
Multi-Objective Convolutional Neural Networks for Robot Localisation
and 3D Position Estimation in 2D Camera Images

Justinas Mišeikis1, Inka Brijacak2, Saeed Yahyanejad3, Kyrre Glette4, Ole Jakob Elle5, Jim Torresen6

Abstract— The field of collaborative robotics and human-
robot interaction often focuses on the prediction of human
behaviour, while assuming the information about the robot
setup and configuration being known. This is often the case with
fixed setups, which have all the sensors fixed and calibrated in
relation to the rest of the system. However, it becomes a limiting
factor when the system needs to be reconfigured or moved. We
present a deep learning approach, which aims to solve this
issue. Our method learns to identify and precisely localise the
robot in 2D camera images, so having a fixed setup is no longer
a requirement and a camera can be moved. In addition, our
approach identifies the robot type and estimates the 3D position
of the robot base in the camera image as well as 3D positions
of each of the robot joints. Learning is done by using a multi-
objective convolutional neural network with four previously
mentioned objectives simultaneously using a combined loss
function. The multi-objective approach makes the system more
flexible and efficient by reusing some of the same features and
diversifying for each objective in lower layers. A fully trained
system shows promising results in providing an accurate mask
of where the robot is located and an estimate of its base and
joint positions in 3D. We compare the results to our previous
approach of using cascaded convolutional neural networks.

I. INTRODUCTION

With the tendency of robotic hardware becoming cheaper
and more powerful, robots are entering our everyday envi-
ronments. Household robots like vacuum cleaners do not
surprise people anymore. Even faster robot adoption hap-
pens in hospitals, warehouses and factories. An important
reason for this is advancements in environment perception
capabilities. Instead of fencing off the robots, the concept of
Industry 4.0 is aimed at having a new era of collaborative
robots, which are safe to operate in shared workspaces with
humans [1]. The concept of a shared workspace has been
an active research area for many years, which is still highly
relevant today [2] [3]. The industry is catching up to research
with robotic platforms like Baxter and Sawyer, which are
known to be fully safe to operate around humans. However,
they are still at a stage, where collision detection is the main
safety system [4]. But we are looking at more sensitive envi-
ronments, for example, hospitals, where collision detection
is not good enough and full avoidance is needed.

1 4 5 6Justinas Mišeikis, Kyrre Glette, Ole Jakob Elle and Jim Torresen
are with the Department of Informatics, University of Oslo, Oslo, Norway

2 3 Inka Brijacak and Saeed Yahyanejad are with the Joanneum Research
- Robotics, Klagenfurt am Wörthersee, Austria

5Ole Jakob Elle has his main affiliation with The Intervention Centre,
Oslo University Hospital, Oslo, Norway oelle@ous-hf.no

1 4 6 {justinm,kyrrehg,jimtoer}@ifi.uio.no
2 Inka.Brijacak@joanneum.at
3 Saeed.Yahyanejad@joanneum.at

One of the most common methods to observe the en-
vironment is by using vision sensors. In this application,
3D cameras observe the workspace and indicate the areas,
which are free of obstructions and are safe to operate in
as well as obstacles, which should be avoided. Given this
information, a robot can find the safest path to reach its goal.
However, normally these sensors are fixed either in relation
to the robot or in the environment. In order to function in
the same coordinate frame and provide accurate information
to the robotic system, Hand-Eye calibration is performed. It
works well as long as the setup of the sensors and the robot
base stays static. If any of them are moved, intentionally or
accidentally, the calibration has to be repeated in order for
the sensors to work with the necessary precision. Despite
some automatic calibration procedures, the process can still
be time-consuming, and the system has to be halted until this
issue is resolved [5].

One way to make the environment aware robots is to use
long-term environment observation. Such approaches have
been used in the development of robot autonomy and self-
localisation tasks. This is commonly developed as navigation
algorithms for mobile robot platforms to find their way
around in the environment and avoid any static or dynamic
obstacles on the way. Typically, robot model and dynamics
are typically known [6] [7] [8] [9].

