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Abstract— In the process of intelligently segmenting foods in
images using deep neural networks for diet management, data
collection and labeling for network training are very important
but labor-intensive tasks. In order to solve the difficulties
of data collection and annotations, this paper proposes a
food segmentation method applicable to real-world through
synthetic data. To perform food segmentation on healthcare
robot systems, such as meal assistance robot arm, we generate
synthetic data using the open-source 3D graphics software
Blender placing multiple objects on meal plate and train
Mask R-CNN for instance segmentation. Also, we build a data
collection system and verify our segmentation model on real-
world food data. As a result, on our real-world dataset, the
model trained only synthetic data is available to segment food
instances that are not trained with 52.2% mask AP@all, and
improve performance by +6.4%p after fine-tuning comparing
to the model trained from scratch. In addition, we also confirm
the possibility and performance improvement on the public
dataset for fair analysis. Our code and pre-trained weights are
avaliable online at: https://github.com/gist-ailab/
Food-Instance-Segmentation

I. INTRODUCTION
Some experts predict that 38 percent of adults in the

world will be overweight and 20 percent obese by 2030 if
the trend continues [1]. Due to the increasing obesity rate,
the importance of diet management and balanced nutrition
intake has recently increased. In particular, services are
gradually being developed to automatically calculate and
record kinds of food and calories through photos of food to
be consumed. The most important technology in this service
is food recognition and can be widely used in a variety
of service robots, including meal assistance robots, serving
robots, and cooking robots.

Because of increasing importance of food-aware tasks,
many researchers are working hard on the production of
food-aware datasets and the development of food recog-
nition. There are three methods to recognize food: food
classification, food detection, and food segmentation. Food
classification is a task that matches the type of food in an
image through a single image, and many public datasets are
also released because it is relatively easier than other tasks
during the data collection and labeling phase. However, in
order to determine a more accurate food intake in the diet
management service, it is necessary to pinpoint the real food
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portion within the image. Therefore, food segmentation are
more useful in this service than food classification and food
detection which provides information of the food types and
the position by expressing in a bounding box. Nevertheless,
there are three difficulties in food segmentation. First, as
shown in Table I, released public datasets available for food
segmentation are very scarce compared to food classification
public datasets, and most datasets are not publicly available
even if released. Second, when producing a dataset person-
ally, there are a tremendous variety of food types and it takes
a huge labor cost to labeling. Third, food segmentation is still
a challenging task because the variations in shape, volume,
texture, color, and composition of food are too large.

To address the presented difficulties, we employed two
methods. First, We introduced deep neural network for
instance food segmentation. In the early works of food
segmentation, multiple food items were recognized mainly
through image processing techniques: Normalized Cuts [2],
Deformable Part Model [3], RANSAC [4], JSEG [3], [5],
Grab Cut [6], and Random Forest [7]. In those cases, the
sophistication of technique is more important than the acqui-
sition of datasets. Lately, with the introduction of deep learn-
ing, deep neural network has eliminated the hassle of image
processing by finding food features in the image on its own.
There is a study that simultaneously localizes and recognizes
foods in images using Fast R-CNN [8]. Moreover, there is
CNN-based food segmentation using pixel-wise annotation-
free data through saliency map estimation [9]. However, most
relevant studies do not distinguish the same type of food in
different locations as semantic segmentation, and it is most
important to provide sufficient data to allow itself to learn.
In that sense, secondly, we generated synthetic data and train
these to apply food segmentation in real-world environments,
called Sim-to-Real technique. The Sim-to-Real is an efficient
technique that is already being studied in robot-related tasks,
such as robot simulation [10] and robot control [11], etc.
Also, it has the advantage of overcoming environmental
simulations or data that are difficult to implement in real-
world environments. Using this application, segmentation
masks were easily obtained by randomly placing plates and
multiple objects in a virtual environment to create a synthetic
data describing the situation in which food was contained on
the plate in a real world. Using this synthetic data and the
Mask R-CNN [12] model, which is most commonly used
in segmentation tasks. We conduct a class-agnostic food
instance segmentation that recognizes that food types are
not classified (only classify background and food) but are
different. Furthermore, we found the following effects:
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TABLE I
LIST OF FOOD DATASETS

