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Abstract

Compressive sensing (CS) is a new methodology to capture signals at
lower rate than the Nyquist sampling rate when the signals are sparse or
sparse in some domain. The performance of CS estimators is analyzed in
this paper using tools from statistical mechanics, especially called replica
method. This method has been used to analyze communication systems
like Code Division Multiple Access (CDMA) and multiple input multi-
ple output (MIMO) systems with large size. Replica analysis, now days
rigorously proved, is an efficient tool to analyze large systems in general.
Specifically, we analyze the performance of some of the estimators used
in CS like LASSO (the Least Absolute Shrinkage and Selection Oper-
ator) estimator and Zero-Norm regularizing estimator as a special case
of maximum a posteriori (MAP) estimator by using Bayesian framework
to connect the CS estimators and replica method. We use both replica
symmetric (RS) ansatz and one-step replica symmetry breaking (1RSB)
ansatz, clamming the latter is efficient when the problem is not convex.
This work is more analytical in its form. It is deferred for next step to
focus on the numerical results.

1 Introduction

Recently questions like, why go to so much effort to acquire all the data when

most of what we get will be thrown away? ;Can we not just directly measure the

part that will not end up being thrown away?, that were paused by Donoho [1]
and others, triggered a new way of sampling or sensing called compact (”com-
pressed”) sensing (CS).

In CS the task is to estimate or recover a sparse or compressible vector
x0 ∈ R

N from a measurement vector y ∈ R
M . These are related through the

linear transform y = Ax0. Here, x0 is a sparse vector and M ≪ N . In the
seminal papers [1] - [3], x0 is estimated from y, by solving a convex optimization
problem [4], [5]. Others have used greedy algorithms, like subspace pursuit
(SP) [6], orthogonal matching pursuit (OMP) [7] to solve the problem. In this
paper the focus is rather on the convex optimization methods. And we consider
the noisy measurement system and the linear relation becomes

y = Ax0 + σ0w. (1.1)

1

http://arxiv.org/abs/1409.2303v1


Here, y and x0 are as in above where as the noise term, w ∼ N (0, I). There
exists a large body of work on how to efficiently obtain an estimate for x0. And
the performances of such estimators are measured using metrics like Restricted
Isometric Property (RIP) [8], Mutual Coherence (MC) [9], yet there is appar-
ently no consensus on the bounds in using such metrics. The tool used in this
paper gives performance bounds of large size CS systems [10].

Generally the linear model (1.1) is used to describe a multitude of linear sys-
tems like code division multiple access (CDMA) and multiple antenna systems
like MIMO, to mention just a few. Tools from statistical mechanics have been
employed to analyze large CDMA [11] and MIMO systems [12] [13], and on in
this paper the same wisdom is applied to analyze the performance of estimators
used in CS. Guo and et al in [10] used a Bayesian framework for statistical
inference with noisy measurements and characterize the posterior distribution
of individual elements of the sparse signal by describing the mean mean square
error(MSE) exactly. To do so, they consider (1.1) in a large system and applied
the decoupling principle using tools from statistical mechanics.

One can find also works that have used the tools from statistical mechanics to
analyse CS system performances. To mention some, in [10] as stated above, Guo
and et al used the tools to describe the minimum mean square error (MMSE)
estimator, in [14] Rangan and others used the maximum a posterior(MAP)
estimator of CS systems. These are referred as Replica MMSE claim and Replica
MAP claim in [14].

In [16] - [20] authors have used Belief propagation and message passing
algorithms for probabilistic reconstruction in CS using replica methods includ-
ing RS. Especially, in [18] one finds excellent work about phase diagrams in
CS systems while [21] generalizes replica analysis using free random matrices.
Kabashima and et. al in [22], Ganguli and Sompolinsky in [23] and Takeda and
Kabashima [24] - [26] have shown statistical mechanical analysis of the CS by
considering the noiseless recovery problem and they indicated that RSB analy-
sis is needed in the phase regimes where the RS solution is not stable. In this
paper the performance of those CS estimators, considered as MAP estimator, is
shown for the noisy problem by using the replica method including RS and RSB
as in [27] - [29], where the RSB ansatz gives better solution when the replica
symmetry (RS) solution is unstable. This work is kind of an extension of [29]
from MIMO systems to the CS systems.

The paper is organized as follows. In section 2 the estimator in CS system
are presented and redefined using the Bayesian framework, and based on that
we present our basis of analysis in section 3 which is the replica method from
the statistical physics and apply it on the different CS estimators which are
presented generally as a MAP estimator. In section 4 we showed our analysis
using a paricular example, and section 5 presents conclusion and of future work.

2 Bayesian framework for Sparse Estimation

Beginning with a given vector of measurements y ∈ R
M and measurement

matrix A ∈ R
M×N , assuming noisy measurement with w ∈ R

M being i.i.d.
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Gaussian random variables with zero mean and covariance matrix I, estimating
the sparse vector x0 ∈ R

N is the problem that we are considering where these
variables are related by the linear model (1.1).

2.1 Sparse Signal Estimation

Various methods for estimating x0 may be used. The classical approach to
solving inverse problems of such type is by least squares (LS) estimator in which
no prior information is used and its closed form is

x̂0 = (ATA)−1ATy, (2.1)

which performs very badly for the CS estimation problem we are considering
since it does not find the sparse solution. Another approach to estimate x0 is
via the solution of the unconstrained optimization problem

x̂0 = min
x∈RN

1

2
‖ y −Ax0 ‖22 +uf(x0), (2.2)

where uf(x0) is a regularizing term, for some non-negative u. By taking
f(x0) =‖ x0 ‖p, emphasis is made on a solution with LP norm, and ‖ x0 ‖p is
defined as a penalizing norm. When p = 2, we get

x̂0 = min
x0∈RN

1

2
‖ y −Ax0 ‖22 +u ‖ x0 ‖2 . (2.3)

This is penalizing the least square error by the L2 norm and this performs badly
as well, since it does not introduce sparsity into the problem. When p = 0, we
get the L0 norm, which is defined as

‖x0‖0 = k ≡ #
{
i ∈ {1, 2, · · · , N}|x0

i 6= 0
}
,

the number of the non zero intries of x0, which actually is a partial norm since
it does not satisfy the triangle inequality property, but can be treated as norm
by defining it as in [14], and get the L0 norm regularizing estimator

x̂0 = min
x0∈RN

1

2
‖ y −Ax0 ‖22 +u ‖ x0 ‖0, (2.4)

which gives the best solution for the problem at hand since it favors sparsity in
x0. Nonetheless, it is an NP- hard combinatorial problem. Instead, it has been
a practice to approximate it using L1 penalizing norm to get the estimator

x̂0 = min
x0∈RN

1

2
‖ y −Ax0 ‖22 +u ‖ x0 ‖1, (2.5)

which is a convex approximation to the L0 penalizing solution 2.4. The best
solution for estimate of the sparse vector x is given by the zero-norm regu-
larized estimator which is a hard combinatorial problem. These estimators,
(2.3) - (2.5), can equivalently be presented as solutions to constrained optimiza-
tion problem [1]- [3]. This constrained optimization version of (2.5) is known
as the L1 penalized L2 minimization called LASSO (Least Absolute Shrinkage
and Selection Operator) or BPDN(Basis Persuit Denoising), which can be set
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as Quadratic Programing (QP) and Quadratic Constrained Linear Program-
ing (QCPL) optimization problems. 1 In the following subsection the above
estimators are presented as a MAP estimator in Bayesian framework.

