
HAL Id: hal-03157806
https://hal.science/hal-03157806

Submitted on 3 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time trajectory scaling for robot manipulators
Marco Faroni, Roberto Pagani, Giovanni Legnani

To cite this version:
Marco Faroni, Roberto Pagani, Giovanni Legnani. Real-time trajectory scaling for robot manipula-
tors. 17th International Conference on Ubiquitous Robots (UR), Jun 2020, Kyoto (virtual), Japan.
�10.1109/UR49135.2020.9144889�. �hal-03157806�

https://hal.science/hal-03157806
https://hal.archives-ouvertes.fr

Real-time trajectory scaling for robot manipulators

Marco Faroni1, Roberto Pagani2, Giovanni Legnani2

1Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato
Consiglio Nazionale delle Ricerche – Milano, Italy

2Dipartimento di Ingegneria Meccanica e Industriale, University of Brescia – Brescia, Italy
Email: marco.faroni@stiima.cnr.it, r.pagani001@unibs.it, giovanni.legnani@unibs.it

Abstract— Recent developments in industrial robotics use
real-time trajectory modification to improve throughput and
safety in automatic processes. Online trajectory scaling is often
used to this purpose. In this paper, we propose a feedback
trajectory scaling approach that is able to recover from the
delay introduced by the speed modulation and improves the
path-following performance thanks to an additional inner
control loop. Simulation and experimental results on an
industrial 6-degree-of-freedom robot show the effectiveness of
the proposed approach compared to standard algorithms.

I. INTRODUCTION

Industrial robotics is facing many new challenges
nowadays. Most of times, robots needs to be endowed with
some degree of autonomy to adapt their behavior to the
state of the environment and other agents. It is the case, for
example, of Human Robot Collaboration (HRC) applications,
where the robot has to take into account the operator presence
to avoid/limit collisions, reduce interference, and maximize
the process throughput. HRC requires a change of paradigm
with respect to classic industrial robot applications: human-
robot interaction has to be considered at different levels
(safety, planning, control, scheduling, sociology) and an
integrated approach is necessary to deploy an effective HRC
framework. Among all the aforementioned aspects, it is
clear that a fundamental requirements for such dynamic
applications is the ability of the robot to change its motion at
runtime. Such ability is of great importance as it allows the
robot to react immediately to the current state of the other
agents (e.g., humans and other robots). This directly affects
the safety of the interaction but also the maximization of the
throughput, as an optimized motion re-planning might reduce
or avoid robot stops and overly conservative slowdowns.
Online modification of the robot motion can be performed
mainly in two different ways: by modifying the whole
trajectory that the robot has to follow, or by modifying only
the velocity profile but keeping the original path. The first
option is typically more complex as it requires to run path-
planning algorithms and to check for collisions at run-time.
The second option is often preferred because it only requires
to slow down the execution of the trajectory along the same
path. It therefore does not require to devise a new collision-
free path and it is way lighter from the computational point
of view.

Speed modulation is also more and more exploited to
ensure safety during human-robot interaction. In particular,
two of the four safety functions defined by the collaborative

robot safety standard ISO/TS 15066:2016 [1] (namely, speed
and separation monitoring and power force limitation) can be
implemented by means of the online reduction of the robot
speed according to the constraints defined by the standard.
Safety speed modulation has typically been addressed in
a static way. The workspace is divided in danger zones
based on a risk assessment analysis that considers the
reachability of the robot and the operator. Then, if an
operator enters the workspace, the robot is slowed down
according to the risk level of the zone accessed by the human.
However, such approach usually leads to overly conservative
slowdowns and stops of the robot, with consequent decay
of the process throughput and of the smoothness of the
collaboration. Recent approaches tend to modulate the robot
speed dynamically, based on the human-robot distance to
satisfy the minimum protective distance criterion or the
maximum impact force in an optimized manner [2], [3]. Such
approach might benefit from the use of optimized speed-
modulation algorithms that take into account also the robot
physical limits.

