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Abstract—Most systems for pedestrian localization and self-
tracking aim to measure the precise position of the walker and
match it against a map of the environment. In some cases, a
simpler topological description of the path taken may suffice.
This is the case for the system described in this paper, which is
designed to help a blind person re-trace the route taken inside a
building and to walk safely back to the starting point. We present
two turn detection algorithms based on hidden Markov models
(HMM), which process inertial data collected by an iPhone kept
in the walker’s front pocket, without the need for a map of
the environment. Quantitative results show the robustness of
the proposed turn detectors even in the case of drift in the
measurements and noticeable body sway during gait.

I. INTRODUCTION

Pedestrian localization and self-tracking applications, both
for indoors and outdoors, have become commonplace, enabled
by the widespread diffusion of smartphones equipped with
multiple sensors. Outdoor localization is normally obtained
through GPS fixes, while indoor positioning typically com-
bines beaconing from radio sources (Wi-Fi or low-power
Bluetooth) with dead-reckoning from inertial sensors. While
all pedestrians may benefit from these systems, they have
tremendous potential to enable wayfinding and safe naviga-
tion by people with visual impairments or blindness. Indeed,
accessible GPS apps specifically designed for blind persons
have been on the market for years, and different types of indoor
navigation systems are currently being evaluated.

These self-localization systems aim to measure the precise
position of the walker and match it against a map of the
environment. In some cases, however, a simpler topological
description of the path taken may be sufficient to help a blind
person re-trace the route taken inside a building and to walk
safely back to the starting point. A similar system could be
useful in multiple situations. Consider for example the case
of a blind individual going to a doctor’s visit. A sighted
receptionist accompanies her from the waiting room to the
doctor’s office, located two corridors down. The blind patient’s
smartphone, which she keeps in her pocket, runs an algorithm
to detect and record the sequence of turns taken along the route
to the doctor’s office, together with the approximate number
of steps between turns. After the visit, if no one is available to
help, the blind patient consults her smartphone, which reads to
her the list of turns taken in reverse order via synthetic speech,
allowing her to safely trace her way back to the waiting room.
A similar system could also be useful to a blind employee who
just started working in an office building he is not familiar
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Fig. 1. (a): A floor plan with a path traversed by a walker. (b): The azimuth
time series, collected by an iPhone 4 kept in the walker’s front pocket. Drift
and oscillation due to body sway are apparent. (c) Turns detected by our
system. In this and subsequent figures, the white arrows represent turns (the
direction and length indicating the turn angle), while the thick grey line
represent the drift tracked by our system. The measured data is plotted in
different colors, depending on the discrete heading direction as estimated by
the system.

with. During orientation, the new employee could use this app
to record the routes from his cubicle to key locations (such
as the bathroom or the kitchenette), which he can use at a
later time for reference until he familiarizes himself with the
building.

The advantages of using such a simplified route repre-
sentation (expressed in terms of turns and step counts) is



that it can be obtained without any prior knowledge of the
building’s floor plan or WiFi footprints, and without the need
for wearable sensors (such as sole-mounted IMUs). Upon
arrival at a building, a blind user can simply start the app, walk
through a path while keeping the smartphone comfortably in
his or her pocket, and stop the application at the end. Since
the vast majority of buildings have corridors or pathways that
intersect at 90◦ or 45◦, only a small discrete set of turn angles
needs to be considered.

At first sight, it may seem that detecting turns should
be quite easy to do, based on the azimuth data measured
by the compass or the gyroscope embedded in the phone.
In fact, robust turn detection over extended paths requires
careful processing of inertial data. Body sway during gait
determines noticeable oscillations of the measured azimuth
angle (especially when the smartphone is kept in one’s pocket),
and drift (error accumulation through time) is unavoidable over
long hauls. Both these effects are visible in Fig. 1.

In this contribution we introduce two algorithms for the
robust detection of turns taken by a walker. Our system runs
as an iPhone app, and uses attitude data that is produced by the
Core Motion Framework in iOS. Both algorithms are based on
hidden Markov model (HMM) modeling of the measurements.
The difference between the two algorithms is in the HMM state
representation. In the first algorithm, states represent discrete
azimuth angles; in this case, the algorithm could be seen as
a robust denoising and quantization technique. This approach
is quite straightforward and works well for short paths, but is
liable to fail in the case of drift. The second algorithm defines
“turns” (transitions between discrete azimuth orientations) as
states. By doing so, it allows one to explicitly model drift,
through the use of two “drift increment” auxiliary states.

