp and equating to zero we get,
> (@ —2)%¢
{zex}

:——+//—DzdF o C.18
a0 ¢ o (2°) (C.18)

{zex}

{(2° —2f)z*}¢

= Bngo+ // {””6"} = DzdFyo(a0) (C.19)

{zex}

where . . o s s

¢ = HPRETTD redte T el (C.20)
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So collecting the macroscopic variables in (CI3), (CI4)), (CI]) and (CI9) and

sending n — 0 we have

1 /b
o = ;R(U—g) (C.21)
oo | 2|08 /- Bqoo? + b (b
f0—>0\lﬁ Z—%R(g)+_qoao—a OUOR(U;)} (C.22)
> (2% —=)%¢
% ——+//{I€X}TDZCZFXO( 0y, (C.23)
{zex}
{(2° — x)2*}¢
e / / {””ex} s DzdFyo(a°). (C.24)
{zex}

And the fixed point equations (C.22)), (CI8) and (C.I9) further can be simplified
via the saddle point integration rule in the limit § — co as

fo=1[2L g ( bo) (C.25)

4 2
Oy o

2
qo = / /‘xo — argmin ‘—zfo + 2eo (2" — x) — 12 DzdFxo(2”),  (C.26)
R JR TEX g

u

1
by = — / / R< 2 — argmin ‘—zfo + 2e9(2” — z) — T2 DzdFxo(z°).
Jo Jr Jr zEX oy
(C.27)

Putting together the results above we have

Zn =Z{Q} +£L-G(Q)
= —G(Q) +logM(Q) — Tr(QQ)

(b02+nﬁqg) b%
_ 7/ T R(—w)dw — (n — 1)/"“ R(—w)dw
0 0
2

n(n —

+1og M(ea, fo) ~ (a0 + )L — peo) + 20 Dgo23), - (c29
and the average free energy becomes
_ 0

BF = frlllg%)—anggoﬁlog E{(2)"} (C.29)

=n

o>
&)

(bo+nBag)
0 o2 4no? o2
= lim—{/ Y R(—w)dw + (n — 1)/ R(—w)dw
0
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2 nin —
~log Mo, fo) + (a0 + 2 (28 —ﬁeo>+%qoﬁzf3)} (©30)
o —(bo + nfqo) —(bo +nBqo)
_711%{{ 02 +noj }R( 02 +no? )

—(bo + nBqo) [7 (5%(03 +nog) — (bo + nﬁfJO)Ug) } R,(((bo + nﬂqo))

(0% +no}) (02 T no?)? o2 + o)

/ R(— w—/R/RganCDzdFXO(xO)} (C.31)

_ bOR( bo) N bo(Bgoo? *bogg)R (—bo)

0-2 6 0-2

/ R(—w)dw — / / In ¢ DzdFyo(a). (C.32)

Coming back to the main goal, the solution for the main unconstrained op-
timization problem (Z2)) is given by the extremum of (B3, it is calculated
through the free energy by sending 5 — oo as follows

slasso _ 1 iﬁ
o ﬁlzﬂgo Fohon (€39

_ bO —bo bo(Bgoc? — bool) _, /—bo =
— / / In¢DzdFxo (xo)} (C.34)

_ bo\ /q . bo bqu [ —bo

N ﬂh—?;oR( o2 )( 602) ot ( o2 ) (C:35)
— lim —{//hl(DzdFXo(zO)} (C.36)

B—>oo
G0 (—bo boqo —bo
- o_gR(E) o} o1 ( o2 ) (C.37)

This proves propostion[2l And to prove propostion 7?7 what we need is to use the
zero norm regularizing term instead of the L1 norm, i.e. using f(x%) = ||x%|lo =
% in (BIQ), and the result will be as in (?7?) which differ from 3.30) through
the calculation of the macroscopic varables which depend on the distributions
of the components of x.