A. Related works

Recently, speed modulation algorithms for safe HRC
goes toward the use of online trajectory scaling methods
because the speed modulation can be optimized based
on the human-robot relative distance (and velocity). This
avoids overly conservative motion that would jeopardize
the fruitfulness of the HRC. Online trajectory scaling
methods deform the original timing law to satisfy the robot
constraints. From a practical perspective, the advantage of
online scaling is that the nominal motion can be devised
without rigorously taking the robot limits into account,
as the online algorithm will account for them at runtime.
The offline planning can be therefore made simpler and
less conservative, without compromising the quality of the
process. Trajectory scaling algorithms are usually based
upon the optimization of a performance criterion (e.g.,
minimum time), whereas physical and safety-related limits
are modeled as optimization constraints. The resulting
constrained optimization problem is then solved at each cycle
to find the new velocity profile to be given to the robot.
As a general approach, trajectory scaling algorithms exploit
the path-velocity decomposition of the task and they use the
parametrization variable of the path curve as an additional
degree of freedom to meet the robot constraints. The input
of the algorithm is the desired motion to be followed (in

the Cartesian or the joint space) and the output is the scaled
trajectory (typically the joint positions and velocities given
to the robot low-level controller).

Several approaches have been proposed in the literature,
including feedback techniques [4], [5], look-ahead methods
[6], [7], and methods specific for redundant robots [8], [9].
Safety-oriented applications for HRC were proposed in [10],
[11], [12]. All the aforementioned methods have pros and
cons:

• Feedback methods (also referred to as local), such as
[4], [5], [8], have low computational burdens, but they
do not take into account future information about the
tasks, the robot constraints, and possible predictions
of the environment/human states. This results in poor
solutions in terms of process throughput and quality
(i.e., the scaling are not able to avoid path deformation).

• Look-ahead/predictive techniques, such as [6], [7],
[9], give much better solutions, but have higher
computational burdens. In particular, they make use of
nonlinear and constrained mathematical programming.
To deal with sampling periods in the order of few
milliseconds, they use approximated solutions such
as linearization of constraints and cost functions, and
down-sampling. However, their implementation might
be troublesome on commercial hardware both from the
software and hardware point of view due to the lack of
advanced mathematical tools and limited computational
resources.

• All trajectory scaling methods slow down the nominal
trajectory when it is too demanding with respect to the
robot physical limits or when it would violate safety
or technological requirements. This results in a delay
with respect to the nominal task. In some cases, such
delay can be recovered by speeding up the remainder
of the task. However, most of the algorithms in the
literature do not show any delay-recovering feature,
except for [5] and [11]. Nonetheless, also in these cases,
the recovering of the delay might lead to jerky motion
and overshoots due to difficulties in the tuning phase.

B. Contribution

This paper presents an online trajectory scaling method
with the following novelties:

• It formulates a delay-recovering scheme as a standard
control loop that can be applied to any trajectory scaling
method as an outer control loop. It guarantees ease
of implementation, intuitive tuning and it allows using
common control strategies such as PID controllers to
improve the control performance.

• It implements an additional inner loop that smooths
steep changes of the scaled velocity profile. This
results in a dramatic improvement of the path-following
performance compared to standard feedback methods.

Moreover, the method is tested on an industrial robot and
its commercial controller (namely, the 6-axis robot Efort
model ER3A C-60 with controller Robox RP-1) to prove

the suitability of the approach on industrial equipment. The
experimental results show that the integration of scaling
methods in the existing control architecture can improve
the process throughput by reducing the cycle time without
worsening the quality of the task. Finally, results show that
the proposed scheme outperforms state-of-the-art feedback
techniques without increasing the computational burden.

II. PRELIMINARIES

A. Online trajectory scaling

Consider a curve xd in the Cartesian space, parametrized
with respect to the scalar variable γ such that:

xd : R→ R6, γ 7→ xd(γ). (1)

The trend of γ with respect to time defines the timing
law of the trajectory. Often, the timing law is given due
to technological requirements (for example, constant-speed
traits may be needed in the process), but it might be relaxed
to ensure safety or to preserve the quality of the process.