This contribution is organized as follows. After the related
work presented in the next section, we describe our two
algorithms in Sec. III. The algorithms are then evaluated in
Sec. IV, both quantitatively over labeled data taken multiple
indoor and outdoor paths, and qualitatively with data from two
blind participants who tested the system indoors. Sec. V has
the conclusions and indications for future research.

II. RELATED WORK

Positioning systems for indoor human navigation have
received increasing attention in recent years, and we refer
the reader to the several survey articles available [1], [2],
[3]. For what concerns blind pedestrians, a few accessible
positioning systems are already available available on the
market, including accessible GPS (e.g. the Seeing Eye GPS
from Sendero Group) [4] and Wi-Fi positioning (e.g. the
AXS system by EO Guidage1. A localization system for blind
travelers developed by indoo.rs2 and based on iBeacons (low
power Bluetooth) is being tested at San Francisco Airport at the
time of this writing. Promising results have also been obtained
using a magnetic localization sensor [5].

Dead reckoning based on inertial data allows for position-
ing without reference to a WiFi network, but is notoriously
liable to drift. Good results have been obtained by placing an

1http://eo-guidage.com/eng
2http://indoo.rs

IMU system at a walker’s shoe, and exploiting the so-called
“zero-velocity updates”, which rely on the fact that when the
ambulatory motion of the leg switches from swing to stance,
the tracked linear velocity can be safely set to zero, since
the foot is normally considered to be static during the stance
phase [6], [7]. However, carrying an IMU sensor in one’s shoe
is impractical (although things may change given the recent
emphasis on wearable sensors; already mainstream brands such
as Adidas and Nike sell shoes with simple embedded sensors).
In order to reduce drift, one may rely on the user to signal
when a specific landmark has been reached [8], or reset the
system when a turn has been detected [9]. The use of inertial
sensors to help a blind person walk straight (without veering)
has also been proposed [10].

Finally, we should mention that a different HMM-based
algorithm for localization was described in [11]. However, the
state representation of this previous system includes spatial
locations, whereas our model only represents orientations or
turns.

III. TURN DETECTION USING HMM

Our algorithms use azimuth data produced by the
phone’s sensors. In our iPhone implementation, we use the
CMAttitude object, a property of the CMMotionManager
class defined in iOS’ Core Motion Framework. CMAttitude
provides the device’s attitude with respect to a fixed reference
system, using a proprietary data fusion algorithm processing
data from the accelerometer, the gyroscope, and the compass
in the device. We don’t require any particular placement of the
phone (in all our experiments, the phone was kept inside a front
pocket of the walker’s pants) but assume that the location and
orientation of the phone with respect to the the walker’s body
does not change while walking. The phone’s attitude at the
time the system is started represents the frame of reference for
all subsequent measurements. In our experiments, we started
the app by pressing a switch in a earphone wire connected to
the iPhone, which was already positioned in the users’ pocket.

The azimuth angle with respect to a fixed
orientation can be obtained by using a reference
frame with one axis aligned with gravity (e.g.
CMAttitudeReferenceFrameXArbitraryZVertical
in the Core Motion Framework). Another possibility (which
can be used without access to the accelerometer) is to apply
PCA to the time series of the Euler angles representing the
attitude (suitably unwrapped); the largest principal component
(characterized by the largest variance) normally corresponds
to the azimuth angle. We have used both system in our
implementation, with good success.

In very simple cases, turn detection could be implemented
by simply thresholding the computed azimuth angle. For
example, if the current measured orientation is 15◦, and after a
while it becomes 100◦, we could conclude that a 90◦ turn took
place (remember that we are constraining turns to be multiple
of 90◦ or 45◦). However, thresholding the measured azimuth
would result in gross errors if the reference frame is not well
aligned with the main corridor axes in the building (note that
the reference frame normally depends on the orientation of the
device when the app was started). Another simple turn detector
could be based on the analysis of large azimuth variations,



for example by computing and thresholding the derivative of
the attitude angle over a suitable time scale. Being differential
in nature, this method is independent of the chosen reference
frame.