D Proof of propostion [3 and 4

Turning to LASSO estimator with RSB ansatz we first use [3.23) and (C2) to
get

Tr(QQ) = n(q1 +p1 + )(ﬂ fi+ B%g7 — Ber) (D.1)

B
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Fl = Do +p)(E0 + P F) + = DuP st (D2)

To evaluate G(q1,p1, f1, 1) we should first find the eigenvalues of the matrix
L(n). Under the RSB ansatz the matrix L(n) has four types of eigenvalues:
A = —(0p +n0g) " b+ ppr+Bngr), Ao = —(07) " b1+ 1), As = —(07) b
and Ay = 0, and the numbers of degeneracy for each are 1, nf3/u—1, n—np/p,
and N — n, respectively. Hence

b1+pmip1+Bnay ﬂ bi1+p1py
a%+n02 n 0%
Gar.pr. frpn) = § o RCwdo+ 2o [ R-w)de
0 M1 0
nps

+(n—"Ey /O_ R(—w)dw (D.3)

M1

Further with entries of Q being RSB ansatz (BI5) will have more involved
terms than the RS ansatzs. i.e.

)

log M(q1,p1, f1, 1)

/log Z (°1—%) (z°1— x)f—% dFXo( )

{xexm}
n 2 n8_y "i 2
B2f ’ —x 2 2 5 -z —Be 3 20 —z,)2 -8 3 z¢
/10g Z 6 agl «)| T8 zgo azl( “Zal) 8 la§1( ) % a§1‘ il
{xexm}
- dF0(29). (D.4)

Using the Hubbard-Stratonovich transform (C.8)) we can express (D.4)) as in (c.f.
[ [27] , (66)- (70)] ) as follows

log M (qu1, p1, f1, p1)

ni
(267102~ 2) ="} ~Berl (@0 —wa) P~ lat ] +6%07 S & @0 w)|’
/1og Z /eaf =0 la=1 B
{xexm}
- DzdFxo(z°)
5% ng
B K1
= /log/ [/( Z K(z, v, z)) Dy] DzdFxo(2°) (D.5)
EL7E \xexy
where . . . o e s
K(z,y,2) = 62ﬁ§R{(I —2)(frz"+q1y")}—Ber|(z”—z)| *é\z\. (D.6)
Due to (BIT) the partial dervative of
G(q1,p1, fr,m) + Tr(QQ) (D.7)

with respect to the macroscopic variables qi, p1, and b; vanishes as N — oo
by definition of the sadel point approximation. And pluging (D.3) and (?7?) in
(D.2) and calculating the partial derivatives and seting them to zero and after
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some algebraic manipulation we get the folowing set of equations

24202 2 nf —b1 — p1p1 — Bnqa
0=n"B"fi + nBurgi —nPer + o ( 72 4 no? ) (D)
nf — by —
0= nBut} + g} —nper + ") g,
1 —b1 — pip1 — Bnq
R D.9
o2 + no? ( o2 + not ) (D-9)
np np

n-— _) —_b1 (E - 1) —b, — H1P1

_ 2 2 1
0=nBf; +nBg; —nex + TR( 2 )+ = R( p= )
(D.10)
1 —by — pip1 — Bnqy
. D.11
02 + not ( 02 + not ) (D-11)
Solving for ey, g1, f1 we get
1 —by
€1 = O'_gR(O'—Z), (D12)
111 —b 1 —=bi —mpr
S B e SN Vs Sl 0V D.1
o j51 [03 R( o2 ) o2 R( o2 )| (D.13)
1|1 —bi—ppr 1 —b1 — pup1 — nBq
=,|—|=R — R D.14
fl Tlﬂ [Ui ( O—Z ) O—Z +TLO'§ ( O—i +TLO'§ ) ) ( )

and further with the limits n — 0

n 1|og  —bi—puip (02B8q1 + 0d(by 4 p1p1)) —b1 — pp1
e\ e ot )
(D.15)
and as § — oo we can simplify it further as
by —
filone %R/(lT‘“pl). (D.16)

u u

Also due to (BI8) the partial derivatives of

log M (q1,p1, f1, 1) — Tr(QQ)

with respect to f1, g1, and e1, must also vanish as N — oco. This produces the
following set of equations while taking n — 0.

