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Abstract— The technological advancement in Unmanned
Aerial Vehicles (UAVs) or drones and their deployment in
real-life Search and Rescue (SAR) missions is imminent. We,
therefore, present a perception-aware autonomous exploration
framework aimed at performing vision-based target detection
and collision avoidance with an Unmanned Aerial Vehicle
(UAV). The UAV utilizes a depth camera for maneuvering and
finding the target. The underlying indoor exploration approach
considers autonomous collision-free navigation, as well as target
detection with a ballistic ball payload delivery without a prior
map. Moreover, the proposed method allows safe navigation
in enclosed unknown areas congested with randomly posi-
tioned obstacles and target locations. Our underlined end-to-
end system architecture integrates the proposed exploration
strategy. Extensive simulation experiments, using several Key
Performance Indicators (KPIs), showcase the effectiveness of
the proposed Robot Operating System (ROS) framework in
a simulated Gazebo environment under various parameter
settings.

I. INTRODUCTION

UAVs are playing a pivotal role in many emergency
response applications due to their rapid deployment and
ability to reach dangerous and human inaccessible locations.
UAVs can be employed in real-time to aid the first responders
during SAR missions [1], e.g., in hazardous environments
such as fire incidents [2], [3] or a collapsed building [4],
UAVs can be deployed to locate victims or survivors [5].
Despite the UAV technological advancements, in terms of
exploration and reliability, those systems are most often
controlled by a trained operator to avoid obstructions on
such incident sites [6]. For autonomous exploration, the
UAVs deployed in SAR missions operate at higher altitudes,
with reliable Global Positioning System (GPS) coverage, and
no occlusion in their Field of View (FoV). The challenge
lies in indoor autonomous exploration for performing rapid
deployment, as well as precise localization and mapping in
unknown environments using only the onboard perception
sensors, e.g., Light Detection And Ranging (LiDAR) or
depth (RGB-D) camera.

Existing works in autonomous UAV exploration missions
focus on a target-oriented approach to recognize objects
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of interest in an unknown environment and reach them
efficiently [7], [8]. To emulate real-life SAR missions and
allow comparative assessment of competing solutions under
challenging conditions, several events were organized in the
past [9], including the 2020 Mohamed Bin Zayed Inter-
national Robotics Challenge1 (MBZIRC) wherein multiple
challenges were held, especially the challenge 3 targeted an
urban firefighting scenario for cooperated aerial and ground
vehicles to navigate, detect, approach, and extinguish multi-
ple simulated fires around and inside a building [10]. Another
was the DARPA Subterranean (SubT) Challenge2 based on
extreme conditions in underground environments: human-
made tunnels, the urban underground, and natural caves,
to perform challenging autonomous exploration missions
[11]. Very recently at International Conference on Unmanned
Aircraft Systems (ICUAS) 2022, a UAV Competition3 was
organized for the first time, that focused on three main
challenges, i.e., exploration, target detection, and precise
delivery, that fire fighting UAVs face in a time-constrained
urban environment.

UAVs are becoming highly capable of achieving more
complex tasks forming dynamic coalition [12] and can
plan collision-free planning, to aid the first responders in
unknown 3D world environments [13]. The key functionality
is the ability to make intelligent decisions for collision-
free navigation to reach the targets. For instance, a small
UAV can assist the first responders in narrow, congested
environments like in caves [14], mines, and tunnels [15].
These decisions are typically based on criteria such as
mobility, type of perception sensor, or any other application-
specific requirements. The authors in [16] addressed the two
pioneering aspects of autonomous exploration i.e., gathering
information of the environment and avoiding obstacles while
constructing the local map. This was achieved by performing
self-position estimation and mapping to generate collision-
free trajectories. An onboard LiDAR or a depth camera can
be used to detect nearby obstructions around the UAV. A cost
function penalizes the proximity to the nearest obstacle and
re-plans the flight trajectory in real-time while navigating to
the target location. In general, navigation algorithms operate
under the assumption that the UAV is capable of collecting
data from LiDAR or RGB-D camera sensors to map the
unknown environment and plan collision-free paths to the