An example of azimuth time series is shown in Fig. 1,
along with the path overimposed on a floor plan. Four 90◦ turns
(right, right, left, right) were taken. The oscillatory character
of the data, due to the walker’s gait, is apparent. In addition,
the data has a very noticeable drift. It should be clear that
the naive methods discussed above (thresholding the azimuth
data or its derivative) would likely fail here. Drift makes it
difficult or impossible to select good thresholds on the azimuth,
and thresholding the time derivative of the azimuth data may
result in multiple spurious detections due to the gait-induced
oscillations. This could be mitigated by smoothing the data
with a low-pass filter before derivative computation. However,
choosing the correct scale for the smoother is challenging:
residual oscillations may cause undesired detections, while
oversmoothed transitions may be missed.

Our proposed turn detector models the azimuth time series
as a hidden Markov model (HMM). We will actually consider
two different HMMs representations. The first one is simpler,
but cannot deal with large drift. The second one is designed
to also model drifts, but requires a modification of the classic
Viterbi algorithm.

We will use the following notation for both algorithms.
The measured azimuth value at time t will be denoted by ot,
and the sequence of measurements from time 0 to t will be
denoted by o0:t. We assume that time periods t take on integer
values between 0 and T . Each time instant is endowed with a
state st, a random variable that takes values in a set S. The
event “st is equal to the n-th element in S” will be denoted
by sti. In our discussion, we will always assume that azimuth
data has been unwrapped using any standard method.

A. HMM Turn Detection – Algorithm 1

In this case, S is formed by a fixed set of azimuth values:
S = {0◦ ±90◦, 180◦}. If diagonal corridors are expected, then
the set is augmented with the angles {±45◦,±135◦}. Thus, a
state represent a quantized version of the heading direction,
under the assumption that the reference frame is aligned with
the main corridor directions. In our HMM modeling, the time
series of states st is assumed to form a Markov chain, while the
observations ot are simply noisy measurements of the states:

ot = st + nt (1)

where nt is white Gaussian noise. The Markov chain models
the correlation between consecutive samples of heading angle,
while the noise models short-term azimuth variations due to
body sway. Estimation of the HMM parameters (transition
probabilities P (st|st−1) and noise variance) is discussed later
in Sec.IV-C. The Viterbi algorithm computes the sequence
of states s0:T (Viterbi path) that maximizes the posterior
probability P (s0:T |o0:T ). The complexity of the algorithm is
T · ‖S‖2, which, given the limited number of states in our
system, is quite manageable. “Turns” are defined as switches
from one state to another state. It’s worth emphasizing that
our approach is very different from simple quantization of
the observations into values of S, possibly after smoothing

the data: this simple procedure would take decisions based on
local observations, while the Viterbi path of states is computed
from global analysis of the data.

There are two main problems with this HMM represen-
tation. The first problem is that the reference frame is not,
in general, aligned with the principal corridor directions. In
practice, this means that Eq. (1) should be changed into

ot = st + nt + θ0 (2)

where θ0 is a constant but unknown azimuth offset. In order
to estimate the offset θ0, we proceed as follows. Given the
sequence of measurements o0:T , we run the Viterbi algorithm
multiple times on the “biased” measurements o0:T +θ0n, where
θ0n is a set of fixed bias samples. For example, one could
sample values of θ0 uniformly within a certain interval (e.g.
[−45◦, 45◦]). Then, the bias θ0n that results in the highest
likelihood P (o0:T |s0:T ) for the Viterbi path s0:T is chosen,
and the associated Viterbi path is produced in output.

