Prediction of Jet Engine Parameters for Control Design using Genetic Programming
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Abstract—The simulation of a jet engine behavior is widely
used in many different aspects of the engine development and
maintenance. Achieving high quality jet engine control systems
requires the iterative use of these simulations to virtually test
the performance of the engine avoiding any possible damage
on the real engine. Jet engine simulations involve the use of
mathematical models which are complex and may not always
be available. This paper introduces an approach based on
Genetic Programming (GP) to model different parameters of
a small engine for control design such as the Exhaust Gas
Temperature (EGT). The GP approach has no knowledge of the
characteristics of the engine. Instead, the model is found by the
evolution of models based on past measurements of parameters
such as the pump voltage. Once the model is obtained, it is used
to predict the behaviour of the jet engine one step ahead. The
proposed approach is successfully applied for the simulation
of a Behotec j66 jet engine and the results are presented.
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I. INTRODUCTION

The performance of a jet engine depends in most part
on the design of its control system [1]. The mathematical
modelling of a jet engine is significant for the controller
plan. Designers need to have a mathematical model to
investigate efficient control algorithms. Control systems may
be conservative if the designer does not have a com-
plete model of the engine, forcing the system to regulate
measurable variables and operating the engine in a less
efficient manner. In early control designs, designers used
experimental methods to find the steady state or transient
behaviour of an engine. This method was time consuming
and expensive. Therefore, the first attempts to model an
engine behavior using mathematical and thermodynamic
equations began to appear [2][3][4]. Mathematical models
were developed by using physical rules and empirical data.
Thermodynamic properties of combustion gases and air were
calculated using variation of the temperature. One of the
earliest published work that attempted to quantify engine
dynamics was that of the National Advisory Committee for
Aeronautics (NACA) where Gold and Rosenzweig showed
that the rotor of a turbojet responded to sudden changes in
fuel flow as a first-order system [5]. Lawrence et al whose
analysis assumed that a sudden increase in fuel flow could
cause an instantaneous increase in turbine torque but zero
increase in compressor torque was a major advance [6].
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Then the first simulations began. Larrowe and Spencer did
a first attempt of using a model operating in real time to
develop control hardware using a simulation rather than an
actual engine [7]. As simulation became an important tool
on the design of control systems, some programs such as
Matlab/Simulink became very popular for modelling and
simulating dynamic systems [8][9].

However, as the level of sophistication of modern jet
engines increased, the complexity of the mathematical mod-
els required for an accurate simulation grew. This led to
the application of many knowledge-based systems such as
Fuzzy Logic (FL), neural networks (NN), genetic algorithms
(GA) and probabilistic reasoning (PR) for the generation of
complex models. Modern control techniques for full-sized
jet engines may contain some of these soft computing
techniques to improve the propulsion system performance
[10]. Some of these techniques have also been applied for the
development of diagnostic and prognostic systems that can
predict the progression of various faults to component failure
[11][12]. Nayyeri et al. propose an offline health monitoring
system by simulating the EGT using GP [13]. EGT is an
engine operating limit that can be used to monitor overall
engine operation conditions.

In recent years small scale jet engines, which operate on
the same principles as the commercial jet engines have been
developed. Initially this work was done by amateurs for
use in model aircraft [14] but more recently commercially
produced engines have been produced and used for research
and education purposes. Developing robust control systems
is not practical without a simulation, especially if soft
computing techniques are used. Testing preliminary versions
of an evolutionary controller may be cause of potential
damage to the engine due to their randomness. This is in
addition to the impracticality of extended periods of test
running without specialist facilities. For an amateur designer,
developing a good controller without complete knowledge
of the mathematical model would be a challenge. However,
following a design/simulation/data acquisition iterative ap-
proach, could facilitate the process. This paper proposes the
use of genetic programming as a mean of constructing a
simulation of the engine for control design. The rest of the
paper is organised as follows: Section 2 presents genetic
programming as a symbolic regression tool and introduces



Figure 1. Equation represented by the tree: a + bz

the simulation approach using GP to estimate different
engine parameters. Section 3 presents the experiments and
discussion and finally Section 4 presents the conclusion and
future work.