E1_q

b s 1 (ZzGX/C( T, Yy, z)) il
A //C Je (ZIEX’C( z, Y, Z))? Dj

: Z R{xz* K ( 2, y, 2)DyDzdFxo(a)

TEX

(D.17)
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K1 _q
B
> e K2, y, 2))
by + (ql +p1 H1 =
(CZ

5
B~
CEGX ( Z, y7 Z)) Dy

Z R{xy* Y ( z, y, 2)DzdFxo(x%) (D.18)

-1

s o/ / EeeK )
1 1= 75
Q1 Tp 91 (CZ

Bl
B ~
:EEXIC( 1"5 y? Z)) Dy

Z |z| K(z,y, 2)DyDzdFxo(z")

(D.19)
TrTEX
In addition when we take the partial derivative of
G(qr,p1. f1, ) + Tr(QQ) — log M(q1,p1, f1, 1) (D.20)
with respect of p7 is vanishes and yields at the limit as n — 0

1+m11P1
1 -
0= —2/ Y R(cw)dw + LLp( it b
HiJ

2 po )+ (@1 +p1)gi +pufi
+//C[ui%10g(/c(z;c<, )% by)

(D.21)
So as 8 — oo these fixed point equations can be simplified as follows

1
bl+p1,u1=—// R
fi c2

20 — \Ilg) z* }DyDzdFXo (29)

(D.22)

1

b+ (1 +pi)ps = —// R{ (s = w2 )y } DyDzdFx0 (=) (D.23)
g1 c2

1
G +p = — / / W52 Dy D=dFyo () (D.24)
g1 Cc2
where
W, = argmin [2R{(@° — 2)(f12" + g1y")} — e1l @ — )% = Llal
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Puting together the results again as in (C28)) and doing again the steps (B.34)
o (B.38) for the RSB case

1 1 0 -
firsh’ = T (0:29)

= _Blinéoﬁi%_n{ G(Q) - Tr(QQ) + log M(Q)} (D.26)

1 9 bitpipi1+B8nay /3 bi+pip
= ﬁl;n;oﬁ}llg%)an{/o R(—w)dw + (I - 1)/0 R(—w)dw
+n- —)/ R(—w)dw + [nlar +p1 + D)8 F2 + B3 — fen)

M1 Jo B
Fnl 5 = Dla+p) (50 + 5 F7) +nln E)qlﬂ%]
10gM(Q1,p1,fl,M1)} (D.27)
_ 1) bitpmpr,, —bi — pp
= lm. 6{( ) =l (D.28)
L (b1 + pip1 ) (Bqro2 — (l;l;L Mlpl)ag)R/(*bl ;2M1p1)

bl+u1p1 h % h

/ w)dw + (1 — ﬁ) / R(—w)dw
K1 Jo

+ [bl(ﬁfl + Bg; — e1) + pi(qr + p) (BT + Byt — %61) — umﬁfﬂ

1og//< > Ky, 2 )MBlDyDzdFXo(xO)} (D.29)

{xex}
b1+uipy b1

2 2 2
Ou Ou Oy M1 K1 Jo

+ [(bl + p1 (g +p)) (T +g3) — erlqr +p1) — mqlfﬂ

K1

#ﬁﬂm/m//<z“x% )DWM%(%

{xext
(D.30)
= %(‘h +p1 + zl)R(fb1 - Mf;ﬁR(f’_lﬁ)
+Q1(b1 +l;1p1)R'(_b1 ;Qmpl) (D.31)
%(q1+p1+ b )R(M) R(_:_%)
R i (D.32)
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