The second problem with this approach is that drift is not
modeled, as states represent fixed azimuth values. A possible
solution could be to directly include drift in the state. Let Dt

be the drift at time t. Eq. (1) can be modified as follows to
account for drift:

ot = st + nt +Dt (3)

One could sample the set of possible drift values, and create
new states that include drift. More specifically, if {si} = S are
the original states, and {Dn} is the set of sampled drifts, one
could consider an expanded states set S̄ = {si + Dn} for all
states si and drifts Dn. (Care should be taken when defining
the transition probabilities on the Markov chains on the new
states set S̄. Considering that drift is slowly changing, the
transition probability P (si + Dn|sj + Dm) (which involves
a change in drift value) should be smaller than the original
transition probability P (si|sj).) The main problem with this
approach is that it increases the number of states by a factor
equal to the number ND of drift samples considered. Conse-
quently, the complexity of the Viterbi algorithm increases by
a factor ofN2

D. For this reason, we haven’t implemented this
variant, and instead devised a new model as described next.

B. HMM Turn Detection – Algorithm 2

In order to explicitly account for drift, we devised a
different HMM model for the observed data. In this model,
states represent not the azimuth angle, but rather the switch
between two discrete azimuth angles. Similarly to the previous
case, the state set S contains 0◦ (indicated by s0), ±90◦, and
180◦. If diagonal corridors are expected, it also contains ±45◦

and ±135◦. However, rather than the actual azimuth, these
states represent the difference between the discrete orientation
at time t and at time t − 1. In addition, S contains two drift
increment states, d and −d. These states represent differences
between the azimuth at time t and t − 1 due solely to drift.
A sequence of “differential” states s0:t represents the azimuth
angle θt as follows:

θt = θ0 +

t∑
τ=0

sτ (4)



t-1 t t+1
Fig. 2. The graph of the states {stn} used in Algorithm 2. The algorithm
produces a directed path from this graph. The first node in each column
represents the state s0.

The measurement ot is thus modeled as a noisy version of this
“discrete ” azimuth angle θt:

ot = θt + nt (5)

Since two consecutive turns are not physically possible given
the fast measurement rate, the transition probability P (sti|s

t−1
j )

between two “differential” states is set to 0 unless j=0. In other
words, after a turn, it is assumed that the discrete azimuth θ
remains the same for at least one sample more. We make the
same assumption for the drift increment state: there cannot
be two consecutive drift increments. This also means that
P (st0|st−1

i ) = 1 for i 6= 0. This particular form of the
transition probabilities translates into a specific form of the
state graphs through time, as shown in Fig. 2. This oriented
graph represents the possible state paths that can be generated
by the model. While this graph would be fully connected
with standard HMM, this is not the case under the constraints
described above.

This HMM model, however, has an intrinsic problem: the
emission probabilities P (ot|st) are uninformative. In other
words, knowledge of a state at a particular time tells very
little (or nothing) about the measured azimuth. Indeed, the
measurement on is a noisy version of the azimuth θt (Eq.
(5)), the latter being a function of all previous states s0:t, not
just of st (Eq. (4)).

To overcome this problem, one may reason as follows. Re-
call from basic theory [12] that the Viterbi algorithm computes
the following:

arg max
s0:t

P (s0:T |o0:T ) = arg max
s0:T

P (o0:T |s0:T )P (s0:T ) (6)

=

T∏
t=1

P (ot|st)P (st|st−1)P (o0|s0)P (s0)

under standard assumptions. The Viterbi algorithm computes
this maximization in a recursive form, by defining two func-
tions:

f t(st) = max
st−1

P (ot−1|st−1)P (st|st−1)f t−1(st−1) (7)

gt(st) = arg max
st−1

P (ot−1|st−1)P (st|st−1)f t−1(st−1)

where f0(s0) = P (s0). In practice, f t(st) represents the
“score” of the optimal path arriving at st, while gt(st) is the
state, at time t − 1, that precedes the state st in the optimal
path through st.

Our proposal is to substitute the uninformative emission
probability P (ot|stn) with the following:

P (ot|st, Rt(st)) (8)

where

Rt(st) = {gt(st), gt−1(gt(st)), . . . , g0(g1(. . . gt(st)))} (9)

Basically, we condition the observation ot not just on the state
st, but on the optimal path to st, computed based on the
measurements o0:t−1. To compute the value in (8), we can sum
together the values of the states in Rt(st) and of st, obtaining
an azimuth value θ̂t, and then compute P (ot|θ̂t) as by (5). In
practice, one needs to store at each node stn the sum of the
values in the sequence Rt(stn), which can be done recursively.

It is easy to see that the complexity of this algorithm, owing
to the special structure of the state graph shown in Fig. 2, is
linear in the number of states, rather than quadratical.