Visual-based robot manipulator tracking has been exten-
sively researched as well. End-effector being the main point
of focus with the aim of conducting robot control based
on visual servoing [10] [11]. Furthermore, it has proven to
be an effective method for adaptive redundant robot control
in Cartesian space [12]. Image-based tracking of 7-DoF
robot arm showed promising results with dynamic parameter
tuning as well [13]. In another project, authors use particle
swarm optimisation method for fuzzy sliding mode control
to track the end-effector of the robot manipulator [14].
Furthermore, robotic arms were combined with deep learning
approaches to learn direct motor commands by using visual
inputs. They were based on reinforcement learning and by
trying thousands of grasps reaching impressive results of
adaptive grasping approaches. However, that required many
hours of training while using real hardware [15] [16] [17].

One thing that majority of discussed systems have in
common is that prior knowledge of the robotic platforms
is given or the setups in regards to hardware are fixed.
Any changes to the setup would require re-calibration or
at least fine-tuning the algorithms to achieve the same level
of performance. Furthermore, common obstacle avoidance
algorithms for robotic arms are focusing on the end-effector

ar
X

iv
:1

80
4.

03
00

5v
2

 [
cs

.R
O

]
 3

0
M

ay
 2

01
8

Fig. 1. Samples from a collected robot dataset. Each row of images represents different robot type in the following order: UR3, UR5 and UR10. The
dataset was created using a varying background to provide more robustness.

instead of the whole robot body.
Having non-fixed setup allows easier camera placement in

cluttered environments with multiple robots, like a factory
floor or automated surgery room. Normally, there is limited
space and equipment might have to be shifted around quite
frequently. This results in limited line-of-sight or people
standing in front of the sensor. Having a multi-camera setup
can add the needed redundancy, or using a wearable camera
would provide a viewpoint of the operator. On a factory floor,
such a camera-based system can give an indication of all the
robots located around the person wearing it. A warning or
even an emergency stop option can be incorporated into the
system for the situations when the robot gets too close to the
person within its field of view to ensure a safe operation.

A similar approach could be also used in robot-robot
interaction cases, where similar or heterogeneous robots are
working in the same environment. Even without having
direct communication channels, robots can avoid collisions
with each other. On the other hand, this can be used as a
redundant navigation system, given the map of the main
robots is known, the mobile platform can re-localise itself
according to their detected positions. Collaborative tasks
would be targeted also, where robots have to hand over tools
or work together. Having an active communication channel
is not always reliable, so being able to identify robot arms
in the environment and their configuration using on-board
camera can allow to solve these problems. Provided high
enough processing power, swarm robotics could benefit from
such systems, where each individual is making independent
decisions without any centralised system.

Our current research targets this problem by trying to add
flexibility to the robot identification and having easily ad-
justable setups. One goal is to have a free moving camera and
remove the need for Hand-Eye calibration. Instead of hav-
ing a known transformation matrix between the coordinate
frames of the sensor and the robot base, we teach the system
to identify the robot body in a 2D color image provided by

the vision sensor. This would allow having cameras placed
on moving objects, for example, wearable ones or placed on
other robots moving in the environment. Our method uses
convolutional neural networks (CNNs), which learn visual
cues allowing it to understand the environment [18]. The
system identifies the robot body in the color image, and depth
information normally provided by 3D cameras is not needed
for the recognition task anymore. Furthermore, the system
estimates the robot body configuration and 3D coordinates
of each joint of the robot.

Current work is an extension and improvement of our
previously proposed method to use cascaded CNNs (C-CNN)
in order to solve this problem [19]. The advantage of using
multi-objective CNN is the ability to train the network on
multiple tasks simultaneously while re-using the same fea-
tures instead of having to re-learn some of them when using
C-CNNs. Similar multi-objective CNN approaches have been
used for detecting facial landmarks, face recognition and
localisation as well as orientation [20] [21]. Other similar
approaches can be done to optimise the training of the
network on two GPUs, each one following each branch [22].
Also, mid-layer parameter transfer between two identical
networks, but each one having different sets of objective
labels has proven to be effective [23].