Name Task Reference

Food50 Classification [14]
PFID Classification [15]
TADA Classification [16]
Food85 Classification [17]
Food50Chen Classification [18]
UEC FOOD-100 Detection [19]
Food-101 Classification [20]
UEC FOOD-256 Detection [21]
UNICT-FD1200 Classification [22]
VIREO Classification [23]
Food524DB Classification [24]
Food475DB Classification [25]
MAFood-121 Classification [26]
ISIA Food-200 Classification [27]
FoodX-251 Classification [28]
ChineseFoodNet Classification [29]

UNIMIB2015 Classification and Leftover [30]
Foood201-Segmented Segmentation [31]
UNIMIB2016 Classification and Segmentation [13]
SUECFood Segmentation [32]
Food50Seg Segmentation [33]

• Unseen food instance segmentation of first-time table-
ware and first-time food is possible in real-world envi-
ronments through random object creation of synthetic
data and deep learning

• Food segmentation is sufficiently possible in real-world
environments when learning using synthetic data only

• After learning with synthetic data, fine-tuning with real-
world data improves performance

• By distinguishing the same food in different locations,
it can be used efficiently in robot fields, such as food
picking, which can be utilized later

This paper is divided into 4 sections including this intro-
duction section. In section 2, the data production process
of synthetic and real-world data, models and parameters
used in learning, and evaluation metrics used in performance
comparisons are described. In section 3, performance com-
parison results were described according to the combination
of learning data: synthetic data, our real-world data we
collected, and public data called UNIMIB2016 [13]. Finally,
in section 4, the conclusions are given.

II. METHODS

We propose a unseen food segmentation method that
enables segmentation of untrained foods from real-world
images. We used a deep neural network and constructed a
synthetic dataset and a real-world dataset for unseen food
segmentation using deep learning. For training deep neural
network, data is the most important factor. In reality, how-
ever, it is quite challenging to build an appropriate dataset
for every task. Therefore, we used Sim-to-Real, which learns
deep neural networks using synthetic data and applies them

to real-world. If we get real food data, a lot of time
and expense is needed for data collection and annotation.
So, we generated synthetic data using Blander simulator,
a computer graphics software, to conserve resource. Also,
we collected real-world data by building our food image
acquisition system for verification of unseen real-world food
segmentation.

A. Dataset

Synthetic Dataset The use of synthetic data for training
and testing deep neural networks has gained in popularity in
recent years [34], [35]. The Blender, a 3D computer graphics
production software capable of realistic rendering [36], is
often used to create synthetic data. Realistic high-quality
synthetic data is required for deep neural networks to show
high performance for real situations. Therefore, we generated
the synthetic data using Blender.

In general, food is usually served in bowls and plates.
Especially, meal tray is usually used in hospital and school.
We actively introduce domain randomization to ensure that
the distribution of synthetic data includes real-world data. So
we created a random texture on the meal tray to recognize a
variety of plates robustly, and created a variety of background
textures and distractors around meal tray to be robust against
environmental changes. In addition lighting conditions, such
as the number, position, and intensity of light points in the
virtual environment, also changed during data generation
phase. To express food in synthetic data, various kinds of
primitives were grouped together and placed on a plate, that
resemble food with various colors and textures on the meal
tray so that the network can recognize various foods robustly.
Therefore, we placed meal tray modeled using the blender
and generated objects of various sizes and shapes on the meal
tray in a virtual simulation space as shown in Fig 1. We then
generated synthetic data by capturing it at various angles
and locations of camera. We created 28,839 synthetic data,
including RGB images and mask images, for unseen food
segmentation. As shown in Fig 2 as the examples of dataset,
textures on the plate and background are in a complex form
of mixed colors and patterns. Food-like objects located in
the food tray and distractors outsider of meal tray composed
of clustered primitives also have diverse colors. However,
in the mask images, only the objects expressing food are
projected as instance for segmentation, while the distrcators
are expressed as background.

Real-world Dataset We built a real-world food dataset
for 50 kinds of Korean food. We selected 50 kinds of
Korean food (rice, kimchi, fried egg,etc) through consultation
and investigation by experts of hospital and institution, and
collected dataset. Each meal tray was assembled with five
food items shown in Fig 3. We built a real-world food dataset
using the food acquisition system that captures images from
various angles, heights, and lights as shown in fig 3. We gen-
erated data from various backgrounds to verify the robustness
of the network even in environmental changes. We make a
real-world food dataset by annotating 229 images acquired



Fig. 1. Examples of synthetic dataset

Fig. 2. Examples of synthetic dataset

through the food image acquisition system. The examples of
dataset is shown in Fig 4.