2.2 Bayesian framework for Sparse signal

Equivalently, the estimator of x0 in (2.2) can generally be presented as MAP es-
timator under the Bayesian framework. Assume a prior probability distribution
for x to be

pu(x) =
e−uf(x)

∫

x∈χN e−uf(x)dx
, (2.6)

where the cost function f : χ → R is some scalar-valued, non negative function
with χ ⊆ R and

f(x) =

N∑

i=1

f(xi). (2.7)

such that for sufficiently large u,
∫

x∈χn exp(−uf(x))dx is finite as in [14]. And
let the assumed variance of the noise be given by

σ2
u =

γ

u

where γ is system parameter which can be taken as γ = σ2
uu where σ2

u is
the assumed variance for each component of n. Note that we incorporate the
sparsity in the prior pdf via f(x). By (1.1) the probability density function of
y given x is given by

py|x(y | x;A) =
1

(2πσ2
u)

N/2
e
− 1

2σ2
u
‖y−Ax‖2

2 , (2.8)

and prior distribution of x by (2.6), the posterior distribution for the measure-
ment channel (1.1) according to Bayes law is

px|y(x | y;A) =
e−u( 1

2γ ‖y−Ax‖2
2+f(x))

∫

x∈χn e−u( 1
2γ ‖y−Ax‖2

2+f(x))dx
. (2.9)

Then the MAP estimator can be shown to be

x̂MAP = argmin
x∈χn

1

2γ
‖ y −Ax ‖22 +f(x). (2.10)

Now, as we choose different penalizing function in (2.10) we get the different
estimators defined above in equations (2.3), (2.4), and (2.5) but this time under
the Bayesian framework as a MAP estimator [14].

1. Linear Estimators: when f(x) =‖ x ‖22 (2.10) reduces to

x̂MAP
Linear = AT (AAT + γI)−1y, (2.11)

which is the LMMSE estimator.

1In this paper we consider the former and leave the later as they are equivalent algorithms.
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2. LASSO Estimator: when f(x) =‖ x ‖1 we get the LASSO estimator and
(2.10) becomes

x̂MAP
Lasso = argmin

x∈χn

1

2γ
‖ y −Ax ‖22 + ‖ x ‖1 . (2.12)

3. Zero-Norm regularization estimator: when f(x) = ‖x‖0 , we get the Zero-
Norm regularization estimator and (2.10) becomes

x̂MAP
Zero = argmin

x∈χn

1

2γ
‖ y −Ax ‖22 + ‖ x ‖0 . (2.13)

Whether these minimization problems are solvable or not the replica analysis
results can provide the asymptotic performances of all the above estimators via
replica method as showed in [10], [14], [22], [23] and [24]. We apply RS ansatz
as used by Müller and et al in [27] and RSB ansatz as used by Zaidel and et
al [29] on vector precoding for MIMO. Actually, this work is an extension of the
RSB analysis to MIMO systems done in [29] to the CS system.

3 A Statistical Physics Analysis

The performance of the Bayesian estimators like MMSE and MAP can be done
using the pdf of the error vector. The error is random and it should be centered
about zero for the estimator to perform well. Kay showed in that way (see
section 11.6 in [30]) the performance analysis of MMSE estimator. We believe
in general that inference for the asymptotic performance of MAP estimators is
best done with statistical mechanical tools including RSB assumption and this
is done in the sense of the mean square error (MSE).

The posterior distribution (2.9) is a sufficient statistics to estimate x0 [10]
and the denominator is called the normalizing factor or evidence in Bayesian
inference according to [31] and Partition function in statistical mechanics. Ac-
tually, it is this connection, which gives the ground to apply the tools, which
are used in statistical mechanics. So the task of evaluating the above estimators
for the sparse vector x0 can be translated to the statistical physics framework.
And let us justify first how the analysis using statistical mechanical tool is able
to do it.

Define the Gibbs-Boltzmann distribution as

px(x) =
1

Z
e−βH(x) (3.1)

where β is a constant known as the inverse temperature in the terminology of
physical systems. For small β, the prior probability becomes flat, and for large
β, the prior probability has sharp modes. H, which is an expression of the total
energy of the system, is called the Hamiltonian in physics literature and Z is
the partition function given by

Z =
∑

χN

e−βH(x)dx. (3.2)
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Often the Hamiltonian can be given by a quadratic form like

H(x) = xTJx, (3.3)

with J being a Random matrix of dimension N×N . Then the minimum average
energy per component of x can be given by

E =
1

N
min
x∈χN

H(x) (3.4)

For our system that we considered to address, which is given by (2.10) or equiv-
alently by (2.2), the Hamiltonian becomes

H(x) =
1

2σ2
u

(y −Ax)T (y −Ax) + uf(x). (3.5)

Compared to (3.3), the Hamiltonian in (3.5) has regularizing term in addition
to the quadratic form, which is the energy of the error, in which the regu-
larizing term f(x) is accountable for addressing the problem in the CS. The
Gibbs-Boltzman distribution is a solution to (2.10) or to (2.2) in general, after
plugging (3.2) and (3.5) since they are equivalent problems. The normalizing
factor ( aslo called the partition function) of this distribution is central for cal-
culating many important variables and we shall begin from this term to analyse
the CS estimators performance.

Assuming that x0 and x being drawn from the same discrete set (we shall
later provide an example from such a set). The partition function of the posterior
distribution given in (3.1) becomes

Z =
∑

x∈χN

e
−β
[

1
2σ2

u
‖y−Ax‖2

2+uf(x)
]

, (3.6)

by using (3.2) and (3.5). The posterior distribution (2.10) depends on the
predetermined random variables y and A called quenched states in physics
literature [25], [26]. That is, we use fixed states y = Ax0 + w instead of y
for the large system limit, as N,M → ∞, while maintaining N/M fixed. We
then calculate the nth moment of the partition function Z with respect to the
predetermined variables, n replicas, hence the name replica method came from.
The replicated partition function is then given by

Zn =
∑

{xa}

e
−β

[
1

2σ2
u

n∑

a=1

(
‖y−Axa‖2

2

)
+ γ

σ2
u

n∑

a=1

f(xa)

]

, (3.7)

where
∑

{xa}

=
∑

x1∈χN

...
∑

xn∈χN

. And after substituting y, it becomes

Zn =
∑

{xa}

e
−β

[

1
2σ2

u

n∑

a=1

(
‖A(x0−xa)+w‖2

2

)
+ γ

σ2
u

n∑

a=1
f(xa)

]

. (3.8)

Averaging over the noise n first, we get

∫

RM

dn

πM
e−

1
2σ0

(wTw)Zn =
∑

{xa}

e
−β

[

1
2TrJL(n)+ γ

σ2
u

n∑

a=1
f(xa)

]

, (3.9)
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where J = ATA and it is assumed to decompose into