This paper is organized as follows. We present the system
setup and dataset collection in Section II. Then, we explain
the proposed method and CNN architecture in Section III and
the training procedure in Section IV. We provide experimen-
tal results in Section V, followed by relevant conclusions and
future work in Section VI.

II. SYSTEM SETUP AND DATASET COLLECTION

Deep learning typically requires large amounts of diverse
training data for robust learning. However, this is an issue
for industrial robotics applications, because there are close
to none existing public datasets with well-marked ground
truth data. Thus, in order to get reliable training data, a new

(a) Color image from the dataset
used as an input.

(b) Ground truth model of the robot
mask.

(c) Ground truth data of the robot
base 3D position in relation to the
camera marked on the input image.

(d) Ground truth data of the 3D
position of robot joints marked on
the input image.

Fig. 2. Example image of the dataset and ground truth examples of the
UR3 robot.

dataset was created specifically for the presented application.
The whole range of Universal Robots: UR3, UR5 and UR10,
were used at three institutions: TU Graz, Joanneum Research
and the University of Oslo. All three robots share similar
visual appearance, but differ significantly in size, reach and
payload capabilities.

As a vision sensor, a Kinect V2 camera is used [24].
It provides both color image and depth information. Depth
images are only used for the creation of the ground truth
data, while the whole following recognition process is using
just a color image as an input.

For each recording, in order to have a precise ground
truth data, Kinect was placed at arbitrary position observing
the workspace of the robot. At each position, a Hand-Eye
calibration was performed by placing a marker on the end-
effector of the robot and using both color and depth image
for the calibration process [25]. This provides an accurate
coordinate frame transformation between the camera and the
base of the robot, with an error below 0.52 cm for all the
datasets.

TABLE I. Dataset summary describing a number of samples collected for
each type of the robot. In total 9 recordings were made, 3 for each type of
robot.

Recording Robot Type Number of Samples
Rec 1 UR3 211
Rec 2 UR3 252
Rec 3 UR3 463
Rec 4 UR5 252
Rec 5 UR5 756
Rec 6 UR5 1512
Rec 7 UR10 112
Rec 8 UR10 278
Rec 9 UR10 514

Once the transformation is known, a mask defining the
location of the robot in the camera image can be calculated.
It is done by utilising the encoder information from each
joint of the robot and using a simplified model of the

robot. The robot is represented using basic cylindrical and
spherical shapes in 3D space according to its model and
then mapped onto a virtual 2D image representing the sight
of the camera. Thresholding this image results in a robot
body mask representation in the camera image. The MoveIt!
package was used to implement this method [26].

The robot should be observed from all the different angles
and in a high variety of joint angle configurations to achieve
good robustness. Movements for the data collection were
programmed to provide a high diversity of viewpoints and
robot body configurations. Each robot joint is moved through
the full range of motion in combination with other joints as
well. The step size of the joint movements is varied between
the datasets resulting in a different number of samples in
each. After each movement, a trigger signal is used to save
the data. At each instance, camera images, joint coordinates,
Cartesian coordinates of each joint and ground-truth robot
mask images were saved. The number of samples per dataset
varied from 112 to 1512. The variation was caused by differ-
ent types and resolutions of programmed robot movements
during the data collection. In total 9 datasets were collected,
3 for each type of the robot, summarized in Table I. Example
images from the collected dataset are shown in Figure 1.
Datasets with UR5 robot were the most extensive given the
access to the robot at the lab of the main author. An example
of color and ground truth of robot mask, base position and
joint positions can be seen in Figure 2.

Recorded images have 512×424 pixel resolution and they
are all rectified to compensate for lens distortion. Internal
camera calibration was used to ensure that both color and
depth information have a good overlap, avoiding any offsets.
Random sampling was used to divide the final dataset into
the training set and the test set by ratios of 80% and 20%
of all the images respectively.