1https://www.mbzirc.com/
2https://subtchallenge.world/home
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target, solely through onboard sensing and control units.
In this work, we consider the following real-life SAR

mission, yet very challenging. An emergency occurs inside
a building, e.g., a fire breaks out and the first responders
need to take action to minimize human casualties. The indoor
environment is partly or completely unknown, or it may
no longer reflect the interior of the building, e.g., walls
and/or ceilings are collapsing, objects are falling, etc. In
this case, the first response team requires an accurate indoor
map in short time before entering the building to operate.
Thus, an autonomous UAV system with limited battery life
(e.g., typically around 30-35 minutes) needs to be rapidly
deployed to swiftly explore and map the unknown space
under tight time constraints. UAVs using 3D exploration
strategies may perform exceptionally well when there are
no limitations; however, their increased complexity and
computational overhead reduces considerably the exploration
in practice, consequently leading to incomplete maps and
unexplored areas. To mitigate the 3D plane uncertainty in a
2D approach, it is possible to maneuver the UAV at a certain
altitude above the ground plane such that only obstructions
can be viewed in the FoV of the perception sensor [17].
We adopt this approach and present a complete UAV system
architecture in Section II. Henceforth, we are interested in the
applicability and performance of a 2D exploration strategy on
an autonomous UAV platform. To this end, the contributions
of this work are:

• We have put forward an exploration strategy for a
UAV in completely unknown indoor environments, i.e.
without any prior surrounding information, by incorpo-
rating collision avoidance, target detection and payload
delivery sub-modules while constructing a local 2D
floor/occupancy map in Section II.

• We have also included a battery consumption plugin,
taken from our previous work [18], to reliably estimate
the remaining battery life due to the UAV rotors’
mobility; see Section IV-A.2 and use it as a critical
performance indicator benchmark.

• We used ROS-Gazebo simulation environment to con-
duct extensive evaluations for our proposed above-
mentioned strategy in a number of challenging en-
vironments and analyze the experimental results in
Section IV-B. We consider four diverse indoor environ-
ments of same size with varying settings (i.e., different
entry points for the UAV and target locations).

The rest of the paper is structured as follows. The archi-
tecture of the UAV system for autonomous exploration to aid
SAR missions is detailed in Section II. Section III overviews
the UAV and test-bed simulation setup. The experimental
results of our performance evaluation in diverse simulated
indoor environments are presented in Section IV. Finally,
Section V provides concluding remarks and directions for
future work.

II. UAV SYSTEM ARCHITECTURE

There are several sub-systems comprising a UAV platform
for autonomous exploration, namely Simultaneous Localiza-

Fig. 1. UAV system architecture for indoor exploration.

tion and Mapping (SLAM) indicated as the inner dashed line,
Controller, Trajectory Generation, Collision Avoidance, and
Target Detection as shown in Fig. 1. In this architecture,
ρ denotes the point cloud obtained from depth images
converted to laser scans, M represents the explored map of
the environment, x′ is the current pose estimate, x is the
current trajectory generated by the controller, T is the next
forward waypoint, and TR is the reconstructed waypoint to
reach the goal.

Our study entails the development of all these sub-modules
that constitute the building foundation for autonomous ex-
ploration. The red dotted line in Fig. 1 depicts our main
contribution to the collision-free navigation and target de-
tection. Our implemented packages are open-sourced namely,
nav explorer and quadcopter laser map available online4.

A. Simultaneous Localization and Mapping

An autonomous UAV for indoor exploration in GPS-
denied environments requires SLAM to ascertain its location
in the unknown environment and gather the sensor data to
construct the map. In our solution, we have adopted the
grid-based 2D SLAM [19] referred to as GMapping5, which
constructs the occupancy grid/floor maps from laser data.
It incorporates a Rao-Blackwellized particle filter SLAM
approach to update the map while keeping a minimum
number of particles. This leads to a reduction in uncertainty
of a robot’s pose, position, and orientation on the explored
map.