J = ODO−1, (3.10)

and D is a diagonal matrix while O is N ×N orthogonal matrix assumed to be
drawn randomly from the uniform distribution defined by the Haar measure on
the orthogonal group. For more clarity on this one can see — in [25]. And L(n)
is given by

L(n)=− 1
σ2
u

n∑

a=1
(x0−xa)(x0−xa)T+

σ2
0

σ2
u(σ2

u+nσ2
0)

(

n∑

a=1
(x0−xa)

)(

n∑

b=1

(x0−xb)

)T

. (3.11)

Further averaging what we get on the right side of (3.9) over the cross correlation
matrix J, by assuming the eigenvalue spectrum of J to be self-averaging, we get

E
w,J

{
Zn
}
= E

J

(
∑

{xa}

e
−β

[

1
2TrJL(n)+ γ

σ2
u

n∑

a=1
f(xa)

])

=
∑

{xa}

e
−βγ

σ2
u

n∑

a=1
f(xa)

E
J

(

e
−β

[

1
2TrJL(n)

])

(3.12)

The inner expectation in (3.12) is the Harish -Chandra -Itzykoson-Zuber
integral (again see in [27] and [29] and the references therein). The plan here
is to evaluate the fixed-rank matrices L(n) as N → ∞. Further following the
explanation in [29] (3.12) becomes

E
w,J

{
Zn
}
=
∑

{xa}

e
−βγ

σ2
u

n∑

a=1
f(xa)

e
−N

n∑

a=1

∫
λa
0

R(−w)dw+o(N)
(3.13)

where R(w) is the R-transform of the limiting eigenvalue distribution of the
matrix J( see, definition 1 in [27] of R-transform or in [12] and [13] for better
understanding of R-transform) and {λa} denote the Eigenvalues of the n × n
matrix βQ , with Q defined through

Qab≡
1
N

[

− 1
σ2
u

N∑

i=1

(x0
i−xa

i )
T (x0

i−xb
i )+

σ2
0

σ2
u(σ2

u+nσ2
0)

(

N∑

i=1

(x0
i−xa

i )

)T(

N∑

i=1

(x0
i−xb

i )

)]

, (3.14)

for a, b = 1, · · · , n.
After applying replica trick, the average free energy can be given by

βF̄ = − lim
N→∞

1

N
E

n,R
{log Z}

= − lim
N→∞

1

N
lim
n→0

∂

∂n
log E

n,R
{(Z)n} (3.15)

7



and the energy of the error can be calculated from the average free energy as

Ē = lim
β→∞

1

β
F̄ (3.16)

= − lim
β→∞

1

β
lim

N→∞

1

N
E

n,R
{log Z}

= − lim
β→∞

1

β
lim
n→0

∂

∂n
lim

N→∞

1

N
log E

n,J
{(Z)n}

︸ ︷︷ ︸

Ξn

. (3.17)

where we get (3.16) by using one of the assumptions used in replica calculations,
after interchanging the order of the limits we assumed we get the same result.
Further, for Ξn we have

Ξn = − lim
N→∞

1

N
log

(
∑

{xa}

e
−βγ

σ2
u

n∑

a=1
f(xa)

e

n∑

a=1

∫
λa
0

R(−w)dw

)

. (3.18)

Since the additive exponential terms of order ◦(N) have no effect on the results
when taking saddle point integration in the limiting regime as N → ∞ due to
the factor 1

N outside the logarithm in (3.18) any such terms are dropped further
for notational simplicity as in [29].

In order to find the summation in (3.18) we employed the procedure in [29]
and the nN dimensional space spanned by the replicas is split into subshells,
defined through n× n matrix Q

S(Q) = {x1, ...,xn | (x0 − xa)T (x0 − xb) =
N

κn
Qab}. (3.19)

The limit N → ∞ able us to use saddle point integration. Hence we can have
the following general result as similar to [29] but extended in this work with the
term, which pertains to CS, where we have given the expression that helps to
evaluate the performances of the CS estimators using equation (3.4).

Proposition 1 The energy E from (3.4), for any inverse temperature β, any
structure of Q consistent with (3.19), and any R-transform R(.) such that R(Q)
is well-defined, is given by

Ē = − lim
n→0

1

n
Tr[QR(−βQ)], (3.20)

where Q is the solution to the saddle point equation

Q =

∫ ∑

{x̃∈χn}
(x01−x̃)(x01−x̃)T e

(x01−x̃)T Q̃(x01−x̃)−
βγ

σ2
u

x̃

∑

{x̃∈χn}
e

(x01−x̃)T Q̃(x01−x̃)−
βγ

σ2
u

x̃
dFX0(x

0) (3.21)

Proof 1 See Appendix B.

Further, to get specific results we need to assume simple structure onto
the n × n cross correlation matrix Q at the saddle point. So we assume two
different assumptions for the entries of Q called ansatz: replica symmetry(RS)
and replica symmetric breaking (RSB) ansatz. Then compare the above limiting
energy for the different estimators considered in this paper using the two types
of ansatz for the CS system. That is the main purpose that we want to show in
this paper. And we took the structures similar to [29] :
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1. replica symmetry ansatz :

Q = q01n×n +
b0
β
In×n (3.22)

2. one replica symmetry breaking ansatz :

Q = q11n×n + p1Inβ
µ1

×nβ
µ1

⊗ 1µ1
β

×
µ1
β
+

b1
β
In×n (3.23)

Applying these assumptions we found some results as given in the following
subsections. In the first subsection we assume the RS ansatz which can be
considered as the extension of [27]. In the last two subsections we assume RSB
ansatz as an extension of [29] to CS.

3.1 LASSO estimator with RS ansatz

Consider the LASSO estimator given in (2.12), which is equivalent to the solu-
tion of the main unconstrained optimization problem (2.2) in l1 penalized sense.
Its performance can be expressed in terms of the limiting energy penalty per
component using two macroscopic variables q0 and b0 given by

q0 =

∫

R

∫

R

∣
∣
∣x0 −Ψ1

∣
∣
∣

2

DzdFX0(x0), (3.24)

(3.25)

b0 =
1

f0

∫

R

∫

R

ℜ

{

x0 −Ψ1z
∗

}

DzdFX0(x0), (3.26)

where
Ψ1 = argmin

x∈χ

∣
∣
∣−zf0 + 2e0(x

0 − x)−
γ

σ2
u

∣
∣
∣, (3.27)

e0 =
1

σ2
u

R
(−b0
σ2
u

)

, (3.28)

f0 =

√

2
q0
σ4
u

R′
(−b0
σ2
u

)

, (3.29)

andDz is refering about integration over Gaussian measure, while dFX0 refers to
integration over the pdf of x0 (See Appendix B). Under RS ansatz assumptions
we then get the following statement.