III. METHOD

Our approach is based on a multi-objective CNN structure.
This approach allows us to get multiple outputs of different
types by having just one input. It is achieved by having a
number of convolutional layers, which are common for the
whole system and then branching out the structure for each of
the objectives. The whole system is trained simultaneously,
meaning that the features in common layers are reused.

In our case, we train for four objectives:
• Robot mask in the image
• Robot type
• 3D Robot base position in relation to the camera
• 3D Position of the robot joints
The structure of the CNN is shown in Figure 3. It consists

of the two main branches. The first one learns a classification
task of finding the robot in the input image. It results in a
robot mask defining the location of the robot. The second
branch is for the regression tasks of finding the 3D robot base
coordinates in relation to the camera and the 3D coordinates
of each of the robot joints. In addition, on the same branch,
the classification of the robot type is done.

Conv 32F
Filter Size: 3x3

Dilation 2x2

Input Robot Mask

FC 1024

Conv 32F
Filter Size: 3x3

Dilaton 5x5

Conv 64F
Filter Size: 3x3
Dilation: 5x5

Conv 128F
Filter Size: 2x2
Dilation: 3x3

Conv 32F
Filter Size: 3x3

Dilation 3x3

Conv 32F
Filter Size: 3x3

Dilation 5x5

Conv 32F
Filter Size: 3x3

Dilation 3x3

Max Pooling
2x2

Max Pooling
2x2

Max Pooling
2x2

Max Pooling
2x2

FC 1024

Sum FC

FC 512FC 512FC 512

Joint 3D
Coordinates

Robot Type Robot Base
Position

Fig. 3. Multi-objective CNN structure. Input is a simple 2D color image and the network is trained for four outputs: robot mask, 3D coordinates of robot
joints, 3D coordinates of robot base position and robot type. There are two main branches of the CNN. The first one is aimed to learn the features leading
to an accurate robot mask mainly consisting of dilated convolutional layers. It is marked by red solid arrows. The second branch, marked in blue dashed
arrows, consists of a number of max pooling and dilated convolutional layers with fully connected layers at the end. The goal is to predict coordinates as
a regression task as well as classify the robot type. Additionally, there is a branch starting from the 4th convolutional layer of robot mask task to the end
of the blue branch using summing of fully connected layers, marked in dotted green arrows. It adds the information of features well defining the visual
representation of the robot to the other tasks further improving the results. The whole CNN is trained for all four outputs simultaneously using a common
loss function.

In addition, there is the second branch from the 4th
convolutional layer towards the robot mask, which connects
to the second branch. Given the idea that robot body parts
are learned quite well for the robot mask classification task,
this additional input provides the essential information for
identifying the location of the robot joints. Fully connected
layers, which are summed, are believed to filter the important
visual cues and assist for the coordinate regression tasks.

A. Loss Functions

Loss functions are used to determine the quality of train-
ing. Given we have four objectives, we first describe loss
functions for each one. Because the network is trained for
all of the objectives simultaneously, finally we combine all
four loss function into one used for the actual training.

The loss function for the robot mask was designed to
adjust for a small area the foreground object takes up in the
input image. In our datasets, the area taken up by the robot
body in the input image was varying between 6−17% of the
whole image. If the loss function does not compensate for
this, the CNN could classify all the pixels as background
and still achieve the accuracy of 83 to 94%, which is
conceptually wrong. To prevent this, the foreground weight
wfg is calculated, as described in Equation 1. It is based
on the inverse probability of the foreground and background
classes, where Y ∈ {fg, bg}.

wfg =
1

P(Y = fg)
(1)

The background weight wbg is calculated in Equation 2.

wbg =
1

P(Y = bg)
(2)

The robot mask loss function is calculated in two steps.
First, a per-pixel loss ln is calculated in Equation 3, where
iest is P(Y = fg), (1 − iest) is P(Y = bg) and igt is the
ground truth value from the mask image.

ln(Inest, I
n
gt) =− wfgiest log (igt)

− wbg(1− iest) log (1− igt)
(3)

Then, it is used as an input to calculate normalised loss
for the whole image Lmask in Equation 4. A normalisation
factor N , which is a number of pixels in the image, allows
us to keep the learning rate fixed, despite the variance of the
input image size.