B. Controller

The controller sub-system uses a Software-In-The-Loop
(SITL) approach to simulate low-level flight controllers.
The simulation stack runs on Ardupilot6, which enables an
easier transition from simulation to a real UAV platform.
The controller itself is a set of cascaded PID controllers
taken from the open-source uav ros stack package7, whose
parameters are set to get a desirable response during hovering
and while performing complex maneuvers.

4https://github.com/aanast01?tab=repositories
5http://wiki.ros.org/gmapping
6https://ardupilot.org/
7https://github.com/larics/uav_ros_stack



C. Trajectory Planning

In the trajectory planning, next waypoints are sent to a
Time-Optimal Path Parameterization Based on Reachability
Analysis (TOPP-RA) algorithm [20] that interpolates a tra-
jectory between current UAV pose and the target waypoint.
The position controller of the UAV receives the given sam-
pled path trajectory in form of waypoints as a reference and
commands the UAV rotor.

D. Collision Avoidance

The main part of the exploration was to autonomously
navigate in the indoor environment without colliding with the
obstructions while constructing a 2D occupancy/floor map.
For the UAV to find the way through different positioned
obstructions in Ei, i = 1, . . . , 4, given in Table I, we
had developed a collision avoidance algorithm, which can
safely navigate using the laser scan data extracted from
the converted depth images received from the camera, as
mentioned in Section II. The pseudocode for our approach
is shown in Algorithm 1.

Algorithm 1 Collision Avoidance
Require: laser scans← depth images
Ensure: regions[left, front, right]

while flag = start do
if front is clear then

go front
else if left obst ≤ right obst then

go left
else

go right
end if
new waypoints[x, y, z]← velocities

end while

Where the algorithm requires laser scans to construct
three regions of the FOV namely, the left, front, and right
regions. If there are no obstructions in the center of the view,
the UAV moves in front otherwise it compares the number
of obstructions between both left and right regions. Given
priority to the left region, if there are fewer obstructions it
moves to the left side else it moves to the right side. Once
the front region is obstruction-free, velocities are given to
move to the next forward generated way-points. A threshold
to detect the obstructions using the laser scans was set to
1.80m.

E. Target Detection and Payload Delivery

We find the target pose, i.e., the location of the ARTag
from the actual position in the world coordinates from an
RGB-D camera using the image frames. For this, we used an
image processing open-source ROS tracking library named
ar track alvar38 to estimate the orientation and position
of the detected ARTag marker [21]. The library computes
the projective transformations between the camera frame

8http://wiki.ros.org/ar_track_alvar

Fig. 2. Kopterworrx Eagle with a ball payload.

and ARTAg position and outputs the estimated pose. The
ar track alvar package uses the detected corner points to
extract a patch of point clouds containing the ARTag and
computes its centroid. Then the pose is estimated by aligning
the centroid with the center of the ARTag.

To complete the mission, the UAV needed to explore the
environment and search for the target i.e. the fire marked
as an ARTag (a unique fiducial marker). When the target is
detected, the pose in the world frame is reconstructed along
with an annotated image and published to predefined ROS
topics. The reconstructed pose was evaluated for precision to
the ground truth of the ARTag in the world frame. Once the
UAV finds the target, i.e. the ARTag, it planned a ballistic
launch trajectory taking into account the payload i.e., the ball
motion model and gravity to launch the fire extinguishing
ball to the target.

III. SIMULATION SETUP

Our UAV system was developed following the architecture
in Section II and implemented as a docker container9 in
Ubuntu 20.04.4 LTS (Focal Fossa) operating system in ROS
Noetic. All simulations were performed on an Intel Core
i5-8400 (6 Cores) CPU system operating at 2.80GHz with
16GB of RAM.