II. GENETIC PROGRAMMING FOR SYMBOLIC
REGRESSION

Genetic Programming [15] is a biologically inspired com-
putation technique based on the evolution of individuals
over time, through events such as crossover and mutation,
which progressively refines them into better individuals. In
GP, a population of programs (in a binary tree layout) is
evolved, each program representing a set of instructions to
solve a specific problem. GP, like nature, is a stochastic
process, which cannot guarantee to find the global optimum
but it is that randomness which can lead it to escape local
optima, which deterministic methods may be captured by
[16]. Symbolic regression via GP is a non-parametric, non-
linear regression technique that looks for an appropriate
model structure and model parameters as opposed to classic
regression that assumes a certain model structure and esti-
mates the optimal parameters that best fit a given sample
of data [17]. As shown by the example in Figure 1, a GP
tree is formed by a set of terminals and functions. The
functions may be basic arithmetic operators {+, -, *, /},
standard mathematical functions (sine, cosine, logarithmic,
exponential), logical functions or domain-specific functions.
The terminals may be constants or any problem-related
variables. For the jet engine simulations, variables such as
pump voltage, pressure, exhaust gas temperature, among
others, may be relevant for behavioural modelling. The
evolution process will be able to identify those variables
that are relevant for the model.

The GP algorithm is implemented as follows: First, an
initial population p of n trees is created, selecting random
combinations of variables and operators. There are different
methods for creating random trees. A very common method
is the grow method, which creates trees of different depths
up to a specified maximum. Another method is the full
method which creates trees were the terminals are guaran-
teed to be at a certain depth. A third method, which was
used in this paper, is the ramped half-and-half which uses
both grow and full methods to generate a population with
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Figure 2. Mutation Operation

good variation. The fitness of each tree is calculated based
on the RMSE between the output given by the model on each
training point and the real observation (Equation 1) plus the
penalisation function (Equation 2). Once the tree with the
best fitness is identified, the algorithm iterates © number of
generations. At each iteration, a new population is created
by copying the best tree of the previous generation and the
rest of the individuals are created by means of selection,
crossover and mutation operators. The new population re-
places the previous population and the best tree of the new
population is identified. This process is repeated until the
specified number of generations has been reached and the
best tree on the training set and validation sets are obtained.

Z(observation — prediction)? (1)
i=0

RMSE =

A. Mutation Operator

This genetic operator consists in replacing a randomly
selected subtree from a complete tree with a new randomly
generated subtree. Figure 2 shows an example of this oper-
ator. Every new individual in a population is a candidate for
mutation, however this depends on a certain probability. The
mutation probability is a parameter that needs to be tuned
during experimentation and it is usually set to very small
values.

B. Crossover Operator

The crossover operator consists of copying the material
from two selected trees to generate two new trees. First
each parent is selected via a tournament. The tournament
consists of selecting a subset (i.e. 20) of trees and the tree
with the best fitness wins the tournament. Two tournaments
are needed to selected a pair of parents. Once these are
obtained, a subtree is selected randomly from both trees.
These two subtrees are exchanged generating two new trees.
Figure 3 shows an example of this operator.

C. Overfitting

As any other Machine Learning (ML) technique, achiev-
ing good generalization is one of the most important goals of
the GP approach. Failure to generalize, or overfitting, hap-
pens when the solution performs well on the training cases
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Figure 3. Crossover operation

but poorly on the test cases. The most common approaches
to reduce overfitting consist in biasing the search towards
shorter solutions. The parsimony pressure technique [17],
penalises the fitness of a program according to its complexity
(number of nodes in the tree), reducing the probability
for it to be selected in future generations for crossover.
The mathematical representation of the penalisation function
used is shown on Equation 2. The first term of the fitness
equation is the sum of the errors between the obtained output
(new forecast) and the desired output (observations) in the
training set (training set size = s). The second term is the
complexity factor, where t is the number of nodes of the GP
tested and k is a trade-off weight that allows to control the
level of pressure of the complexity factor. A single value of
k do not work for all regression cases. Depending on the
variable to model, is the range of values of k. In general,
high values of the parsimony pressure lead to less complex
models and low values of the parsimony pressure lead to
larger, more complex models.
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D. GP for the prediction of a jet engine parameters

As mentioned previously, GP has been widely applied for
symbolic regression. In a previous work, GP was success-
fully applied as a downscaling technique for wind speed
forecasting [18]. For this reason it is interesting to explore
the application of this approach for modelling different
jet engine parameters without knowledge of the complex
physics of it. The approach presented is as follows: first,
with a simple fuel flow controller, pump voltage, pressure,
temperature among other data is gathered from the engine.
The GP approach is then used to generate a case pressure
model using pump voltage and pressure observations. A
second model is generated applying the GP approach to
model the rotor speed from the case pressure and the

Figure 4. Pressure prediction one time step ahead with the best model
found using pump voltage on test data

pump voltage. In a following stage, with EGT observations
a third model is developed using the pump voltage, the
pressure and the rotor speed to predict future values of
EGT. Once these models are obtained, they can be used to
simulate the behaviour of these parameters when testing a
new control design. The first model would predict the case
pressure from the pump voltage. Then, with the predicted
pressure, a prediction of the rotor speed can be obtained
and consequently a prediction of the EGT can be obtained
as well. The predictions are only one step ahead, so as soon
as these are obtained, they can be fed back into the model
to obtain the next prediction.