Lmask(Iest, Igt) =
1

N
∑
n

ln(iest, igt) (4)

Loss functions for both robot base coordinates and the
coordinates of the robot joints are formulated as regres-
sion tasks. Both of them use Euclidean distance between
estimated and ground truth values. Loss function for the
3D coordinates of robot joints LJcoords is described in
Equation 5, where Nj is the number of joints, Ji defines
ground truth position of each joint and Ei is the estimated
position of each joint by the CNN.

LJcoords =
1

Nj

Nj∑
i=1

‖Ji − Ei‖2 (5)

Similarly, the loss function for the coordinates of the robot
base LBcoords is shown in Equation 6. Bxyz is the ground
truth position of the robot base in 3D and Exyz is the
estimated 3D position of the robot base. These positions are
relative to the camera. Considering the goal of detecting the
position of the robotic manipulator, estimating just Cartesian

Robot
 Base

 Error in cm

Robot
 Joints

 Error in cm

Robot
 Mask

 Error in %

0

2

4

6

8

10

12
Error for each objective

Cascaded CNN
Multi-Objective CNN

(a) Comparison of the Multi-Objective CNN ap-
proach against the Cascaded CNN approach [19].
Errors for all the objectives are smaller, as well
as the range of quartile values.

Jo
int

 1

Jo
int

 2

Jo
int

 3

Jo
int

 4

Jo
int

 5

Jo
int

 6

Jo
int

 7
0

2

4

6

8

10

12

E
rr

or
 in

 c
m

Error for each joint of the robot

(b) Error for the 3D coordinate estimation for
positions of each robot joint. It can be seen that
the error slightly increases for joints further away
from the base.

0 2000 4000 6000 8000
Iterations

0.0

0.5

1.0

1.5

2.0

Lo
ss

Loss over training iterations

(c) Value of the loss function on the test set over
iterations during the training process.

Fig. 4. Evaluation of our method by testing the trained system on the test dataset.

coordinates is sufficient. If necessary, the angles of each joint
in relation to the robot base could be calculated by using
coordinate positions.

LBcoords =
∥∥Bxyz − Exyz

∥∥
2

(6)

The loss function to identify the robot type was defined
as a categorical cross-entropy problem. It is commonly used
for multi-class classification problems. Ltype is calculated in
Equation 7, where p is the ground truth labels, q are the
predicted labels and c ∈ R, where R are all the available
types of robots in the dataset.

Ltype = −
∑
c

p(c) log q(c) (7)

The final loss function Lfinal is a weighted combination
of all four previously described functions. The larger the
weight W , the higher the emphasis on the correct prediction
of the corresponding value. And the weights should be
selected to have a good overall performance of the system.
The calculation of Lfinal is described in Equation 8.

Lfinal =WmaskLmask +WJcoordsLJcoords

+WBcoordsLBcoords +WtypeLtype

(8)

In order to keep the CNN easily adaptable to other types
of robots in the future, no prior information about the robot
model is incorporated in the system. The raw CNN output
is used to evaluate the accuracy of the results.

IV. CNN TRAINING

Training of the multi-objective CNN is done for all four
objectives at the same time. One possibility to adjust the
quality of results is to adjust the weights given to the loss
functions of each of the objectives when defining the final
loss function of the system. In our case, the weight values
were hand-selected using trial and error during the testing
phase. Selected weight values were the following:

• Wmask: 1.0
• WJcoords: 1.5
• WBcoords: 1.5
• Wtype: 0.3

The training is done on the training set, including images
of all three types of robots simultaneously. In total 926
samples for UR3, 2520 samples for UR5 and 904 samples
for UR10 were used

In order to speed up the process and have reasonably
sized mini-batches, the input size of the images was reduced
by half from the original dimensions, down to 256 × 212
pixels. The pixel intensity values of the input images were
normalised to the range between 0 and 1. Furthermore,
pixel values of the ground truth images are clipped to avoid
division by zero in cases when the estimated mask fits
the ground truth perfectly. In order to avoid any training
biases, the data were randomly shuffled and split into mini-
batches of 64 images each, fully utilising the memory of the
GPU. The learning rate was set to 0.001 at the beginning
of the training and then gradually decreased to 0.000001
as the training progressed. The CNN converged after 8000
iterations. It took 60 hours to train the system using a regular
NVIDIA GeForce 1080 GTX graphics card.