Feedback trajectory scaling algorithms allow the
relaxation of the timing law by using γ̇ as a control
variable. In particular, given a velocity profile γ̇ref and
denoting with q, q̇, and q̈ the robot joint configuration,
velocity, and acceleration vectors, the algorithm solves the
following control problem at each time instant t0:

minimize
q,v

∥∥∥xd(γ(t0))− f(q)∥∥∥2
Q
+
∥∥∥u(t0)− v ∥∥∥2

R
(2)

subject to γ̇ = v and the robot limitations, for example:

qmin ≤ q ≤ qmax (3)
−q̇max ≤ q̇ ≤ q̇max (4)
−q̈max ≤ q̈ ≤ q̈max (5)

where u = γ̇ref, f is the forward kinematic function of the
robot, Q and R are weighting matrices, ‖x‖2Q = xTQx,
qmin and qmax are the joint mechanical limits, q̇max is the
maximum joint velocity vector, and q̈max is the maximum
joint acceleration vector. Additional constraints can be added
to account for safety limits [10]. Notice that (2) only
concerns the trajectory and the robot state at time t0. A more
advanced approach would consider also the cost (2) and the
constraints (3) in the future instants, as in [6], [7], [9].

B. Issues and illustrative examples

Feedback trajectory scaling algorithms suffer from large
path deformation when the nominal timing law has steep
acceleration and deceleration profiles. The reason is that the
scaling takes action when the deceleration phase has already
begun and it is therefore too late to avoid overshoots and
deviations with respect to the nominal path, given the hard
deceleration limits of the joints. As an illustrative example,
consider a 6-degree-of-freedom Efort ER3A C-60 robot that
performs a circular path in the Cartesian space. Referring
to Figure 1b, the robot moves counter-clockwise from point
(0.5,0) to (0.3,0), it stops, and then moves from (0.3,0) to
(0.5,0), counter-clockwise. The nominal timing law would

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4

0.6

0.8

1

Sp
ee

d
ra

tio

IITime [s]
(a) Speed ratio γ̇/γ̇ref

0.3 0.35 0.4 0.45 0.5

-0.1

-0.05

0

0.05

0.1

(b) Performed path

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-2.5

0

2.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-2.5

0

2.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-2.5

0

2.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

Time [s]

Time [s]
(c) Joint 2 velocity0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

-2.5

0

2.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-2.5

0

2.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-2.5

0

2.5

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-20

0

20

Time [s]

Time [s]

(d) Joint 2 acceleration

Fig. 1: Issues on feedback trajectory scaling algorithms. (a)
Ratio between the scaled and the nominal velocity profile.
(b) Path performed by the robot. Dashed blue: nominal
path; solid black: performed path. (c) Second joint’s velocity.
(d) Second joint’s acceleration. Dashed blue: joint limits;
dash-dotted gray: nominal trajectory; solid black: performed
trajectory. The red areas highligths the braking phase.

Fig. 2: Proposed delay-recovering loop scheme.

exceed the acceleration bounds of the robot (Figure 1d) in
the first movement. This results in the saturation of the joint
acceleration (Figure 1d) and in a significant deformation of
the path when the robot is supposed to stop in (0.3,0) (see
Figure 1b). Figure 1a shows the ratio between the scaled
velocity and the nominal velocity computed by the scaling
algorithm. It is possible to see that the algorithm is not able to
prevent the steep deceleration that occurs in the highlighted
area and thus lead to a significant path-following error.

Another issue of many trajectory scaling methods is that
they do not recover the delay given by the slowdown. In the
example, the robot might recover the delay in the second
half of the circle by speeding up the nominal timing law
(i.e., by computing a ratio greater than one in Figure 1a),
but the scaling algorithm does not implement such feature.

III. PROPOSED ALGORITHM

This section addresses the issues presented in Section II.
First, a closed-loop controller is proposed to recover from
the delay introduced by the scaling of the trajectory. Then,
the proposed scheme is modified by adding an inner integral
control loop (named saturation fly-wheel to improve the path-
following performance of the algorithm.