Proposition 2 Given the LASSO estimator in (2.12) and the macroscopic

variables q0 and b0, in addition given the conditions in proposition 1 , the energy

in (3.20) simplifies to

Ē lassors =
q0
σ2
u

R
(−b0
σ2
u

)

−
b0q0
σ4
u

R′
(−b0
σ2
u

)

(3.30)

Proof 2 See Appendix B.
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3.2 LASSO estimator with 1RSB ansatz

Moving to the very purpose of the present paper, we use RSB ansatz instead of
RS and we repeat what has been done in the above subsections. The limiting
energy in this case involves four macroscopic variables like b1, p1, q1, and µ1,
which can be given by the following fixed point equations as n → 0 and β → ∞,
as showed in appendix D, and using the compact notation as in [29]. Let

∆(y, z) ≡ e
−µ1 minx∈χ −2ℜ{(x0−x)(f1z

∗+g1y
∗)}+e1(x

0−x)2− γ

σ2
u
|x|
, (y, z) ∈ ℜ2

(3.31)
and its normalized version

∆̃(y, z) =
∆(y, z)

∫

C
∆(ỹ, z)dỹ

(3.32)

b1 + p1µ1 =
1

f1

∫ ∫

C2

ℜ
{

x0 −
(
Ψ2

)
z∗
}

∆̃(y, z)DyDzdFX0(x0) (3.33)

b1 + (q1 + p1)µ1 =
1

g1

∫ ∫

C2

ℜ
{

x0 −
(
Ψ2

)
y∗
}

∆̃(y, z)DyDzdFX0(x0) (3.34)

q1 + p1 =
1

g1

∫ ∫

C2

|Ψ2|
2∆̃(y, z)DyDzdFX0(x0) (3.35)

where
Ψ2 = argmin

x∈χ

∣
∣
∣−(f1z

∗ + g1y
∗) + e1(x

0 − x)−
γ

σ2
u

∣
∣
∣,

and

∫ b1+µ1p1
σ2
u

b1
σ2
u

R(−w)dw = −R
(
−
b1 + µ1p1

σ2
u

)
− µ2

1

(

(q1 + p1)g
2
1 + p1f

2
1

)

+

∫ ∫

C

log
(∫

C

∆(y, z)Dy
)

DzdFX0(x0), (3.36)

where the other variables e1, f1, and g1, are given by

e1 =
1

σ2
u

R(
−b1
σ2
u

), (3.37)

g1 =

√
√
√
√

1

µ1σ2
u

[

R(
−b1
σ2
u

)−R(
−b1 − µ1p1

σ2
u

)

]

, (3.38)

f1
n→0
−→

1

σ2
u

√

q1R′(
−b1 − µ1p1

σ2
u

) (3.39)

Then the following two statements are the extensions of the propositions in [29]
to CS problems.

Proposition 3 Given the LASSO estimator in (2.12) and suppose the ran-

dom matrix J satisfies the decomposability property (3.10). Then under some

technical assumptions, including one-step replica symmetry breaking, and the
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macroscopic variables given by the above fixed point equations, the effective en-

ergy penalty per component converges in probability as N , M → ∞, N/M < ∞
, to

ĒLASSO1rsb = 1
σ2
u
(q1+p1+

b1
µ1

)R(
−b1−µ1p1

σ2
u

)−
b1

µ1σ2
u
R(−

b1
σ2
u
)

+q1(
b1+µ1p1

σ2
u

)R′(
−b1−µ1p1

σ2
u

) (3.40)

Proof 3 See Appendices D.

3.3 Zero-Norm regularizing estimator with 1RSB ansatz

The LASSO estimation is considered as the convex relaxation of the Zero-Norm
regularizing estimation. Since the latter is a non-convex problem its performance
is better evaluated when we use RSB ansatz. So extending proposition (3) to
this estimator we get the following statement.

Proposition 4 Given the Zero-Norm regularizing estimator in (2.13) and sup-

pose the random matrix J satisfies the decomposability property (3.10). Then

under some technical assumptions, including one-step replica symmetry break-

ing, the effective energy penalty per component converges in probablity as N ,

M → ∞, N/M < ∞ , to

Ēzero-norm1rsb = 1
σ2
u
(q1+p1+

b1
µ1

)R(
−b1−µ1p1

σ2
u

)−
b1

µ1σ2
u
R(−

b1
σ2
u
)

+q1(
b1+µ1p1

σ2
u

)R′(
−b1−µ1p1

σ2
u

) (3.41)

Proof 4 See Appendix D.

4 Particular Example: Bernoulli-Gaussian Mix-

ture Distribution

Assume the original vector x0 ∈ R
N follows a Bernoulli-Gaussian mixture dis-

tribution. So following the Bayesian framework analysis in section 3, let x be
composed of random variables with each component obeying the pdf

p(x) ∼

{
N (0, 1) with probability ρ
0 with probability 1− ρ,

(4.1)

where ρ = k/n, with k being the number of non zero entries of x. With out
loss of generality, let ρ = 0.1, M/N and k/N vary between 0.2 and 1. Also
lets assume that the entries of the measurement matrix A follow i.i.d. Gaussian
random variable of mean zero and variance 1/M. In addition let σ2

u be such that
the signal to noise ratio is −10dB.

We have simulated equations (2.7) and (2.8). Figure 1 shows MSE ver-
sus M/N of the two estimators, where we se that the l2 penalizing estimator,
LMMSE, is not as good as the l1 penalizing estimator in general. Figure 2
shows MSE versus k/N of the two estimators and we see that LMMSE is not
sensitive to the sparsity of the vector as compared to the l1 penalizing estimator.
Note that we have plotted the l1-penalizing estimator using different algorithms:
LASSO, L1-LS, Log-Bar.
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Figure 1: This figure shows the the normalized mean squared error for the different
eastimators in (2.7) and (2.8) versus measurment ration M/N simulated using different
algorithms like LASSO, LOG-BAR, L1-LS as L1 penalazing family and LMMSE for
the the L2 penalayizing.
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eastimators in (2.7) and (2.8) versus sparsity ratio k/N simulated using different al-
gorithms like LASSO, LOG-BAR, L1-LS as l1 penalazing family and LMMSE for the
the l2 penalayizing for M=50 and N=100.
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Figure 3: This figure shows the the Median squared error against measurment ratio
for the eastimators in (2.7)-(2.9) as simulated by Rangan and others [14] ploted against
M/N instead of N/M and the replica simulation points are included.

In both figures, we see that the least square estimator is not good for the
compressive sensing problem. In addition, we also observed that simulating
the l0 penalizing estimator is hard. However, it is possible to apply statistical
physics tools, including replica methods, to analayze the performances of all the
estimators mentioned above, including zero norm estimator. In [14], median
square error was used to compare the different estimators given by (2.11)-(2.13)
as shown here in figure 3. What we do here is that we include 1RSB ansatz
analysis of the performance of the CS estimators as each of them are presented
here as a MAP estimator. Actually it is one of the conjuctures made by Müller
and others that the performance of MAP estimators is best done using one step
RSB. And we showed it here via the minimized energy expressions as given in
the propositions by the equations (3.1), (3.40), and (3.41).

4.1 Replica symmetry analysis

Considering the macroscopic variables given by (3.24) and (3.26) and pluging
the assumed distributions above and simplyfying it one more step, the fixed
point equations become

q0 =
ρ2

2π

∫

R

∫

R

∣
∣
∣

zf0 +
γ
σ2
u

2e0

∣
∣
∣

2

e−
x02

+z2

2 dzdx0, (4.2)

b0 =
ρ2

2π

1

f0

∫

R

∫

R

ℜ

{

x0(1 − z∗) +
(zf0 +

γ
σ2
u

2e0

)

z∗

}

e−
x02

+z2

2 dzdx0. (4.3)

Using these macroscopic variables in we find the limiting energy numerically
which is given under propostion 2 and the result is shown in figure 4.
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Figure 4: This figure shows the minimum energy for the error resulting from the RS
ansatz for lasso versus the measurment ratio M/N.