A. UAV platform

The UAV is a four-rotor quadcopter modeled after a
Kopterworrx Eagle platform shown in Fig. 2, a custom-
designed simulation platform used by LARICS team [22].
An Inertial Measurement Unit (IMU), a depth camera,
openni kinect and odometry plugins are placed on the UAV.

B. Test-bed Environment

The firefighting capabilities of UAVs were tested in an
enclosed environment of dimensions 16m×26m partitioned
with three zones, as shown in Fig. 3 (left). Zone 1 (shaded
in green color) is the start and take-off zone, which is
clear from obstructions. Zone 2 (shaded in yellow color)
is the exploration and mapping zone having multiple static
obstructions. And last, Zone 3 (shaded in blue color) is the

9https://github.com/larics/icuas22_competition



Fig. 3. Test-bed environment with varying obstructions in zone 2.

target detection and ball launch area, and it is obstruction-
free.

For our simulation experiments, we selected four challeng-
ing indoor environments denoted Ei, i = 1, . . . , 4 , listed in
Table I, with the varying number of obstructions in Zone 2.
Even though there are 7 obstructions in Ei, i = 1, . . . , 3,
the locations of the obstructions change, thus increasing the
path traversing difficulty level with a narrow opening and
dead-ends, as marked 1, 2, and 3 in Fig. 3 (right).

TABLE I
TEST-BED ENVIRONMENT SETUP

Environment No. of Obstructions Complexity
E1 7 Easy
E2 7 Moderate
E3 7 Difficult
E4 11 Very Difficult

IV. PERFORMANCE EVALUATION

We evaluate the performance of our proposed approach
described in Section II with respect to a number of KPIs.
These include the exploration cost (Ec), battery consumption
(Bc), target reconstruction error (Re), delivery accuracy
(Da), total time (Tt), average speed (Sa), and successful
missions (Ms) that are described in the following.

A. Performance Indicators

1) Exploration Cost: The exploration cost Ec is defined
as the total distance of the path traversed by the UAV during
the exploration mission and is given by [23]

Ec =

n∑
i=1

di, (1)

where di is the length of the path segment i in meters and
n is the number of piecewise linear segments that comprise
the path.

2) Battery Consumption: We consider battery life a crit-
ical performance indicator during autonomous exploration,
thus we incorporate a representative battery consumption
model. The characteristics of the battery follow a dy-
namic linear model10, which we integrate from our previous
work [18].

3) Target Reconstruction Error: The given criteria are
underlined in the ICUAS 2022 UAV competition rules11 for
determining the accuracy of the reconstructed location of
the target. To this end, we define the target reconstruction
error Re as the deviation, i.e., Euclidean distance in meters,
between the true and the estimated target positions given by

Re =

√
(xT − x̂T )

2
+ (yT − ŷT )

2
+ (zT − ẑT )

2
, (2)

where pT = (xT , yT , zT ) and p̂T = (x̂T , ŷT , ẑT ) are
the true and estimated 3D target positions, respectively. The
maximum distance observed to detect the ARTag properly
was approximately 4m.

4) Delivery Accuracy: Similarly, we define the delivery
accuracy Da as the minimum distance in meters between
the ball and the target, i.e., the ARTAg, calculated from the
moment the ball was launched until it hit the floor. The true
target position and the position of the ball delivered by the
UAV given by

Da = min
pB

√
(xT − xB)

2
+ (yT − yB)

2
+ (zT − zB)

2
,

(3)
where pB = (xB , yB , zB) is the 3D ball position.
5) Total Time: The exploration time Tt is defined as the

total time elapsed in seconds from the start of the mission
until the ball is launched to the detected target. An effective
exploration strategy minimizes Tt, while making the UAV
maneuver to different locations that maximize the discovered
area.

6) Average Speed: The average speed Sa is defined as
the total explored distance divided by the total time for the
complete mission. To have a better exploration and higher
accuracy, an average speed of 0.5m/s is optimal.