III. EXPERIMENTAL SETUP

The starting point for the experiments was a set of
data that had been logged during previous runs of the
Behotec j66 engine (Figure 4). The information available
consisted of pump voltage, case pressure rpm and Exhaust
Gas Temperature (EGT) logged at intervals of 0.2 seconds.
The experimental setup was divided in three stages. The first
stage involved the use of pump voltage observations in order
to predict the case pressure. To keep the number of inputs as
small as possible, four input values of the pump voltage were
used. The first one was the actual observation at time ¢. The
second input was the average of the four last observations of
the pump voltage (¢t = t,t—1,t—2,¢t—3). The third input was
the average of the last 8 observations (t =¢,t —1,...,t —7)
and the fourth input was the average of the last 16 inputs. In
this way, a general overview of the changes in the variable
from the last 18 time steps could be considered without
increasing to 18 the number of inputs to the algorithm. The
expected output would be the pressure at time t. Previous
values of the pressure were not used to predict pressure at
time ¢. The reason for this was that very small differences of
the variable in different time steps could lead the search of
the algorithm to pick up faster these previous values of the
pressure rather than other variables because the algorithm is
trying to decrease the RMSE between the forecast and the
observation.



The second stage used the pressure and pump voltage
in order to predict the rotor speed. For the second set of
experiments, the number of inputs increased to 8 in order
to consider the four values for both the pump voltage and
the pressure. As it was done with the previous experiments,
the rpm parameter was not fed into the algorithm to avoid
picking up this variable over the other ones.

Finally, for the third set of experiments two settings were
used. In a first attempt, pump voltage, pressure and rpm were
used. For each variable, the four inputs as used in previous
experiments were used, having a total of 12 inputs. In a
second setting, history of the exhaust gas temperature was
included. Due to the low correlation between the temperature
and these three variables, it was also necessary to include
historical data from the temperature. Three averages of the
temperature were considered. An average on the previous 32
readings, an average on the last 16, and an average on the
last 8. A longer history period was used for the temperature
as this variable is changing at a lower pace compared to
the other three variables. The total number of inputs to the
algorithm grew to 15. Genetic programming is very sensitive
to the input data. Feeding all variables to all experiments
is not always the best approach. So it must be decided
intuitively which variables are most important and the input
must be limited to these ones only.

For the three sets of experiments the training and test-
ing sets were designed as follows. Several runs of the
engine were used. Those variable readings obtained by the
sensors where the engine and/or pump were not running
were excluded from the recorded information because they
were unrepresentative. The remaining data was divided into
training and testing sets. Both training and testing files
contained data from startup and operation stages. From the
total amount of records available 60% were used for training
and 40% for testing. The training set was further randomly
divided into 80% training and 20% validation.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Once the training, validation and test sets were obtained,
the experiments were carried out as follows. First, for each
type of experiment the best values of k were identified
empirically. This parameter allows to control the complexity
of the models by adding a penalisation to the fitness based
on their size. Each modelled variable has its own complexity
so different values of k were applied. For the case pressure
variable, a parsimony pressure of k£ = 0.005 was enough to
avoid very complex trees. The raw fitness (fitness with no
penalisation) of the models obtained for the case pressure
is 0.045 on average, so the parsimony pressure is such
that does not provide an unwanted advantage over raw
fitness. Larger models will be allowed to survive only if they
provide a significant improvement over the raw fitness even
when adding the penalisation. To model the rotor speed,
the parsimony pressure used was around k = 80. For the
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Figure 5. Pressure prediction one time step ahead with the best model
found using pump voltage on test data

EGT, values between k£ = 0.2 and & = 0.3 were used.
Once these parsimony pressures were obtained they were
used to execute 50 runs of each type of experiment. At each
run, the training and validation sets were selected randomly.
The additional parameters that were set for the experiments
are shown in Table I which are typical settings for the GP
approach. The best models found for each variable are shown
in Table II. The subindexes of the variables are used to
denote the type of input. A subindex of 1 means the current
value of the variable at time ¢, 2 denotes the average of the
last 4 observations, 3 corresponds to the last 8 observations
and 4 to the last 16 observations. The models were applied
to the test sets to evaluate the quality of the predictions.

