
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Technologies Required for Fusing HPC and Real-Time Data
to Support Urgent Computing
Citation for published version:
Gibb, G, Nash, R, Brown, N & Prodan, B 2019, The Technologies Required for Fusing HPC and Real-Time
Data to Support Urgent Computing. in The Technologies Required for Fusing HPC and Real-Time Data to
Support Urgent Computing. Institute of Electrical and Electronics Engineers (IEEE), pp. 24-34, The first
international workshop on HPC for urgent decision making, Denver, Colorado, United States, 17/11/19.
https://doi.org/10.1109/UrgentHPC49580.2019.00009

Digital Object Identifier (DOI):
10.1109/UrgentHPC49580.2019.00009

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The Technologies Required for Fusing HPC and Real-Time Data to Support Urgent Computing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. Apr. 2024

https://doi.org/10.1109/UrgentHPC49580.2019.00009
https://doi.org/10.1109/UrgentHPC49580.2019.00009
https://www.research.ed.ac.uk/en/publications/542f87b8-cb92-4c39-9be9-aeae04e09eb4


The Technologies Required for Fusing HPC and
Real-Time Data to Support Urgent Computing

Gordon Gibb, Rupert Nash, Nick Brown, Bianca Prodan
EPCC

The University of Edinburgh
Bayes Centre, 47 Potterrow, Edinburgh, EH8 9BT, UK

g.gibb@epcc.ed.ac.uk

Abstract—The use of High Performance Computing (HPC) to
compliment urgent decision making in the event of disasters is
an important future potential use of supercomputers. However,
the usage modes involved are rather different from how HPC
has been used traditionally. As such, there are many obstacles
that need to be overcome, not least the unbounded wait times
in the batch system queues, to make the use of HPC in disaster
response practical. In this paper, we present how the VESTEC
project plans to overcome these issues and develop a working
prototype of an urgent computing control system. We describe
the requirements for such a system and analyse the different
technologies available that can be leveraged to successfully build
such a system. We finally explore the design of the VESTEC
system and discuss ongoing challenges that need to be addressed
to realise a production level system.

Index Terms—keyword

I. INTRODUCTION

The Visual Exploration and Sampling Toolkit for Extreme
Computing (VESTEC) project is an ambitious EU-funded
Horizon 2020 project that aims to fuse HPC with real-time data
to support urgent decision making [1]. VESTEC aims to build
a flexible toolchain that incorporates the complete workflow
required for an urgent computing event, from the data acqui-
sition, through running simulations on HPC machines to pre-
senting the results to an urgent decision maker. This toolchain
will be completely automated, so when a disaster begins it will
be triggered (either by an urgent decision maker or sensors) to
collect and process relevant data which is then used as input for
simulations. The VESTEC system will then run a number of
jobs on HPC machines to simulate the disaster. This could be a
single simulation, a chain of simulations, or even an ensemble
of simulations from which statistical inference can be made.
The results of these simulations are then made available to
the urgent decision maker so that they can use these to benefit
the disaster relief. The system will be able to kick off new
simulations or modify currently running ones according to new
data from the ongoing disaster, or upon instructions from the
urgent decision maker.

To build and evaluate the tools for such sophisticated work-
flows for urgent decision making, VESTEC is focused on three
use cases. The first use case is forest fire modelling, which
will incorporate data from satellite observations and up to date
weather simulations to drive an ensemble of simulations that
simulate the fire’s progression, whose results are passed to the

urgent decision maker. As new data arrives, new ensembles
will be run to reflect the new data, and the urgent decision
maker is also able to run new ensembles (for example to
see how taking some action will affect the progression of
the fire). This allows the urgent decision maker to select
better evacuation strategies and fire suppression priorities. The
second use case is that of simulating the spread of mosquito-
borne diseases, which will incorporate data from weather
forecasts, as well as land use data from satellites to run
simulations predicting mosquito population’s evolution with
time, and hence proxies for the disease risks. The models can
be driven and modified by the urgent decision maker to explore
how strategies such as vector control alters the spread of the
mosquitoes. This allows the urgent decision maker to choose
appropriate vector control methods and the best allocation of
medical supplies to those who are likely to need them the
most. The final use case is that of space weather prediction.
This will use data from observations of the Sun and from in-
situ satellite measurements in the Earth’s magnetosphere to
simulate the changing magnetospheric field and the dynamics
of high energy electrons in the magnetosphere. The urgent
decision maker can use the results from these simulations
to identify whether (and when) satellites should be powered
down to protect their electronics, and if any actions need to
be taken on the ground to protect electrical grids from large
eddy currents induced by the earth’s changing magnetic field
that can damage transformers.