7) Successful Missions: The UAV system architecture in
Fig. 1 incorporate uncertainties, errors, and randomness in
the underlying algorithms. In addition, their behavior can
be affected by initial conditions (e.g., the start point of
the mission inside the indoor environment). To this end,
the successful missions indicator Ms provides the ratio
of completed missions over the number of times that the
mission is repeated. This indicator reflects the effectiveness
and robustness of our exploration strategy.

10Generic battery model, Mathworks, https://bit.ly/3yYVXfn
11ICUAS 2022 Competition Rulebook, https://bit.ly/3NvV0iE



TABLE II
RESULTS

Environment Entry Point Target Location Performance Evaluation
No. (x,y) (x,y,z) Ec [m] Bc [%] Re [m] Da [m] Tt [s] Sa [m/s] Ms

(-10.5,-5.5) (4.5,7.5,2.97) 27.32±0.12 98.46±0.13 0.06±0.01 0.77±0.02 64±2.65 0.64±0.02 3/3
(-10.5,-2.5) (7.82,7.5,1.75) 37.57±19.85 98.39±0.34 0.04±0.03 0.99±0.04 83±39 0.66±0.23 3/3

E1 (-10.5,0) (3.55,-7.5,2.43) 44.49±1.25 98.38±0.15 0.37±0.07 0.77±0.11 91.33±13.32 0.71±0.06 3/3
(-10.5,2.5) (12.5,0.18,3.42) 28.38±0.03 98.43±0.15 0.04±0.01 0.86±0.01 82±13.86 0.58±0.01 3/3
(-10.5,5.5) (6.35,-7.5,2.52) 38.23±0.68 98.31±0.07 0.53±0.06 0.86±0.05 97±2.65 0.58±0.04 3/3
(-10.5,-5.5) (4.5,7.5,2.97) 26.10±0.01 98.76±0.04 0.06±0.03 0.77±0.03 51±2 0.62±0.06 3/3
(-10.5,-2.5) (7.82,7.5,1.75) 49.32±19.86 98.26±0.42 0.03±0.03 1.04±0.06 99.67±41.28 0.70±0.03 3/3

E2 (-10.5,0) (3.55,-7.5,2.43) 43.71±0.18 98.20±0.08 0.35±0.04 0.77±0.08 100.33±4.62 0.60±0.02 3/3
(-10.5,2.5) (12.5,0.18,3.42) 28.50±0.02 98.50±0.04 0.06±0.01 0.83±0.01 76.33±3.06 0.55±0.01 3/3
(-10.5,5.5) (6.35,-7.5,2.52) 37.99±0.08 98.53±0.39 0.46±0.10 0.83±0.05 94.67±4.73 0.57±0.02 3/3
(-10.5,-5.5) (4.5,7.5,2.97) 26.15±0.11 98.78±0.02 0.06±0.01 0.75±0.05 51±1 0.63±0.08 3/3
(-10.5,-2.5) (7.82,7.5,1.75) 82.78±36.80 97.66±0.77 0.03±0.01 1.04±0.01 134.67±12.50 0.71±0.04 3/3

E3 (-10.5,0) (3.55,-7.5,2.43) 44.70±0.20 98.23±0.01 0.32±0.08 0.79±0.76 104.67±1.53 0.62±0.02 3/3
(-10.5,2.5) (12.5,0.18,3.42) 28.65±0.01 98.70±0.38 0.06±0.04 0.83±0.04 69.67±19.66 0.54 3/3
(-10.5,5.5) (6.35,-7.5,2.52) 39.56±2.35 98.25±0.02 0.50±0.04 0.75±0.12 102.33±3.79 0.60±0.02 3/3

B. Benchmark Results

In our study, we conducted a total of 45 simulation
experiments, 3 runs for the same entry point and target
location with 15 experiments in each of the three indoor
environments. The aggregated results in terms of mean
and standard deviation are tabulated in Table II for the
aforementioned KPIs.