A. Delay-recovering control loop

The delay-recovering feature can be implemented as an
external control loop, where the controlled variable is the
parameter γ, the reference signal is γref, and the control error
is therefore given by eγ = γref − γ. Finally, γ̇ref can be seen
as a feedforward action: in the case no slowdowns occur, the
control input is just γ̇ref; when the scaling is activated, the
external loop increases the control action to recover the delay.
The overall control scheme is shown in Figure 2, where the
online control problem (2)-(3) is represented as a nonlinear
saturation block between u and γ̇.

B. Saturation fly-wheel block

Look-ahead scaling techniques show significant
improvements compared to feedback methods. However,
as also suggested in [13], using the past history of the
desired trajectory and the behavior of the algorithm might
give good results in preserving the path feasibility. In [13],
heuristic thresholds were set to slow down the trajectory
in advance, based upon the trend of γ and its derivatives.
However, the tuning of such thresholds is cumbersome and
their effectiveness varies from case to case.

Fig. 3: Proposed scheme with delay-recovering loop and
saturation fly-wheel block.

Moreover, the delay-recovering scheme in Figure 2
introduces an additional issue. When the optimal control
problem returns a constrained solution, the control system
behaves like a saturation block. Given that γref is
monotonically increasing with respect to time, the control
error and the control variable might increase unboundedly.
When the trajectory exits the slowdown phase, the large
control error drives the system to saturation. To avoid this,
the control error should be bounded to a value that drives
the γ̇ref close to the saturated value of γ̇.

We propose to insert an inner control loop composed of
an integral system with gain Kf . As shown in Figure 3, the
control input is now computed as:

u = γ̇ref + C(eγ) + uf (6)

where C is the delay-recovering control function and uf =

Kf

∫ t0
0
(γ̇ − u) dt.

This new control loop stabilizes γ̇ref to a bounded value.
The higher Kf , the faster γ̇ref tracks γ. A forgetting factor
Ff is also used to avoid the influence of outdated data on
the current iteration. By using a zero-order discrete time
approximation with sampling period T , uF becomes:

uf = KfT

Ff∑
i=1

γ̇(t0 − iT)− u(t0 − iT) (7)

The effect of this additional control loop is to keep γ̇ref
close to γ during saturation and to accumulate a “saturation
inertia” (from which the name saturation fly-wheel) that
reduces the growth of γ̇ref that occurs when the saturation
ends.

IV. RESULTS

Simulation and experimental tests have been performed
on a 6-degree-of-freedom Efort robot (model ER3A-C60)
installed at the Industrial Robotics Laboratory of the
University of Brescia. It has a total weight of 27 kg and a
payload of 3 kg. Figure 4 shows the mechanical structure of
the manipulator and its controller. The robot joints limits,
reported below, have been obtained from the datasheet

Fig. 4: Robot Efort ER3A C-60 with controller Robox RP-1

provided by the manufacturer:

qmax = (2.91, 1.57, 1.76, 3.14, 1.97, 6.28) rad,
qmin = (–2.91, –2.26, –1.23, –3.14, –1.97, –6.28) rad,
q̇max = (4.0, 4.0, 4.3, 5.5, 5.5, 7.3) rad/s,

q̈max = (20, 20, 22, 28, 28, 36) rad/s2.

(8)

To generate the nominal trajectory, we use the motion
planner embedded in the robot controller. The planner tends
to compute conservative trajectories with respect to the limits
of the actuators. The reason is that an optimal minimum-
time planning would result in a complex mathematical
programming problem and industrial planners usually use
empirical methods to avoid such heavy computation.

To evaluate the algorithms performances in preserving the
desired path, the nominal trajectory is made more demanding
by shrinking the execution time computed by the robot
planner by a factor λ < 1. In this way, the maximum velocity
and acceleration values of the trajectories are increased as
follows:

vm2 = vm1/λ, am2 = am1/λ
2 (9)

where vm1 and am1 are the maximum velocity and
acceleration values of the original trajectory and vm2 and
am2 are the maximum velocity and acceleration values of
the new trajectory. In this way it is possible to generate more
demanding trajectory that are expected to exceed the robot
limits if the scaling algorithms are not implemented.

As regards the online trajectory scaling, two algorithms
have been tested for comparison:

• The approach proposed in the previous section with
the Delay-Recovering loop and the saturation Fly-wheel
block. The method will be also referred to as DRF.