In this paper, we will focus on the basic requirements for
and possible technologies that can be used to construct the
control system for an urgent computing framework such as is
proposed by VESTEC. First, we will review the background in
urgent decision making in Section II. We then take an in-depth
look at the required functionalities and components for such a
system, and for each consider technologies that can be used as
well as some design strategies in Section III. In Section IV we
describe the design decisions we have made for the VESTEC
system, based on the analysis presented in Section III. Finally,
in Section V we discuss the ongoing challenges that must be
overcome to achieve a fully operating VESTEC system.

II. BACKGROUND

Disasters such as forest fires, disease outbreaks and extreme
weather tend to evolve rapidly and require a rapid response to



avoid, or at least mitigate loss of life and damage to property. It
is therefore prudent that an urgent decision maker, the person
or organisation responsible for managing the disaster relief,
works with accurate information as quickly as possible for
them to choose the best course of action. For example, in the
case of a forest fire, if the urgent decision maker has up to date
information on the location of the fire and the wind direction
they can prioritise who to evacuate, as well as where to place
firefighting teams to best combat the spread of the fire.

Advances in technology over the preceding decades have
opened up many new opportunities in aiding urgent decision
makers. In an ever more connected world, there are numerous
data sources available, from satellites, IoT sensors, and even
social media sources such as Twitter. There is a tremendous
wealth of information in all this data if it can be mined and
aggregate to aid the decision maker. Additionally, with the
ubiquity of handheld, internet-connected computing devices
such as mobile phones and tablets, it is possible for the
decision maker to communicate instantly with rescue workers
at the site of the disaster and disseminate any appropriate data.
The urgent decision maker themselves can also be at scene at
the disaster and still have access to all the up to date data they
require to make quick decisions.

One such example of the use of recent technological
advances is the assessment of destruction after hurricanes
[2]. MIT Lincoln Laboratory’s Humanitarian Assistance and
Disaster Relief Systems Group plan to use LIDAR to generate
a map of Puerto Rico’s topology. After a hurricane, another
LIDAR survey is be carried out, and compared to the original
baseline map. Algorithms are then used to determine the
locations of damage, which allows disaster relief crews to
quickly identify where they need to go to provide assistance.
This use of technology represents a step change in capability
because, presently this is achieved by driving cars about or
flying a small aircraft over the island and taking photographs,
then manually having to identify locations of damage. The
inclusion of LIDAR allows data to be acquired much more
quickly, hence focusing relief effort to where it is needed in
a more timely manner.

Another example is the Next-generation Incident Command
System (NICS) [3], [4], also developed by MIT Lincoln
Laboratory in partnership with the California Department of
Forestry and Fire. This is a web-based platform that allows dis-
aster workers in the field to coordinate large-scale emergency
responses. It consists of an incident map with annotations
and an interactive whiteboard that contains data inputted by
relief workers and external data sources. This provides the
capability for individuals and groups to coordinate a response,
collaborating on decision making and sharing information on
the rapidly evolving situation.

With the rapidly increasing power of HPC machines, it is
now possible to model the evolution of disasters faster than
real-time. This is a very exciting prospect because it permits
the disaster to be forecasted, giving the urgent decision maker
foresight in how the disaster may unfold, allowing them to
explore a range of possible response options and take more

effective preemptive actions to mitigate the disaster. Often such
forecasts must be fed with observational data which needs
to be collected from various sources, pre-processed and then
input into a simulation, typically running on an HPC machine.
The results from this simulation must then be post-processed
and delivered to the urgent decision maker so they can take the
appropriate actions. The developing field of using computing
to aid urgent decision makers is known as urgent computing
[5].

Perhaps the most well-known and ubiquitous application
of urgent computing is that of weather forecasting. The vast
majority of weather forecasting centres have dedicated HPC
resources to run forecasts upon, and often have access to
backup facilities [6], [7] if their primary machine fails or
if they need more computing resources during a particularly
extreme weather event. For example, if a severe storm is likely
to hit a region of a country, the forecasts will predict this storm
hours, possibly days in advance. The centre may then decide
to run further high resolution forecasts to better constrain the
path of the storm, and the severity of the conditions during
the storm. Using this data they can provide weather warnings
to members of the public and businesses, and advise them on
the best course of action to take. As the storm progresses,
the forecasts and hence warnings can be updated in almost
real-time to provide the best possible advice to people in the
affected region, potentially saving lives, and mitigating the
damage to the local economy.