4.2 Replica symmetry Breaking analysis

Considering the same Bernoulli-Gaussian mixture distribution (4.1) assumed
in this section we consider the macroscopic variables which arises from one
step replica symmetry breaking (1RSB) ansatz. Then the minimum energy per
component as M → ∞, N → ∞, while M/N is finite ratio, which are given
by (3.40) and (3.41) are dependent up on four macroscopic variables given by
(3.33) -(3.36). The ther first are simplified further as follows:

We can further simplify (3.33)-(3.36) as follows

b1 + p1µ1 =
1

f1

∫ ∫ ∫

C2

ℜ
{(

x0 −Ψ2

)

z∗
}

DyDzdFX(x)dFX0 (x0)

(4.4)

b1 + (q1 + p1)µ1 =
1

g1

∫ ∫ ∫

C2

ℜ
{(

x0 −Ψ2

)

z∗
}

DyDzdFX(x)dFX0 (x0)

(4.5)

q1 + p1 =
1

g1

∫ ∫ ∫

C2

|Ψ2|
2DyDzdFX(x)dFX0 (x0) (4.6)

It is possible to simplify these results further and give numerical results.
But this is deferred for further work. We expect that the free energy from The
RSB ansatz to be greater than the free energy from the RS ansatz for the Zero-
Norm regularizing, which can be seen from the analytical terms which have more
parameters in (3.41). However, for LASSO these free energy, hence the energy
error, will be quite similar since for convex minimization problems there is one
global minimum and RS ansats is sufficient enough to produce the solution.
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5 Conclusion

In this paper we have used the replica method to analyze the performance of
the estimators used in compressed sensing which can be generalized as MAP
estimators. And the performance of MAP estimators can well be shown using
replica method including one-step replica breaking ansatz. It is a philosophical
standpoint that 1RSB enough to analyze the estimators like MAP. We have only
showed here for one particular example for the CS problem, i.e. for Bernoulli-
Gaussian distribution. One may be interested to verify it using different ex-
amples. In addition we have only compared the estimators performance based
on the free energy, but one can also use other metrics such as comparing the
input/out put distribution using replica analysis as it is done in [29]. The main
result of this paper is analytical analysis for the performance of the estimators
used in CS and many things can be extended including efficient algorithms in
implementing the numerical analysis.
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A Important Definitions

A.1 Green’s function

In Classical probability theory (CPT) one is concerned with the densities, mo-
ments and comulants of elements of random matrices. Where as in Random ma-
trix theory (RMT) also called (Free Random Variable calculus), one is engaed
in finding the spectral densities, moments and cumilants ( By Professor Maciej
A. Novak). As Fourier transfom is the generating function for the moments
in CPT, Green’s function ( also called Stieltjes transform) is the generating
function for the spectral moments defined as

G(z) ≡
1

N
〈Tr

1

z1N −X
〉 ≡

∫
ρ(λ)

z − λ
dλ ≡

∞∑

n=0

1

zn+1
Mn, (A.1)

where X is N × N random matrix and 1N is of the same size unit matrix, λ
are the eigenvalues, and Mn is the spectral moment. The integral is over the
support set of the eigenvalues.

A.2 R-transform

The generating function for the cumulants of the CPT is given by the logarithm
of the Fourier transfom. In similar maner to the above section we can define
the generating function for spectral cumulants. It is called the R-transform
(Voiculescu,1986). It is given by

R(z) ≡
∞∑

n=1

Cnz
n−1, (A.2)
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where Cn are the spectral cumulants of the random matrix X. We can relate
R-transform with Greens’s function as follows:

G(R(z) +
1

z
) = z or R(G(z)) +

1

G(z)
= z. (A.3)

The spectral density of the matrix J = ATA converges almost surely to the
Marchenko-Pastur law as M = αN → ∞ [27]. And the R-transform of this
matrix is given by

R(z) =
1

1− αz
(A.4)

and its derivative with respect to z becomes

R′(z) =
α

(1− αz)2
, (A.5)

where α = N/M is system load.

B Proof of propostion 1

The avarage energy penality can be derived from the average free energy given
in (3.15)

Ē = lim
β→∞

1

β
F̄ = − lim

β→∞

1

β
lim

N→∞

1

N
E

n,R
{log Z}

= − lim
β→∞

1

β
lim
n→0

∂

∂n
lim

N→∞

1

N
log E

n,J
{(Z)n}

︸ ︷︷ ︸

Ξn

. (B.1)

where Ξn is given by (3.18). Using (3.19) as the splitting of the space, we get

Ξn = lim
N→∞

1

N
log

∫

R(n+1)2
eNLeNI{Q}e−NG{Q}DQ (B.2)

where

DQ =
n∏

a=0

dQaa

n∏

b=a+1

dQab (B.3)

is the integration measure,

G(Q) =

n∑

a=0

∫ βγ

σ2
u
λa(Q)

0

R(−w)dw (B.4)

= Tr

∫ βγ

σ2
u
Q

0

R(−w)dw (B.5)

=

∫ βγ

σ2
u

0

Tr[QR(−wQ)]dw (B.6)

L = −
βγ

2N

n∑

a=0

f(xa) and (B.7)

16



eNI{Q} =
∑

{xa}

n∏

a=0

δ
(
(x0−xa)T (x0−xa)−NQaa)

)
n∏

b=a+1

δ
(
(x0−xa)T (x0−xb)−NQab

)

(B.8)
denotes probability weight of the subshell composed of Dirac-functions in the
real line. This procedure is a change of integration variables in multiple di-
mensions where the integration of an exponential function over the replicas has
been replaced by integration over the variables Q. To evaluate eNCeNI{Q} we
follow [12], [29] and represent the Dirac measure using the Fourier transform as

δ
(

(x0−xb)T (x0−xa)−NQab

)

=

∫

J

e
Q̃ab

(

(x0−xb)T (x0−xa)−NQab

)

dQ̃ab

2π
, (B.9)

where a, b = 0, 1, · · · , n and this gives

eNLeNI{Q} =
∑

{xa}

∫

Jn2
e

∑

a,b

Q̃ab

(

(x0−xb)T (x0−xa)−NQab

)

e
−βγ

σ2
u

n∑

a=1
f(xa)

D̃Q̃

=

∫

Jn2
e−NTr(Q̃Q)

(
∑

{xa}

e

∑

a,b

Q̃ab(x
0−xb)T (x0−xa)

e
−βγ

σ2
u

n∑

a=1
f(xa)

)

D̃Q̃

(B.10)

where

D̃Q̃ =

n∏

a=0

(

dQ̃aa

2π

n∏

b=a+1

dQ̃ab

2π

)

(B.11)

Assuming f(xa) = ‖xa‖1 =
N∑

i=1

|xa
i | , which is the sparsity enforcer as described

above in LASSO estimator, and after doing some rearrangements, the inner
expectation of (B.10) can be given by