• The feedback method (also referred to as FB) based on
the solution of (2), (3). This is equivalent to the method
proposed in [8] with joint acceleration limits added as
described in [14].

As regard the DRF method, a simple proportional controller
C = Keγ with K = 0.1 has been used. The integral gain
and forgetting factor of the saturation fly-wheel have been
set to Kf = 100 and Ff = 125.

A. Simulations

Simulations have been performed on a constrained
kinematic model of the robot. The desired task consists in
the interpolation of five poses in the Cartesian space through
successive circular arcs. The chosen poses are:

X1 = (0.5m, 0.0m, 0.5m, 5◦,− 175◦, 5◦)

X2 = (0.4m, 0.2m, 0.5m, 5◦,− 175◦, 5◦)

X3 = (0.3m, 0.0m, 0.5m, 5◦,− 175◦, 5◦)

X4 = (0.4m, −0.2m, 0.5m, 5◦,− 175◦, 5◦)

X5 = X1

(10)

where the first three terms of the vectors represent the
(x, y, z) position of the end effector and the the last three
terms represent the orientation expressed in XYZ Euler
angles. The robot is programmed in such a way that it starts
in X1, it moves through X2 and then stops in X3. Then, it
moves from X3 through X4 and finally stops in X5.

Results compare the maximum and mean path-following
errors (emax and emean) and the average slowdown due to
the algorithms. Position path-following error is computed
as the Euclidean distance between the end-effector position
and the closest point on the desired path. Orientation error
is the absolute value of the angle between the end-effector
reference frame and the desired reference frame. The average
slowdown is the ratio between the time treal taken by the
robot to perform the whole task and the desired execution
time tend.

Results for several values of the nominal total time tend
are shown in Tables I, II, and III. The less demanding case
(tend = 1.45 s) does not activate the scaling mechanism and it
is therefore taken as reference to evaluate the following tests.
It is possible to see that as the task gets more demanding
(i.e., smaller values of tend), the mean and maximum path-
following errors tend to increase. However, the error obtained
by DRF is of the same order of magnitude of the base case,
while the FB method gives significantly larger error (up to
two order of magnitude larger than the reference case). This
is clear also from Figure 5, which shows the comparison
of the performed path for three different values of tend.
The paths performed by FB (red lines) show a significant
deviation with respect to the nominal path, especially in the
breaking phase. On the contrary, DRF is able to preserve
the nominal path also for small values of tend. Moreover,
Table III shows that the delay-recovering method enhances
the performance of the algorithm from the point of view of
the total execution time. As a matter of fact, the ratio between
the real execution time of the task treal and the nominal time

TABLE I: Translation error for the circular task.

tend [s] emax [m] emean [m]

DRF FB DRF FB

1.45 2.70 · 10−4 2.91 · 10−4 9.08 · 10−5 9.37 · 10−5

1.25 3.68 · 10−4 3.77 · 10−3 1.19 · 10−4 5.59 · 10−4

1.05 4.60 · 10−4 1.43 · 10−2 1.58 · 10−4 2.89 · 10−3

0.85 5.89 · 10−4 2.44 · 10−2 2.18 · 10−4 6.06 · 10−3

0.65 7.92 · 10−4 2.54 · 10−2 3.26 · 10−4 6.53 · 10−3

TABLE II: Angular error for the circular task.

tend [s] emax [rad] emean [rad]

DRF FB DRF FB

1.45 1.65 · 10−5 1.72 · 10−5 5.68 · 10−6 5.92 · 10−6

1.25 2.18 · 10−5 2.89 · 10−4 6.88 · 10−6 3.82 · 10−4

1.05 2.69 · 10−5 1.01 · 10−3 7.71 · 10−6 2.01 · 10−4

0.85 2.96 · 10−5 1.87 · 10−3 8.45 · 10−6 4.17 · 10−4

0.65 2.96 · 10−4 1.99 · 10−3 8.81 · 10−6 4.45 · 10−4

TABLE III: Ratio between the time taken to perform the
trajectory and the nominal execution time treal/tend for the
circular task.

tend [s] treal/tend

DRF FB

1.45 1.022 1.003
1.25 1.067 1.009
1.05 1.198 1.312
0.85 1.368 1.868
0.65 1.714 2.400

tend is much closer to 1 when DRF is used. Finally, Figure
6 shows the positions, velocities, and accelerations of the
first, second, and third joints for the case tend = 0.85 s. It
is possible to see that the nominal trajectory is expected to
exceed the velocity and acceleration limits, but the scaling
algorithms adapt the motion not to overpass them. In general,
DRF gives smoother trends of the joint variables and a
shorter execution time.