The above weather forecasting example is, unfortunately, a
very idealised example of urgent computing. As stated, most
weather forecasting centres have dedicated HPC machines
to run these forecasts on. Furthermore, these centres are
continually running forecasts that they know will complete in
a bounded time. As such their supercomputers are constantly
in use and streamlined pipelines are in place to collect and
process observational data, run the forecasts then obtain the
results. This is not the case for most disasters. Forest fires,
for example, are isolated events that occur sporadically, whilst
earthquakes or disease outbreaks tend to occur at random.
It is therefore not economically viable to have a dedicated
HPC machine constantly ready and waiting to run forecasts
for these disasters, because such a machine would likely be
idle for the vast majority of the time. Additionally, a single
disaster response HPC machine could also cause problems
if multiple disasters occurred simultaneously, as there would
be no capacity to scale to larger computing resources if
required. For most disasters, it is therefore prudent to use time
on existing international, national or regional HPC systems.
Unfortunately, HPC systems tend to be optimised for job
throughput rather than individual job latency and as such there
could be very long (hours, days possibly even weeks) wait
times in the queue. For disasters unfolding very quickly over
minutes or hours, this makes traditionally configured HPC
machines essentially useless as the results for a simulation
may only be available long after the disaster has finished.

The Special PRiority and urgent computing Environment
(SPRUCE), is one approach to urgent computing that tries to



overcome the limitations of batch systems for urgent comput-
ing [8]. With SPRUCE, urgent decision makers were given
special tokens that could be used to raise a job’s priority in a
batch queue on an HPC system. Tokens came with different
priorities, such as simply increasing the priority of a job in
the batch queue, putting a job to the front of the queue,
or suspending currently running jobs to immediately run the
requested job. The priority chosen by the user depended on the
urgency of the situation and the higher priority the more costly
the use of the token became. This approach overcame the
problem of long batch queue wait times, however it required
an agreement with the HPC facility to enable such a policy,
and modifications to the batch system to facilitate the use
of SPRUCE tokens. Furthermore, there needed to be human
intervention to use a token (and indeed to choose the level of
queue priority required), as well as human intervention once a
simulation has been completed to pull back any data required
to produce a forecast for the urgent decision maker.

III. TECHNOLOGIES REQUIRED FOR AN URGENT
DECISION MAKING CONTROL SYSTEM

A centralised control system is the functionality that links
the HPC machines, data sources and urgent decision makers
together. Such a system must be capable of obtaining data
from external data sources such as sensors, run jobs on an
HPC machine to carry out the forecasts, and relay the results
of the simulations to the urgent decision maker (Figure 1).
It is vital that the control system tries to run jobs as quickly
as possible to minimise the wait time between a job being
submitted and the results being available. Ideally this system
will have access to many HPC machines such that:

• Jobs are able to run more quickly by picking the appropri-
ate machine, hitting the optimal sweet spot of suitability
for the target application, low queue time, and limited
data movement

• The impact of an urgent decision workload can be
evaluated and tracked on a machine by machine basis.
As responding to disasters could involve running many
jobs over many hours, it might be prudent to spread the
workload across many machines, but such an approach
should not significantly impact the operation of individual
machines.

• The health of the individual HPC machines can be
monitored and their availability tracked. If an individual
machine becomes unavailable then the system can avoid
submitting jobs to it in future, and previously scheduled
jobs that were waiting to run can be allocated elsewhere.

We also identified that the control system should be writ-
ten in a language that is powerful enough to express the
complex abstractions that will inevitably be required. Ideally
the language would also have access to numerous software
libraries so that existing technologies can be leveraged easily.
We identified that languages with web-based enterprise level
functionality, such as Java and Python, are good candidate
choices. Whilst the use of Java or Python might seem like a
strange choice in the context of HPC, much of the control

Control 
System

Fig. 1. A schematic of a control system and how it should interact with the
urgent decision maker (top), obtain data from data sources (right), read and
write data to database(s) and other persistence stores (bottom) and connect to
HPC machines (left).

system itself is marshalling and control. Adapting such a
language allows one to take advantage of its rich ecosystem
and also enables the rapid prototyping and modification of
functionality as lessons are learnt during development. Cru-
cially, both languages have support for calling functionality in
other languages, such as C or C++ [9], [10]. As such, if during
development it is found that aspects of the control system
are performing poorly and acting as a bottleneck in general,
then these can be converted into a natively compiled language
and still integrated with the overall control system. By first
developing these components in a higher-level language the
main structure and functionality of these components will have
already been discovered, so any conversion at the language
level should be a fairly trivial task.