∑

{xa}

e

∑

a,b

Q̃ab(x
0−xb)T (x0−xa)

e
−βγ

σ2
u

n∑

a=1
f(xa)

=

N∏

i=1

∑

{xa
i ∈χ}

e
(
∑

a,b

Q̃ab(x
0
i−xb

i )
T (x0

i−xa
i ))−

βγ

σ2
u

n∑

a=1
|xa

i |

(B.12)

Now defining

Mi(Q̃) =
∑

{xa
i ∈χ}

e

(∑

a,b

Q̃ab(x
0
i−xb

i )
T (x0

i−xa
i )
)
− βγ

σ2
u

n∑

a=1
|xa

i |

(B.13)

we can get

eNLeNI{Q} =

∫

Jn2
e
−NTr(Q̃Q)+

N∑

i=1

logMi(Q̃)
D̃Q̃. (B.14)
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Following the i.i.d. assumption for the component of the sparse vector x, and
applying the strong law of large numbers as N → ∞ we get

logM(Q̃) =
1

N

N∑

i=1

logMi(Q̃)

→

∫

log
∑

{xa∈χ}

e

∑

a,b

Q̃ab(x
0−xb)T (x0−xa)− βγ

σ2
u

n∑

a=1
|xa| n∏

a=0

dFX(xa)

=

∫

log
∑

{x∈χn}

e
(x01−x̃)T Q̃(x01−x̃)− βγ

σ2
u
x̃

n∏

a=0

dFX0(x0) (B.15)

where, x̃ is vector of dimention n. Next we apply the saddle point integration
concept on the remaining part of (B.2), i.e., as N → ∞ the integrand will be
dominated by the exponential term with maximal exponent. Hence in (B.2) only
the subshell that corresponds to this extremal value of the correlation between
the vectors {xa} is relevant for the calculation of the integral.

∫

Rn2
eNLeNI{Q}e−NG(Q)DQ

=

∫

Rn2

(
∫

Jn2
e
−NTr(Q̃Q)+

N∑

i=1
logMi(Q̃)

D̃Q̃

)

e−NG{Q}DQ (B.16)

Therefore, at the saddle point we have the following equations with partial
derivatives being zero (see the proof in Appendix B of [29]):

∂

∂Q

[

G(Q) + Tr(Q̃Q)
]

= 0 and (B.17)

∂

∂Q̃

[

logM(Q̃)− Tr(Q̃Q)
]

= 0. (B.18)

And from the former we get

Q̃ = βR(−
βγ

σ2
u

Q) (B.19)

and from the later, using (B.15) we finally get

Q =

∫ ∑

{x̃∈χn}
(x01−x̃)(x01−x̃)T e

(x01−x̃)T Q̃(x01−x̃)−
βγ

σ2
u

n∑

a=1
|xa|

∑

{x̃∈χn}
e

(x01−x̃)T Q̃(x01−x̃)−
βγ

σ2
u

n∑

a=1
|xa|

dFX0(x
0) (B.20)

C Proof of propostion 2

Taking the same line of taught as we do for Q, we can assume a natural repli-
cated variables for the symmetric correlation matrix Q̃ and the 1RSB as follows:

1. replica symmetry ansatz :

Q̃ =
β2f2

0

2
1n×n − βe0In×n (C.1)
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2. one replica symmetry breaking ansatz :

Q̃ = β2f2
11n×n + β2g21Inβ

µ1
×nβ

µ1

⊗ 1µ1
β

×
µ1
β
− βe1In×n (C.2)

The variables q0, b0, q1, p1,b1, f0,e0,f1,g1,e1, and µ1 are called the macroscopic
variables and they are all functions of n. They all can be calculated from the
saddel point equations that we shortly will derive. First let us try to prove
propostion 2 using the ansatz in (3.22) and (C.1). We do it using equations
(B.1), (C.3) and (B.16) and we apply the saddelpoint integration rule. What
matters most becomes the argument of the exponential in (B.16). So we first
find Tr(Q̃Q), G(Q), logM(Q) and in addition we will find the macroscopic
parametrs mentioned before since our limiting energy penality expressions for
the different estimators considered in this paper are calculated interms of the
macroscopic variables. Hence using (3.22) and (C.1) we get

Tr(Q̃Q) = n(q0 +
b0
β
)(
β2f2

0

2
− βe0) +

n(n− 1)

2
q0β

2f2
0 (C.3)

and using (B.13) and (C.1) again we get

Mi(Q̃) =
∑

{xa
i ∈χ}

e

(
∑

a,b

Q̃ab(x
0
i−xb

i )(x
0
i−xa

i )

)

− βγ

σ2
u

n∑

a=1
|xa

i |

(C.4)

=
∑

{xa
i ∈χ}

e

β2f2
0

2

(
n∑

a=1
(x0

i−xa
i )

)2

−e0β
n∑

a=1
(x0

i−xa
i )

2− βγ

σ2
u

n∑

a=1
|xa

i |
(C.5)

=
∑

{xa
i ∈χ}

∫

R

e
β

n∑

a=1
f0ℜ{(x0−xa

i )z
∗}−e0(x

0
i−xa

i )
2− γ

σ2
u
|xa

i |
Dz (C.6)

=

∫
(
∑

{x∈χ}

e
βf0ℜ{(x0−xa

i )z
∗}+e0β(x

0−x)2− βγ

σ2
u
|x|

)n

Dz. (C.7)

From (B.4) to (B.7) we apply completing the square on the exponential of the
argument and the Hubbard-Stratonovich transform,

e|x|
2

=

∫

C

e2ℜ{xz∗}Dz, (C.8)

where Dz is Gaussian measure defined as before, to linearize the exponential
argument. And we finally transformed the problem to a singele integral and a
single summation problem. To evaluate G(Q) we should first find the eigenvalues
of the matrix L(n). Under the RS ansatz the matrix L(n) has three types of
eigenvalues: λ1 = −(σ2

u + nσ2
0)

−1(b0 + nβq0), λ2 = −(σ2
u)

−1b0 and λ3 = 0, and
the numbers of degeneracy for each are 1, n-1, and N-n, respectively.Thus we
get

G(Q) =

∫ (b0+nβq0)

σ2
u+nσ2

0

0

R(−w)dw + (n− 1)

∫ b0
σ2
u

0

R(−w)dw (C.9)

The integral in (B.16) is dominated by the maximum argument of the exponen-
tial function. Therefore, the derivative of

G(Q) + Tr(Q̃Q) (C.10)
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with respect to q0 and b0 must vanish as N → ∞. Plugging (C.3) and (C.9)
into (C.10) and taking the partial derivatives we get

βn

σ2
u + nσ2

0

R
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)

+
n(n− 1)

2
β2f2

0 + nβ(
βf2

0

2
− e0) = 0 (C.11)

1

σ2
u + nσ2

0

R
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)

+
1

σ2
u

(n− 1)R
(−b0
σ2
u

)

+ n(
βf2

0

2
− e0) = 0, (C.12)

respectively. After algebraic simplification and solving for e0 and f0 we get

e0 =
1

σ2
u

R
(−b0
σ2
u

)