B. Experiments

The desired task consists in the pentagonal path given
by the linear interpolation of the following six poses in the
Cartesian space:

X1 = (000.5m, 0000.0m, 000.5m, 5◦, −175◦, 5◦)
X2 = (0.428m, 00.121m, 00.45m, 5◦, −175◦, 5◦)
X3 = (0.311m, 00.075m, 0.368m, 5◦, −175◦, 5◦)
X4 = (0.311m, −0.075m, 0.368m, 5◦, −175◦, 5◦)
X5 = (0.428m, −0.121m, 00.45m, 5◦, −175◦, 5◦)
X6 = X1

(11)
The robot starts from pose X1 and it performs a point to point
motion until X6. Three different values of tend have been

0.3 0.35 0.4 0.45 0.5

-0.1

-0.05

0

0.05

0.1

(a) tend = 1.25 s

0.3 0.35 0.4 0.45 0.5

-0.1

-0.05

0

0.05

0.1

(b) tend = 1.05 s

0.3 0.35 0.4 0.45 0.5

-0.1

-0.05

0

0.05

0.1

(c) tend = 0.85 s

Fig. 5: Simulation results: performed paths in plain xy. Dashed blue: nominal path; solid black: DRF method; solid red: FB
method (solid black and dashed blue are often indistinguishable because of overlapping).

0 0.2 0.4 0.6 0.8 1

-2

0

2

0 0.2 0.4 0.6 0.8 1
-5

0

5

0 0.2 0.4 0.6 0.8 1
-50

0

50

(a) Joint 1

0 0.2 0.4 0.6 0.8 1

-2

0

2

0 0.2 0.4 0.6 0.8 1
-5

0

5

0 0.2 0.4 0.6 0.8 1
-50

0

50

(b) Joint 2

0 0.2 0.4 0.6 0.8 1
-2

0

2

0 0.2 0.4 0.6 0.8 1
-5

0

5

0 0.2 0.4 0.6 0.8 1

-50

0

50

(c) Joint 3

Fig. 6: Simulation results: positions (top), velocities (middle) and accelerations (bottom) of the first three joints for tend = 0.85
s. Dash-dotted gray: nominal trajectory; solid black: DRF method; solid red: FB method; dashed blue: joint limits.

tested, namely: tend = 2.2 s, tend = 1.6 s, and tend = 1.0 s.
A video of the experiments can be found in the enclosed
material. The first case is the less demanding and does not
activate the scaling mechanism. The successive cases are
more and more demanding and require the activation of the
scaling algorithms.

Figure 7 shows the nominal path and the paths
performed by the two methods. Moreover, Figure 8 shows
a graphical reconstruction of the performed paths from the
aforementioned video1. As expected, for the case tend = 2.2 s
does not activate the scaling, the performed paths do not
differ from the nominal one (Figures 7a and 8a). As soon as
the trajectories get more demanding the scaling algorithms
are activated: FB method shows a visible path-following
error, while DRF is able to preserve the geometry of the path
(Figures 7b and 8b). Also in the extreme case tend = 1.0 s,
DRF still shows good path-following performance, while FB

results in a completely deformed path (Figures 7c and 8c).