V. RESULTS

The evaluation was done by testing our network on the
test set and comparing the output against the ground truth
data. The robot mask accuracy is defined by comparing a
number of pixels in the CNN output image that match the
ground truth mask. For the robot joint and base coordinates,
Euclidean distance between the CNN estimated results and
ground truth results was calculated. Robot type accuracy was
computed by counting the percentage of correct classification
instances. We compare the results against our previously
presented C-CNN approach [19].

Robot mask classification achieved an accuracy of 98%,
which is almost 3% improvement compared to our previous
method, as seen in Figure 4(a). A significant amount of this
error comes from failing to estimate sharp corners in the
mask image because CNN outputs slightly blurry mask com-
pared to ground truth. It is likely that some post-processing
would allow even further improvement by increasing the
sharpness of the mask.

The overall error of the 3D position of robot joints was
3.16 cm, which is a slight improvement compared to the
error of 3.32 cm in our previous work. If we analyse each

Fig. 5. Estimated robot joint position coordinates marked on the images taken from the dataset. Due to difficulty in visualising 3D coordinates on printed
figures, the estimated joint coordinates were mapped back into 2D images. Green crosses indicate the ground truth position, red circles indicate predicted
positions of joints and magenta circles indicate the predicted position for the robot base.

joint separately, we can see the tendency of the joints closest
to the robot base having a smaller average error, as well as
smaller scatter, compared to the joints closer to the end-
effector. Results are showing that in Figure 4(b). It can be
explained by analysing the reachability from the base of each
of the joint. The end effector has the largest range of motion,
and it reduces for the joints closer to the robot base. This
means the range of possible positions varies significantly, and
estimation is more difficult in the larger range of possible
positions. However, the error difference is minor.

TABLE II. Summary of the results on the test set of a Multi-Objective
CNN with a comparison to our previous work using C-CNN.

Measure Current Work Previous Work
Mask Accuracy, % 98% 94.6%
Robot Type Accuracy, % 98.3% —
Joint Pos Error (Mean) 3.16cm 3.32cm
Base Pos Error (Mean) 2.74cm 2.97cm

The estimation of the position of the robot base in relation
to the camera had an average error of 2.74 cm. Once again,
this is lower compared to C-CNN approach, where the same
estimation error was 2.97 cm. Robot type classification made
just a few wrong decisions resulting in 98.3% accuracy. The
forward propagation time (detection speed) of the neural
network was on average 15 ms for one image, making it
suitable for real-time applications.

The final results are summarised in Table II, and the
estimated coordinates by the full system marked over the
dataset images can be seen in Figure 5. Because it is difficult
to show 3D estimations on 2D figures, the visualisation of
estimation is done by mapping the estimated 3D coordinates

back onto input images.
Both in the current multi-objective CNN approach and

the C-CNN method, we used exactly the same datasets for
training and testing, so the results can be compared directly.
Given the lack of similar work, no suitable benchmark was
found to allowing a direct comparison of achieved results.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a solution for detecting
a robot manipulator and estimating the positions of its
joints in a 2D camera image. A camera can be placed in
arbitrary positions overlooking the robot workspace and the
method successfully localizes the robot without the need for
any additional setup or Hand-Eye calibration. This provides
more flexible and quickly reconfigurable environment aware
robotic setups for tasks like human-robot or robot-robot
interaction. We have used three types of robots produced
by Universal Robot for training and testing of the system:
UR3, UR5 and UR10.