Fig. 3. (Left) Examples of Korean food (Right) Data acquisition system

B. Deep Neural Network

We used Mask R-CNN [12] that widely used in the
instance segmentation. Mask R-CNN [12] is an extension of
the Fast RCNN [37], an algorithm used for object detection.
The overall network architecture are shown in Fig . As shown

Fig. 4. Examples of real-world dataset.

in the Figure 5, Mask R-CNN [12] consists of Backbone
network, region proposal network(RPN), feature pyramid
network(FPN), RoIAlign, and classifier. Mask-RCNN [12] is
built on a backbone convolutional neural network architec-
ture for feature extraction. Backbone network used a feature
pyramid network based on a ResNet-50. In feature pyramid
network, the features of various layers are considered to-
gether in a pyramid-shaped manner, it gives rich semantic
information compared to single networks that use only the
last feature. Region proposal network is a network that scans
images by sliding window and finds areas containing objects.
We refer to the area that RPN searches as anchors and use
RPN predictions to select higher anchors that are likely to
contain objects and refine their location and size. On the last
stage, Region proposal network uses the proposed ROI to
perform class preference, bounding-box regression, and mask
preference. We give data and ground truth of food image
as input to the network and we get output the instances of
segmentation.

C. Training Details

We trained MASK R-CNN [12] model implemented in Py-
Torch [38] with stochastic gradient descent(SGD) optimizer
configured with learning rate of 0.0001, weight decay of
0.00005 and batch size of 8 on Titan RTX (24GB) GPU. We
trained model on three types, first training with only synthetic
dataset, second training only real-world dataset, the last fine-
tuning with real-world dataset after pre-triaing on synthetic
dataset. During fine-tuning the model, the model trained with
only synthetic data first, and then only real dataset is used
to fine-tune the pre-trained model.

D. Evaluation Metrics

For performance evaluation for unseen food segmentation,
we utilize the same metric of COCO dataset [39], one
of the most popular criteria of instance segmentation. The
Intersection over Union (IoU), also known as the Jacquard
Index, is a simple and highly effective rating metric that



Fig. 5. The architecture of Mask R-CNN using for food instance segmentation.

calculates the overlapping area between the predicted and
ground truth divisions: IoU=area of overlap/area of union.
The proposed outputs of segmentation are post-processed
with non-max suppression by the threshold of 0.5 for IoU.

The mean Average Precision(mAP) is used evaluation
metric of the performance of the instance segmentation. Pre-
cision and recall are required to calculate the mAP. Precision
means the true positive ratio of predicted results which can
be calculated by adding true positive and false positive:
Precition=true positive/(true positive+false positive). Recall
means the true positive ratio of all ground truths which can
be calculated by adding true positive and false negative: Re-
call=true positive/(true positive+false negative). Therefore, a
high Recall value means that deep neural network recorded a
high proportion of the predicted results among ground truths.

This results in mean Average Precision(mAP) being ob-
tained through the Recall and Precision values. The main
metric for evaluation is mean Average Precision(mAP),
which is calculated by averaging the precisions under In-
tersection over Union(IoU) thresholds from 0.50 to 0.95 at
the step of 0.05.

III. EXPERIMENT AND RESULTS

We experimented that training the MASK R-CNN [12]
model on synthetic dataset and evaluation on our real-world
dataset to verify the performance of unseen food segmen-
tation. Furthermore, we conducted an experiment using a
public dataset to verify the generalized performance of the
algorithm. In all the experiments, our trained model segments
food instances, which are category-agnostic and only certain
to be food as a single category.

A. Result on our dataset

We categorized our real-world dataset into three types:
easy, medium, and hard, based on background diversity
within the image. Easy samples have a completely black
background, medium samples have a black background with
light reflection and hard samples have a wide variety of
backgrounds. We have 73 easy samples, 61 medium samples,
and 95 hard samples. Easy samples were used for training
and medium and hard samples were used for testing.

TABLE II
SEGMENTATION EVALUATION RESULTS OF MASK AP AND BOX AP FOR

EACH DATASET.