, (C.13)

f0 =

√
√
√
√ 2

nβ

[

1

σ2
u

R
(−b0
σ2
u

)

−
1

σ2
u + nσ2

0

R
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)
]

. (C.14)

and with the limit for n → 0

f0
n→0
−→

√
√
√
√ 2

β

[

σ2
0

σ4
u

R
(−b0
σ2
u

)

+
βq0σ2

u + b0σ2
0

σ6
u

R′
(−b0
σ2
u

)
]

. (C.15)

By substituting (C.3) into (B.18) and doing the partial derivative of

logM(e0, f0)− Tr(Q̃Q)

=

∫

log
∑

{x̃∈χn}

e
(x01−x̃)T Q̃(x01−x̃)− βγ

σ2
u
x̃
dFX0 (x0)

−
(

n(q0 +
b0
β
)(
β2f2

0

2
− βe0) +

n(n− 1)

2
q0β

2f2
)

(C.16)

=

∫

log

∫
(
∑

{x∈χ}

e
βf0ℜ{(x0−xa

i )z
∗}+e0β(x

0−x)2− βγ

σ2
u
|x|

)n

DzdFX0(x0)

−
(

n(q0 +
b0
β
)(
β2f2

0

2
− βe0) +

n(n− 1)

2
q0β

2f2
0

)

, (C.17)

with respect to e0 and f0 and equating to zero we get,

q0 = −
b0
β

+

∫

R

∫

R

∑

{x∈χ}

(x0 − x)2ζ

∑

{x∈χ}

ζ
DzdFX0(x0) (C.18)

b0 = −βnq0 +
1

f0

∫

R

∫

R

∑

{x∈χ}

ℜ{(x0 − xa
i )z

∗}ζ

∑

{x∈χ}

ζ
DzdFX0(x0) (C.19)

where

ζ = e
βf0ℜ{(x0−xa

i )z
∗}+e0β(x

0−x)2− βγ

σ2
u
|x|
. (C.20)
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So collecting the macroscopic variables in (C.13), (C.14), (C.18) and (C.19) and
sending n → 0 we have

e0 =
1

σ2
u

R
( b0
σ2
u

)

(C.21)

f0
n→0
−→

√
√
√
√ 2

β

[

σ2
0

σ4
u

R
(−b0
σ2
u

)

+
βq0σ2

u + b0σ2
0

σ6
u

R′
(−b0
σ2
u

)
]

(C.22)

q0 = −
b0
β

+

∫

R

∫

R

∑

{x∈χ}

(x0 − x)2ζ

∑

{x∈χ}

ζ
DzdFX0(x0), (C.23)

b0
n→0
−→

1

f0

∫

R

∫

R

∑

{x∈χ}

ℜ{(x0 − x)z∗}ζ

∑

{x∈χ}

ζ
DzdFX0(x0). (C.24)

And the fixed point equations (C.22), (C.18) and (C.19) further can be simplified
via the saddle point integration rule in the limit β → ∞ as

f0 =

√

2
q0
σ4
u

R′
(−b0
σ2
u

)

(C.25)

q0 =

∫

R

∫

R

∣
∣
∣x0 − argmin

x∈χ

∣
∣
∣−zf0 + 2e0(x

0 − x)−
γ

σ2
u

∣
∣
∣

∣
∣
∣

2

DzdFX0(x0), (C.26)

b0 =
1

f0

∫

R

∫

R

ℜ

{

x0 − argmin
x∈χ

∣
∣
∣−zf0 + 2e0(x

0 − x)−
γ

σ2
u

∣
∣
∣z∗

}

DzdFX0(x0).

(C.27)

Putting together the results above we have

Ξn = I{Q}+ L− G(Q)

= −G(Q) + logM(Q̃)− Tr(Q̃Q)

= −

∫ (b0+nβq0)

σ2
u+nσ2

0

0

R(−w)dw − (n− 1)

∫ b0
σ2
u

0

R(−w)dw

+ logM(e0, f0)−
(

n(q0 +
b0
β
)(
β2f2

0

2
− βe0) +

n(n− 1)

2
q0β

2f2
0

)

, (C.28)

and the average free energy becomes

βF̄ = − lim
n→0

∂

∂n
lim

N→∞

1

N
log E

n,J
{(Z)n}

︸ ︷︷ ︸

Ξn

(C.29)

= lim
n→0

∂

∂n

{
∫ (b0+nβq0)

σ2
u+nσ2

0

0

R(−w)dw + (n− 1)

∫ b0
σ2
u

0

R(−w)dw
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− logM(e0, f0) +
(
n(q0 +

b0
β
)(
β2f2

0

2
− βe0) +

n(n− 1)

2
q0β

2f2
0

)

}

(C.30)

= lim
n→0

{
[−(b0 + nβq0)

σ2
u + nσ2

0

]

R
(−(b0 + nβq0)

σ2
u + nσ2

0

)

+
−(b0 + nβq0)

(σ2
u + nσ2

0)

[

−

(

βq0(σ
2
u + nσ2

0)− (b0 + nβq0)σ
2
0

)

(σ2
u + nσ2

0)
2

]

R′
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)

+

∫ b0
σ2
u

0

R(−w)dw −

∫

R

∫

R

ζn ln ζ

ζn
DzdFX0(x0)

}

(C.31)

=
−b0
σ2
u

R
(−b0
σ2
u

)

+
b0
(
βq0σ

2
u − b0σ

2
0

)

σ6
u

R′
(−b0
σ2
u

)

+

∫ b0
σ2
u

0

R(−w)dw −

∫

R

∫

R

ln ζDzdFX0(x0). (C.32)

Coming back to the main goal, the solution for the main unconstrained op-
timization problem (2.2) is given by the extremum of (3.5), it is calculated
through the free energy by sending β → ∞ as follows

Ē lassors = − lim
β→∞

1

β
lim
n→0

∂

∂n
Ξn (C.33)

= lim
β→∞

1

β

{

−b0
σ2
u

R
(−b0
σ2
u

)

+
b0
(
βq0σ

2
u − b0σ

2
0

)

σ6
u

R′
(−b0
σ2
u

)

+

∫ b0
σ2
u

0

R(−w)dw

−

∫

R

∫

R

ln ζDzdFX0(x0)

}

(C.34)

= lim
β→∞

R
(−b0
σ2
u

)( q0
σ2
u

+
b0
βσ2

u

)

+
b0q0
σ4
u

R′
(−b0
σ2
u

)

(C.35)

− lim
β→∞

1

β

{
∫

R

∫

R

ln ζDzdFX0(x0)

}

(C.36)

=
q0
σ2
u

R
(−b0
σ2
u

)

−
b0q0
σ4
u

R′
(−b0
σ2
u

)

. (C.37)

This proves propostion 2. And to prove propostion ?? what we need is to use the
zero norm regularizing term instead of the L1 norm, i.e. using f(xa) = ‖xa‖0 =
k
N in (B.10), and the result will be as in (??) which differ from (3.30) through
the calculation of the macroscopic varables which depend on the distributions
of the components of x.