Figure 5 presents the predictions of the case pressure
obtained on the testing set with the best model found on
the first set of experiments. The correlation between the
observations and the predictions is very high, so the algo-
rithm easily detected the relationship among them. Figure
6 presents the predictions of the rpm parameter using the
best model found on the second set of experiments. It can
be seen that these relationship was also quite well caught
by the algorithm producing an accurate model.

Figures 7 and 8 present the predictions of the exhaust
gas temperature using the best model from the third set of
experiments. The trend of the temperature is well caught in
both settings of the experiment however the increment in
temperature at around time step 480 was better achieved
by the model that was trained with some information
from previous data of the temperature included. This was
done because it was observed that temperature parameter
is dependent on its own history in a way that could not
easily be captured by working only from the pump voltage,
pressure and RPM. The basic data for pump voltage and case
pressure were somewhat noisy. This is of no consequence for
the training process but the noise is inevitably transmitted



Table T

FIXED GP PARAMETERS USED FOR THE EXPERIMENTS
Runs 50
Population 1000
Generations 100

Crossover operator

Standard subtree crossover, probability 0.9

Mutation operator

Standard subtree mutation, probability 0.1,maximum depth of new tree 17

Tree initialisation

Ramped Half-and-Half, maximum depth 6

Function set

+, -, ¥,/ log, exp

Terminal set

pump_v, press, rpm and random constants

Tournament of size 20

Selection
Elitism Best individual always survives
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Figure 6. RPM prediction using pump voltage and pressure on test data Figure 7. EGT prediction using pump voltage, pressure and rpm on test
data. RPM observations in the same time period are also shown.

through the model. Therefore noise of the prediction has
been reduced in both cases by using the pressure readings
that had been pre-filtered during the data-logging process
and by using the demanded voltage from the pump controller
rather than the actual measured pump voltage.

Overall the results are good for predicted pressure and
RPM. The predicted EGT is less accurate but still models the
actual engine behaviour in a manner which is qualitatively
correct. When the EGT history was not included as an
input as in Figure 7 the transient peak in EGT during
acceleration was not strong enough. The model that included
EGT history, Figure 8 shows a much stronger peak but with
some time lag. This suggests that further experimentation
with the way in which EGT history is presented as an input
may be required. Another approach would be to increase
the prominence of the transient events within the training
data so that these inaccuracies are penalised more strongly
during the selection process.

V. CONCLUSIONS AND FUTURE WORK

In this paper an approach based on GP was presented
to simulate different engine parameters for control design.
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Figure 8. EGT prediction using pump voltage, pressure, rpm and

temperature. RPM observations in the same time period are also shown.

A three stage simulation approach is proposed in order
to predict the behavior of a jet engine. For this purpose,
three models where created using GP. The first model



Table II
MODELS FOUND WITH THE BASIC GP IMPLEMENTATION

Predicted Variable

Mathematical Representation of the Model

Pressure

pumpV1/18.6264 + (pumpVy + In(pumpVa) + pumpVa) * pumpVi /18.6264
RPM exp(2press; + 11.61046 + presss/eazp(press% (presss * (pressi + 5.80523) — presss/
(presss/(pressi + 5.80523) + presss/(presss * exp(pumpVa) — pressi)))))

%92.3692 + presss/exp(pumpVz)) * 92.3692
EGT 6(pumpVs/pressi) + 3(pumpVs * pressi) + tempg — pumpVy — In(tempie)/pumpVa — 6ln(tempie)
+pumpVsz + pumpVs /pressi + pumpVs x pressi

uses pump voltage observations for pressure prediction. The
second model uses pump voltage and pressure observations
to predict the rotor speed. Finally the third model obtained
uses the pump voltage, pressure and rotor speed to predict
the exhaust gas temperature. Once the three models are
obtained they can be used, one on top of the other, to
have a complete simulation of all these variables through
time, feeding the predicted values onto the models again to
predict the parameters on the next time step. In general the
three models were able to capture the relationship between
variables. The exhaust gas temperature is less correlated than
the rest of the parameters so the prediction was less accurate.
To improve these results, further experimentation will be
carried out increasing the number of historical values that
are fed to the algorithm and by selection of the training data
to provide a better balance between steady state and transient
conditions.

The simulations thus derived can then be used to pro-
vide input to a further evolutionary process to produce an
optimised controller for the engine. In the longer term it
could be possible to integrate these algorithmic processes
into the controller software itself to produce a controller
that constantly optimises itself to account for changes in
engine behaviour caused by climatic conditions and wear of
components.
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