Our system uses a multi-objective convolutional neural
network approach to achieve the goal. It optimises the system
for four objectives simultaneously provides the mask of an
area where the robot is present in the camera image, its base
position in relation to the camera, 3D positions of the joints
of the robot as well as the type of the robot, respectively
the 3D joint position error was less than 3.16 cm, the robot
mask accuracy was 98% and the robot type was successfully
recognised in over 98.3% of cases. These results are an
improvement of our previously presented C-CNN approach,
both in accuracy and flexibility of the system.

Given current results, the continuation of work will be to
apply this method in more complex environments containing
multiple robots and people working in the same workspace.
Self-occlusions were present in the tested datasets and some
minor occlusions of other objects, however, more evaluation
is needed using cases like people or other machinery passing
by between the camera and the robot blocking the view.

This work has multiple possible applications. One would
be the safety aspect of identifying robots in robotised en-
vironments like factory floors, warehouses or automated
surgery rooms where an operator has a wearable camera
detecting robots in the field of view. Another application
would be for robot-robot interaction. With swarm robotics,
both homogeneous and heterogeneous, and different sizes,
direct communication between them is not always reliable.
Our approach would allow the robots to observe and track
each other using small cameras and identify the intentions
of other robots in the surroundings.

For the human-robot collaboration tasks, a person tracking
can be achieved using devices like Leap Motion or skeleton
tracking to estimate of the relative hand positions to the
robot. This can be used for tool handover between the person
and the robot, working towards a common goal or even
hand-gesture control, while avoiding any unwanted physical
contact between the two.

In the future, we plan to test the system with more types
of the robots by using transfer learning on pre-trained CNN.
In this case, the dataset needed to teach to identify a new
robot type should be significantly reduced compared to the
current setup. Adding human skeleton tracking would move
the work closer to the real-world human-robot interaction
tasks. The system will be tested in some use case scenarios to
identify the robustness in less controlled environments with
more illumination changes and changing setups.

ACKNOWLEDGMENT

This work is partially supported by The Research Council
of Norway as a part of the Engineering Predictability with
Embodied Cognition (EPEC) project, under grant agreement
240862, and by the Austrian Ministry for Transport, Innova-
tion and Technology (BMVIT) within the project framework
CollRob (Collaborative Robotics).

REFERENCES

[1] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical systems archi-
tecture for industry 4.0-based manufacturing systems,” Manufacturing
Letters, vol. 3, pp. 18–23, 2015.

[2] J. Roach and M. Boaz, “Coordinating the motions of robot arms in
a common workspace,” IEEE Journal on Robotics and Automation,
vol. 3, no. 5, pp. 437–444, 1987.

[3] J. Leitner, S. Harding, M. Frank, A. Förster, and J. Schmidhuber,
“Transferring spatial perception between robots operating in a shared
workspace,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 1507–1512.

[4] C. Fitzgerald, “Developing Baxter,” in Technologies for Practical
Robot Applications (TePRA), 2013 IEEE International Conference on.
IEEE, 2013, pp. 1–6.

[5] J. Miseikis, K. Glette, O. J. Elle, and J. Torresen, “Automatic cal-
ibration of a robot manipulator and multi 3d camera system,” in
System Integration (SII), 2016 IEEE/SICE International Symposium
on. IEEE, 2016, pp. 735–741.

[6] S. Schneegans, P. Vorst, and A. Zell, “Using RFID Snapshots for
Mobile Robot Self-Localization.” in EMCR, 2007.

[7] J.-S. Gutmann and C. Schlegel, “Amos: Comparison of scan matching
approaches for self-localization in indoor environments,” in Advanced
Mobile Robot, 1996., Proceedings of the First Euromicro Workshop
on. IEEE, 1996, pp. 61–67.

[8] O. Stasse, A. Escande, N. Mansard, S. Miossec, P. Evrard, and
A. Kheddar, “Real-time (self)-collision avoidance task on a hrp-2
humanoid robot,” in Robotics and Automation, 2008. ICRA 2008. IEEE
International Conference on. IEEE, 2008, pp. 3200–3205.