D Proof of propostion 3 and 4

Turning to LASSO estimator with RSB ansatz we first use (3.23) and (C.2) to
get

Tr(Q̃Q) = n(q1 + p1 +
b1
β
)(β2f2

1 + β2g21 − βe1) (D.1)
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+ n(
µ1

β
− 1)(q1 + p1)(β

2g21 + β2f2
1 ) + n(n−

µ1

β
)q1β

2f2
1 . (D.2)

To evaluate G(q1, p1, f1, µ1) we should first find the eigenvalues of the matrix
L(n). Under the RSB ansatz the matrix L(n) has four types of eigenvalues:
λ1 = −(σ2

u+nσ2
0)

−1(b1+µp1+βnq1), λ2 = −(σ2
u)

−1(b1+µp1), λ3 = −(σ2
u)

−1b1
and λ4 = 0, and the numbers of degeneracy for each are 1, nβ/µ− 1, n−nβ/µ,
and N − n, respectively. Hence

G(q1, p1, f1, µ1) =

∫ b1+µ1p1+βnq1
σ2
u+nσ2

0

0

R(−w)dw + (
nβ

µ1
− 1)

∫ b1+µ1p1
σ2
u

0

R(−w)dw

+ (n−
nβ

µ1
)

∫ b1
σ2
u

0

R(−w)dw (D.3)

Further with entries of Q̃ being RSB ansatz (B.15) will have more involved
terms than the RS ansatzs. i.e. ,

logM(q1, p1, f1, µ1)

=

∫

log
∑

{x̃∈χn}

e
(x01−x̃)T Q̃(x01−x̃)− βγ

σ2
u
x̃
dFX0(x0)

=

∫

log
∑

{x∈χn}

e
β2f2

1

∣
∣
∣

n∑
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(x0−xa)

∣
∣
∣

2

+β2g2
1

nβ
µ

−1
∑

l=0

∣
∣
∣

µ
β∑

a=1
(x0−x

a+
lµ1
β

)

∣
∣
∣

2

−βe1
n∑

a=1
(x0−xa)

2− βγ

σ2
u

n∑

a=1
|xa

i |

· dFx0(x0). (D.4)

Using the Hubbard-Stratonovich transform (C.8) we can express (D.4) as in (c.f.
[ [27] , (66)- (70)] ) as follows

logM(q1, p1, f1, µ1)

=

∫

log
∑

{x∈χn}

∫

C

e

n∑

a=1

[
2βf1ℜ{(x0−xa)z

∗}−βe1|(x
0−xa)|

2− βγ

σ2
u
|xa

i |
]
+β2g2

1

nβ
µ

−1
∑

l=0

∣
∣

µ
β∑

a=1
(x0−x

a+
lµ1
β

)
∣
∣
2

·DzdFX0(x0)

=

∫

log

∫

C

[
∫

C

(
∑

{x∈χ}

K( x, y, z)

)µ1
β

Dy

]nβ
µ1

DzdFX0(x0) (D.5)

where

K( x, y, z) = e
2βℜ{(x0−x)(f1z

∗+g1y
∗)}−βe1|(x

0−x)|2− βγ

σ2
u
|x|
. (D.6)

Due to (B.17) the partial dervative of

G(q1, p1, f1, µ1) + Tr(Q̃Q) (D.7)

with respect to the macroscopic variables q1, p1, and b1 vanishes as N → ∞
by definition of the sadel point approximation. And pluging (D.3) and (??) in
(D.7) and calculating the partial derivatives and seting them to zero and after
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some algebraic manipulation we get the folowing set of equations

0 = n2β2f2
1 + nβµ1g

2
1 − nβe1 +

nβ

σ2
u + nσ2

0

R(
−b1 − µ1p1 − βnq1

σ2
u + nσ2

0

) (D.8)

0 = nβµ1b
2
1 + nβµ1g

2
1 − nβe1 +

(nβ − µ1)

σ2
u

R(
−b1 − µ1p1

σ2
u

)

+
µ1

σ2
u + nσ2

0

R(
−b1 − µ1p1 − βnq1

σ2
u + nσ2

0

) (D.9)

0 = nβf2
1 + nβg21 − ne1 +

(n− nβ
µ1

)

σ2
u

R(
−b1
σ2
u

) +
(nβµ1

− 1)

σ2
u

R(
−b1 − µ1p1

σ2
u

)

(D.10)

+
1

σ2
u + nσ2

0

R(
−b1 − µ1p1 − βnq1

σ2
u + nσ2

0

). (D.11)

Solving for e1, g1, f1 we get

e1 =
1

σ2
u

R(
−b1
σ2
u

), (D.12)

g1 =

√
√
√
√

1

µ1

[

1

σ2
u

R(
−b1
σ2
u

)−
1

σ2
u

R(
−b1 − µ1p1

σ2
u

)

]

, (D.13)

f1 =

√
√
√
√ 1

nβ

[

1

σ2
u

R(
−b1 − µ1p1

σ2
u

)−
1

σ2
u + nσ2

0

R(
−b1 − µ1p1 − nβq1

σ2
u + nσ2

0

)

]

, (D.14)

and further with the limits n → 0

f1
n→0
−→

√
√
√
√ 1

β

[

σ2
0

σ4
u

R(
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u
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(D.15)

and as β → ∞ we can simplify it further as

f1
n→0
−→

√

q1
σ4
u

R′(
−b1 − µ1p1

σ2
u

). (D.16)

Also due to (B.18) the partial derivatives of

logM(q1, p1, f1, µ1)− Tr(Q̃Q)

with respect to f1, g1, and e1, must also vanish as N → ∞. This produces the
following set of equations while taking n → 0.

b1 + p1µ1 =
1

f1

∫ ∫

C2

(
∑

x∈χK( x, y, z)
)µ1

β
−1

∫

C

(
∑
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β

Dỹ

·
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(D.17)
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b1 + (q1 + p1)µ1 =
1
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q1 + p1 = −
b1
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+
1

g1
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In addition when we take the partial derivative of

G(q1, p1, f1, µ1) + Tr(Q̃Q)− logM(q1, p1, f1, µ1) (D.20)

with respect of µ1 is vanishes and yields at the limit as n → 0

0 =
1

µ2
1

∫ b1+µ1p1
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So as β → ∞ these fixed point equations can be simplified as follows:

b1 + p1µ1 =
1

f1

∫ ∫

C2

ℜ
{(

x0 − Ψ2

)

z∗
}

DyDzdFX0(x0) (D.22)

b1 + (q1 + p1)µ1 =
1

g1

∫ ∫

C2

ℜ
{(

x0 −Ψ2

)

y∗
}

DyDzdFX0(x0) (D.23)

q1 + p1 =
1

g1

∫ ∫

C2

|Ψ2|
2DyDzdFX0(x0) (D.24)

where

Ψ2 = argmin
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∣
∣
∣2ℜ{(x0 − x)(f1z

∗ + g1y
∗)} − e1|(x

0 − x)|2 −
γ

σ2
u

|x|
∣
∣
∣
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Puting together the results again as in (C.28) and doing again the steps (B.34)
to (B.38) for the RSB case

Ē lasso1rsb = − lim
β→∞

1

β
lim
n→0

∂

∂n
Ξn (D.25)
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β→∞
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β
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