Test Sets Metric Synthetic+Real1 Synthetic Only Real Only
Our test set BBOX2 - 80.0 -
(Synthetic) SEG2 - 87.9 -
Our test set BBOX 76.1 51.4 65.6

(Real) SEG 79.0 52.2 72.6
UNIMIB BBOX 80.6 35.7 79.3

2016 SEG 82.7 32.9 81.7
1Synthetic+Real means pre-training with synthetic data and then fine-
tuning with real-world data.
2BBOX means box AP@all and SEG means mask AP@all as defined
in COCO dataset [39].

The experimental results can be found in Table II. The
two columns of Table II (headed as Synthetic Only and Real
Only) demonstrate the performance of models that trained
only synthetic data and real data from-scratch, respectively.
The column of Syn+Real shows the performance of the
model fine-tuned on real-world data after pre-training on
synthetic data. The real-world data utilized on each training
phase, are our dataset and public dataset UNIMIB2016
[13], headed on each rows. Sim-to-Real can show good
performance by training network using similar synthetic data
to real-world reported on the column of Synthetic Only. Our
network trains with only synthetic data and shows 52.2%
in terms of mAP as a result of evaluating with real-world
data. The result suggested that the network learned by using
only synthetic data via Sim-to-Real to become unseen food
segmentation for real-world data. Furthermore, we confirm
that the performance increased by about 8.8% when the
model was fine-tuned with real data compared to learning
with real-world data from scratch. As shown in Figure 6, the
model trained with synthetic data only tends not to recognize
watery foods such as soup. This seems unresponsive due to
the lack of liquid modeling in training synthetic data, but
it is simply overcome by fine-tuning with real data. Also
the fine-tuned model shows the advantage of robustness not
mistaking in the background compared to the model trained
with real data only.



B. Result on public dataset

The UNIMIB2016 [13] has been collected in a real canteen
environment. The images contain food on their plates and
are also placed outside their plates. In some cases, there
are several foods on a plate. The UNIMIB2016 is a dataset
for food instance segmentation that captures food from the
top view. The UNIMIB2016 [13] is composed of 1,010
tray images with multiple foods and containing 73 food
categories. The 1,010 tray images are split into a training set
and a test set to contain about 70% and 30% of each food
instance, resulted in 650 tray image training sets and 360
image test sets. Although the UNIMIB2016 [13] contains the
categories of each food, we utilize all data as single category,
food, for comparison with our unseen food segmentation
performance.

We conducted experiments using synthetic data,
UNIMIB2016 [13] as real-world data, fine-tuning with
real-world data after pre-training on synthetic data, and the
results can be seen through Table II. When the network
was trained with only the synthetic data, mAP was 32.9.
Because some data of UNIMIB2016 [13] dataset is several
food closely attached on a same plate, Although the
network did not train with foods in the UNIMIB2016
[13], network can implement food instance segmentation
as shown in Figure 6. Unlike synthetic data, because some
data in the UNIMIB2016 [13] dataset multiple foods are
clustered together on the same plate, the model trained on
synthetic data tends to recognize foods on a single plate as
one instance. Despite, using real-world data shows better
results than using the synthetic data, in the case of training
with fine-tuning with real-world data after pre-training
on synthetic dataset, the highest result was obtained with
82.7% in terms of mAP. As a result, training on synthetic
dataset is applicable to real-world data via Sim-to-Real and
also takes a roll of general feature extraction that is more
appropriate for fine-tuning as task-specific adaption.

IV. CONCLUSIONS
In this paper, we demonstrate the possibility of food

instance segmentation that have never been seen in real-world
environment through synthetic data generation and training
of Mask R-CNN [12] model. On our real-world dataset, food
instances can be segmented sufficiently with a performance
of 52.2% as using a network learned from only synthetic
data. Also, when fine-tuning a model learned from only
synthetic data with real-world data, +6.4%p performance
is improved better than the model trained from scratch.
Experiments on public dataset(UNIMIB 2016 [13]) show that
it is sufficient to segment food, even if it is not the same meal
tray. Since this work can distinguish between different food
instances but cannot recognize the type of food, it is also
remaining challenge to expand intelligence for recognition
of food categories. We suggest a study as our future work,
transferring knowledge from classification intelligence that
can be implemented with relatively easy to collect data to
recognize the category of mask instance in our food instance
segmentation models.

Fig. 6. Inference examples of segmentation results
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