V. CONCLUSIONS

The paper presented a feedback trajectory scaling
algorithm for industrial robot manipulators. The proposed
method can be applied to any trajectory scaling algorithms
to improve the execution time and the path-following
performance of the algorithm. Simulation and experimental
results showed the potentiality of the method on a 6-degree-
of-freedom robot. It is worth stressing that the ease of
implementation and the light computational burden allow the
implementation on commercial industrial hardware, as shown
in the experiments.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.3

0.35

0.4

0.45

0.5

0.55

(a) tend = 2.2 s

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.3

0.35

0.4

0.45

0.5

0.55

(b) tend = 1.6 s

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0.3

0.35

0.4

0.45

0.5

0.55

(c) tend = 1.0 s

Fig. 7: Experimental results: performed paths in plain yz. Dashed blue: nominal path; solid black: DRF method; solid red:
FB method (solid black and dashed blue are often indistinguishable because of overlapping).

FB DRF

(a) tend = 2.2 s

FB DRF

(b) tend = 1.6 s

FB DRF

(c) tend = 1.0 s

Fig. 8: Experimental results: graphical reconstruction of the performed paths from the enclosed video.

ACKNOWLEDGMENT

The research leading to these results was partially funded
by the European Union H2020-ICT-2017-1 – Pickplace:
Flexible, safe and dependable robotic part handling in
industrial environment (grant agreement: 780488).

REFERENCES

[1] “ISO/TS 15066:2016 Robots and robotic devices – Collaborative
robots,” International Organization for Standardization, Geneva, CH,
Standard, 2016.

[2] J. A. Marvel and R. Norcross, “Implementing speed and separation
monitoring in collaborative robot workcells,” Robotics and computer-
integrated manufacturing, vol. 44, pp. 144–155, 2017.

[3] C. Byner, B. Matthias, and H. Ding, “Dynamic speed and
separation monitoring for collaborative robot applications–concepts
and performance,” Robotics and Computer-Integrated Manufacturing,
vol. 58, pp. 239–252, 2019.

[4] O. Dahl and L. Nielsen, “Torque-limited path following by online
trajectory time scaling,” IEEE Trans. Rob. Autom., vol. 6, pp. 554–
561, 1990.

[5] C. Guarino Lo Bianco and O. Gerelli, “Online trajectory scaling
for manipulators subject to high-order kinematic and dynamic
constraints,” IEEE Trans. Rob., vol. 27, pp. 1144–1152, 2011.

[6] M. Faroni, M. Beschi, C. Guarino Lo Bianco, and A. Visioli,
“Predictive joint trajectory scaling for manipulators with kinodynamic
constraints,” Control Engineering Practice, vol. 95, p. 104264, 2020.

[7] T. Faulwasser, T. Weber, P. Zometa, and R. Findeisen, “Implementation
of nonlinear model predictive path-following control for an industrial
robot,” IEEE Transactions on Control Systems Technology, vol. 25,
pp. 1505–1511, 2017.

[8] F. Flacco, A. De Luca, and O. Khatib, “Control of redundant robots
under hard joint constraints: Saturation in the null space,” IEEE Trans.
Rob., vol. 31, pp. 637–654, 2015.

[9] M. Faroni, M. Beschi, N. Pedrocchi, and A. Visioli, “Predictive inverse
kinematics for redundant manipulators with task scaling and kinematic
constraints,” IEEE Transactions on Robotics, vol. 35, no. 1, pp. 278–
285, 2018.

[10] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments:
Metrics and control,” IEEE Trans. Autom. Sci. Eng., vol. 13, no. 2,
pp. 882–893, 2016.

[11] M. Lippi and A. Marino, “Safety in human-multi robot collaborative
scenarios: a trajectory scaling approach,” in Proc. IFAC SYROCO,
Budapest (Hungary), 2018.

[12] M. Faroni, M. Beschi, and N. Pedrocchi, “An MPC framework
for online motion planning in human-robot collaborative tasks,” in
Proceedings of the IEEE International Conference on Emerging
Technologies and Factory Automation, Zaragoza (Spain), 2019.

[13] C. Guarino Lo Bianco and F. Ghilardelli, “Techniques to preserve the
stability of a trajectory scaling algorithm,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Karlsruhe
(Germany), 2013, pp. 870–876.

[14] F.-T. Cheng, T.-H. Chen, and Y.-Y. Sun, “Resolving manipulator
redundancy under inequality constraints,” IEEE Transactions on
Robotics and Automation, vol. 10, pp. 65–71, 1994.