[9] A. De Santis, A. Albu-Schaffer, C. Ott, B. Siciliano, and G. Hirzinger,
“The skeleton algorithm for self-collision avoidance of a humanoid
manipulator,” in Advanced intelligent mechatronics, 2007 IEEE/ASME
international conference on. IEEE, 2007, pp. 1–6.

[10] W. J. Wilson, C. W. Hulls, and G. S. Bell, “Relative end-effector con-
trol using cartesian position based visual servoing,” IEEE Transactions
on Robotics and Automation, vol. 12, no. 5, pp. 684–696, 1996.

[11] A. Ruf, M. Tonko, R. Horaud, and H.-H. Nagel, “Visual tracking of an
end-effector by adaptive kinematic prediction,” in Intelligent Robots
and Systems, 1997. IROS’97., Proceedings of the 1997 IEEE/RSJ
International Conference on, vol. 2. IEEE, 1997, pp. 893–899.

[12] B. Daachi and A. Benallegue, “A neural network adaptive controller
for end-effector tracking of redundant robot manipulators,” Journal of
Intelligent & Robotic Systems, vol. 46, no. 3, pp. 245–262, 2006.

[13] I. Siradjuddin, L. Behera, T. M. McGinnity, and S. Coleman, “Image-
based visual servoing of a 7-DOF robot manipulator using an adaptive
distributed fuzzy PD controller,” IEEE/ASME Transactions on Mecha-
tronics, vol. 19, no. 2, pp. 512–523, 2014.

[14] M. R. Soltanpour and M. H. Khooban, “A particle swarm optimization
approach for fuzzy sliding mode control for tracking the robot manip-
ulator,” Nonlinear Dynamics, vol. 74, no. 1-2, pp. 467–478, 2013.

[15] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on. IEEE, 2016, pp.
3406–3413.

[16] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement
learning for robotic manipulation with asynchronous off-policy up-
dates,” in Robotics and Automation (ICRA), 2017 IEEE International
Conference on. IEEE, 2017, pp. 3389–3396.

[17] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334–1373, 2016.

[18] P. Y. Simard, D. Steinkraus, J. C. Platt, et al., “Best practices for
convolutional neural networks applied to visual document analysis.”
in ICDAR, vol. 3, 2003, pp. 958–962.

[19] J. Miseikis, P. Knobelreiter, I. Brijacak, S. Yahyanejad, K. Glette, O. J.
Elle, and J. Torresen, “Robot Localisation and 3D Position Estimation
Using a Free-Moving Camera and Cascaded Convolutional Neural
Networks,” ArXiv e-prints, Jan. 2018.

[20] X. Yin and X. Liu, “Multi-task convolutional neural network for pose-
invariant face recognition,” IEEE Transactions on Image Processing,
2017.

[21] Y. Wu, T. Hassner, K. Kim, G. Medioni, and P. Natarajan, “Facial
landmark detection with tweaked convolutional neural networks,”
arXiv preprint arXiv:1511.04031, 2015.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[23] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and trans-
ferring mid-level image representations using convolutional neural
networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2014, pp. 1717–1724.

[24] P. Fankhauser, M. Bloesch, D. Rodriguez, , R. Kaestner, M. Hutter, and
R. Siegwart, “Kinect v2 for mobile robot navigation: Evaluation and
modeling,” in IEEE International Conference on Advanced Robotics
(ICAR) (submitted), 2015.

[25] T. Heikkilä, M. Sallinen, T. Matsushita, and F. Tomita, “Flexible hand-
eye calibration for multi-camera systems,” in Intelligent Robots and
Systems, 2000.(IROS 2000). Proceedings. 2000 IEEE/RSJ Interna-
tional Conference on, vol. 3. IEEE, 2000, pp. 2292–2297.

[26] I. A. Sucan and S. Chitta, “MoveIt!” Online Available:
http://moveit.ros.org, 2013.

	I INTRODUCTION
	II SYSTEM SETUP AND DATASET COLLECTION
	III METHOD
	III-A Loss Functions

	IV CNN TRAINING
	V RESULTS
	VI CONCLUSIONS AND FUTURE WORK
	References