01#

Fig. 3. Examples of indoor paths from our collection.

1) Turn Clustering: When implementing our Algorithm 2
using a state set S that includes ±45◦ and ±135◦, we noticed
that turns by 90◦ were often detected as a close sequence
of turns by ±45◦, especially when the walker took the turn
slowly. We then decided to introduce a post-processing algo-
rithm that “clusters” together multiple turns detected within
an interval of 2 seconds. (This is reasonable since a walker
could hardly take two actual turns in such a short time span.)
A single turn is produced in lieu of the cluster, with a turn
angle equal to the sum of the turns in the cluster, timestamped
with the time of occurrence of the first turn in the cluster.
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IV. EXPERIMENTS

A. Data Sets

We took a series of measurements with an experimenter
walking on a number of different paths, both indoors (in three
different buildings in our campus) and outdoors. Data for 72
paths with multiple turns was collected, 31 of which were
used for training (to compute the transition probabilities as
well as the value of the drift increments d and of the associated
conditional probabilities). In addition, data was collected for 14
straight paths, in order to estimate the variance of the noise nt
due to body sway. The 41 “test” paths (on which the algorithms
were assessed) contained an average number of 5 left and 5
right turns each. 18 such path also contained 180◦ turns, while
4 of them contained 45◦ turns. The phone was kept in the
right front pocket of the experimenter’s pants. Azimuth data
was collected (along with timestamps) at a rate of 25 readings
per second.

This data was labeled with the time stamp and the angle
amount of each turn taken. Each time the experimenter took
a turn while collecting the data, he or she pressed a switch
on a earphone set connected to the iPhone, thus recording
the turn. The actual amount of turn angle was recorded after
completion of the path, by consulting the map on which the
path was traced. Fig. 3 shows two examples of paths taken in
two different buildings.

B. Assessment Metric

To assess the quality of the proposed algorithms, we need
to define a metric that compares the output of the turn detector
with the labeled data. One possibility could be to directly
compare the sequences of “turn” events in the two cases,
for example using a string matching algorithm. We chose a
different approach, which exploits the metric properties of the
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Fig. 5. Results on a path using Algorithm 2. (a) Only multiple of 90◦ turn
angles considered. (b) Multiple of 45◦ turn angles considered. (c) Same as (b),
with clustering postprocessing. (d) Same as (c), but without bias computation
(θ0 = 0◦).

(unwrapped) azimuth angle. Given the sequence of turns (from
the output of the algorithm or from the labeled data), we create
an “integral” azimuth time series by accumulating in time the
information from the turns. Formally, let (tn, hn) be the n-
th turn, where tn represents the time at which the turn took
place, and hn is the turn angle (e.g. −90◦). Then, the integrated



azimuth sequence is given by:

θt =
∑
n:tn≤t

hn (10)

Based on the integral azimuth sequences built from the labeled
data ({θtld}) and from the algorithm output ({θtout}), we define
a squared error as follows:

E2 =

T∑
t=0

(θtld − θtout)2/(T + 1) (11)

It is clear that if the two sequences of turns (ground truth
and estimated) coincide perfectly, then the error is 0. Small
differences in the time localization of the same turn will result
in small errors. However, if a turn is completely missed, or a
spurious turn is detected, the error may become quite large.

C. HMM Parameter Selection

The transition probabilities P (sti|s
t−1
j ) for Algorithm 1

were assigned based on the corresponding relative frequencies
computed in the 31 “training” sequences. In the case of
Algorithm 2, the relative frequencies are used for the non-
zero transition probabilities, but not for the transitions to the
drift increments state d (since no ground truth is available for
this). The variance of the noise n was assigned based on the
sample variance measured on the 14 straight paths. In order to
determine appropriate values for the drift increment d and its
associated transition probability P (dt|st−1

0 ), we adopted the
following strategy. We first created two sets of values ({dn},
{pn}) by uniformly sampling the interval of possible drift
increments [0◦, 0.57◦] with step of 0.0057◦, and the interval
of probability values [0, 1] with step of 0.01. For each pair
(dn, pm), we first assigned P (dt|st−1

0 ) = P (−dt|st−1
0 ) = pm,

normalized the set of non-zero transition probabilities to 1, and
computed the likelihood of the measurements P (o0:T |s0:T ) for
the Viterbi path. Note that this last step includes maximum
likelihood computation of the bias azimuth O described in
Sec. III-A. The pair (dn, pm) that maximized P (o0:T |s0:T )
was then used in our evaluations with the “test” sequences.