We consider E1, shown in Fig. 3 (top right marked as 1),
with openly spaced obstructions. For the second entry point
(-10.5,-2.5) and target location (7.82,7.5,1.75), we observe
a higher exploration cost to complete the mission having
traversed an average total distance, i.e., Ec = 37.57m with
a standard deviation of ±19.85, with remaining battery Bc =
98.39%, and highest distance error, i.e., Da = 0.99 standard
deviation of ±6.3 compared to other target locations.

The UAV missed to detect the target, i.e., the ARTag, in
one of the runs in E1 because the target was placed very
low to the ground, while the UAV was at a certain altitude
not clearly visible in the FoV of the depth camera. However,
once the UAV had entered in Zone 3, it was directed to
traverse in a loop starting from the left wall provided with
a set of 9 waypoints to stop and search the target, until
either the target was detected or the battery depletes to 5%.
However, in this case, we observed the total elapsed time
Tt = 83 s with a standard deviation of ±39 s depicting the
above stated behavior and with a higher delivery deviation
of Da = 0.99m. Similarly, in E2 and E3 the same behavior
was noted for the second entry point shown in bold.

Moreover, we observed in the fifth entry point (-10.5,5.5)
and target location (6.35,-7.5,2.52) in all the three envi-
ronments that the target reconstructed pose estimate was
not accurate with a large offset of Re = 0.53m due to
the dark black texture of the wall. The average minimum
and maximum speed noted was between [0.54 − 0.71]m/s.
Our findings indicate that the proposed UAV system lies
within an acceptable threshold for UAV flights and can be
rapidly deployed on a real-drone, which motivates further
research on autonomous exploration strategies for indoor
SAR real-life scenarios. A demo video of our solution in

E3 preforming autonomous exploration, target detection and
payload delivery is available online12.

C. Lessons Learned

To put in perspective the complexity of the competition,
our solution was one of the top-10 listed among 53 teams
worldwide (in the simulation phase). We were ranked 6th

after the final evaluation13 of 15 competing solutions who
were successfully able to perform autonomous exploration,
detect and launch the ball to the target from various entry
points and target locations, i.e., the evaluation environment
E4. The complexity of E4 can be visualized in Fig. 3 (right
marked as 4), with a narrow opening, dead-ends, and a
total of 11 obstructions compared to E1 − E3, as listed in
Table I. The spider plot in Fig. 4 depicts the evaluation
score, i.e., ESi, i = 1, . . . , 5 for the five runs starting
from different entry points and target locations tabulated in
Table II. Although our solution was ranked 6th, it performed
better in ES1 and ES2 than the 5th ranked team. We believe
that the points for the mission complete were more biased
towards total time duration which resulted in our lower
points score. However, the robustness and effectiveness of
our approach were evident from the performance evaluation
in Table II.

The motivation for ICUAS 2022 UAV Competition was to
further escalate research for indoor exploration and mapping
for a single UAV. We developed an autonomous exploration
and target detection solution in a much simpler and more
effective manner for deployment in a real-life SAR mission.
Mainly, a collision-avoidance approach navigation using only
the laser scans, a target, i.e. ARTag detection, and a ballistic
ball launch approach were articulated in this paper. There is
certainly a trade-off among the various KPIs to select the
best performing strategy for UAV exploration missions.

V. CONCLUSIONS

We put forward a perception-aware autonomous explo-
ration approach aimed at performing target detection and

12https://youtu.be/Z-trnvxgyOI
13Simulation Phase (Final Ranking), https://bit.ly/3z8jxqq



Fig. 4. Evaluation Score in E4.

collision avoidance. In particular, we aim to provide a generic
solution for indoor exploration and mapping with varying
levels of difficulty and challenge for fire-fighting missions
on a common test-bed. An end-to-end baseline system ar-
chitecture has been considered for developing our proposed
approach. We showcase the potential of our approach via
extensive simulations, aiming toward integrating and testing
it into a real UAV platform. We also plan to investigate
multi-UAV exploration through the frontier and sampling-
based approaches toward finding the target. In addition, more
challenging scenarios will be investigated, such as passing
through narrow passageways, finding a new path from a
dead-end, and considering static and dynamic obstacles.
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