D. Results

Fig. 4 shows the cumulative distribution of the errors E,
defined in Eq. (11), over the test paths for Algorithm 1 and
Algorithm 2. For both algorithms, we tested the case with turns
taking values multiple of 45◦ or of 90◦ only. Additionally, for
Algorithm 2, we considered the clustering strategy described
in Sec. III-B1 for the 45◦ turn case. The best performing
system on our data is Algorithm 2 when only multiples of 90◦

are considered, followed by Algorithm 2 with turns multiples
of 45◦ and clustering. This result may be a consequence of
the paucity of 45◦ turns in our collected data. Algorithm 1
is shown to perform generally worse than Algorithm 2. For
comparison, we also show the error distribution using a turn
detector that simply quantizes (by rounding) the measured
azimuth to the closest multiple of 45◦ or 90◦. Quantization
to multiples of 45◦ produces large errors; quantization to
multiples of 90◦ gives results comparable to Algorithm 1 but
much worse than Algorithm 2 (when only multiples of 90◦ are
considered).
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Fig. 6. Examples of outdoor paths, processed by Algorithm 2 (multiple of
45◦ turn angles considered, clustering postprocessing).

Fig. 5 shows an example with a path processed by various
variants of Algorithm 2. Without the clustering mechanism
described in Sec. III-B1, 90◦ turns are almost always detected
as pairs of 45◦ (Fig. 5 (b)). This situation is corrected for
the most part by the clustering algorithm (Fig. 5 (c)). The
importance of the correct choice of “bias” θ0 via the method
discussed in Sec. III-A is highlighted by Fig. 5 (d), obtained
without bias computation (θ0 = 0◦). Note how, without bias
correction, multiple turns are incorrectly measured.

Fig. 6 shows three examples with outdoor paths (Algorithm
2, turns by multiple of 45◦, clustering). The long stretch with
very noticeable drift shown in Fig. 6 (a) is well tracked by
our system (note how the azimuth θ defined in (4), marked by
the thick grey line, precisely models the accumulated drift).
Fig. 6 (b) and (c) show example of turns by 45◦, which are
correctly detected by the algorithm.

Finally, in Fig. 7, we show an example of results with data
collected from two blind participants, who tested our system.
Since our algorithm is intended to support navigation without
sight, it is important that blind walkers be included in the
experiments. Although we have not yet run a formal evaluation
with a significant population of blind walkers, these initial
trials gave promising results. Both participants used a white
cane during data collection. As expected, the gait of blind
walkers is different from that of sighted walkers: they tend
to be more hesitant while moving forward (especially in areas
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Fig. 7. Examples with data collected by two blind walkers.

they are unfamiliar with), often veer in their path [10], and take
turns more slowly. Some of these characteristics are visible in
the plots of Fig. 7.

V. CONCLUSIONS AND FUTURE WORK

We have presented two different algorithms for detecting
turns taken by a pedestrian from data collected by an iPhone,
which can be conveniently kept in the user’s pocket. The
phone doesn’t need to be at a particular orientation, as long
as its orientation remains constant with respect to the user’s
body. One limitation of both algorithms is the assumption that
the person only takes turns at discrete angles, and thus this
approach is appropriate for building with with “standard” floor
plans, containing corridors that intersect at 90◦ or 45◦.

In future research we will address two main topics. First,
we will run extensive experiments with blind participants,
expanding the pilot results described in Sec.IV-D, in order
to understand what modifications (if any) are necessary for
correct tracking of the gait of blind walkers using a white cane.
Second, we will design a “safe return” system that will track
the user as he or she is tracing back a path taken previously.
This system will run an online version of our turn detector.
Based on the representation of the path in terms of turns and
number of steps counted between each turn, this system will be
able to assess the approximate location of the walker while he
or she is retracing the same path, and will provide directions
through synthetic speech as to when to expect a turn and which
direction to turn in.
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