In this paper we will now explore the major components that
such a control system requires, and the technologies that could
be leveraged in implementing these. Firstly, it is important to
define some terminology we will be using. An activity is a
complete workflow for dealing with a specific disaster, whilst
a job is a particular part of that workflow running on an HPC
machine. Over the course of an activity, many jobs may need
to be run, in serial, concurrently, or a combination of the two
depending on the workflow. For example, input data may need
to be pre-processed before being used as input to a simulation,
and both the pre-processing and simulation could be separate
jobs, possibly on different HPC machines.

The control system will require some persistent data store
to contain simulation data and the current state of the System.
It must also contain the functionality to connect to HPC
machines to submit jobs, transfer data and monitor their
queues. Data from external sources must be available to the



control system, and it must be able to execute and organise the
complex workflows involved in running activities. Finally, it
must have a user interface such that the urgent decision maker
can view results and steer a simulation if necessary.

A. Persistence

A control system is required to store information on its
state, namely the state of activities and their simulations,
but also potentially input data and results from simulations.
Here we will consider two possible technologies, namely
relational databases and object storage, which can meet these
requirements.

Relational databases are ordered into one or more tables of
rows and columns. Each row has a unique identifier key and a
row can be linked to rows in other tables through a column that
contains the key for the row in another table. This allows one
to construct complex relations between tables. For example,
there could be a table for activities, a table for individual jobs,
and a table for the HPC machines. Each row of the job table
would contain the key for an activity row, thus linking jobs to
activities, as well as a key to a machine row, linking the job
to a particular machine. One could then easily find all jobs
associated with a particular activity running on a particular
machine by searching for that given activity’s key in the job
table, and then refining this search by jobs whose machine
key corresponds to the requested machine. There numerous
implementations of relational databases, for example SQLite
[11], MySQL [12] and MariaDB [13]. Most relational database
implementations use the Structured Query Language (SQL)
to retrieve data from the databases. Although the underlying
implementation may be different, writing queries to obtain
information is thus largely agnostic of the underlying imple-
mentation.

One could further abstract retrieving data from the database
using an Object Relational Mapper (ORM) [14] which ab-
stracts interaction with the database to a set of persistence
objects, such that developers can work with the content of a
database in the form of objects rather than raw SQL queries.
This permits one to integrate the database into the language
being used for the control system, without having to explicitly
run SQL queries to set or retrieve data. To persist items into
the database, the programmer sets the value of fields in an
object and any links between objects to form relationships.
This is exactly how developers tend to use normal objects in
Python, the only difference being that the underlying ORM
technology then automatically stores this information and any
object relationships in the database. To retrieve data from the
database the programmer will write queries, but unlike SQL
queries these tend to be within the context of the programming
language. The data is then returned as a populated set of
objects that the code can work with, any modifications made
to field values then automatically reflected in the database.

Relational databases are best suited for storing structured
data, however are not so well suited for storing large amounts
of unstructured data, for example simulation output files. For
the large (many GBs) of simulation output data, an object

store is a more appropriate technology. Object storage stores
data as objects identified by a unique identifier which is used
to retrieve the data. This is opposed to filesystem storage,
which stores data in a file hierarchy. Each object in the object
store tends to have a HTTP URL associated with it, so this
data can be accessed over the HTTP protocol. Data used as
input to simulations, or as output from simulations can be
stored in object storage, with its unique identifier/URL stored
in the relational database. This data can thus be retrieved as
required, but not take up significant space in the database.
The object store could be local to an HPC machine, part of
the control system, or even in the cloud. It may be possible
to have several object stores in different locations to benefit
different requirements for different activities.

B. HPC Machine Interface

There must be a means for the control system to connect
to HPC machines. Connectivity broadly falls under two main
categories: submitting jobs and retrieving their results, and
monitoring the machine status and queue. In this section
we first describe the basic requirements to connect to an
HPC machine, then discuss the specific requirements for each
category.

Connection to most HPC machines is achieved through
the Secure Shell (SSH) protocol, whilst transferring data to
or from the machines is achieved through SSH file transfer
protocols (SFTP) or secure copy (SCP) protocols. A software
layer is thus required that is able to connect to a machine
using SSH and SFTP/SCP. There exist a number of libraries
that permit such functionality, for example with Python one
can use SAGA [15], Paramiko [16] or Fabric [17]. The control
system must have login accounts and passwords/SSH keys to
gain access to the HPC machines and many HPC machines
provide explicit access policies which often prohibit activities
such as the sharing of accounts. A control system requires
credentials for the appropriate machines, most likely in the
form of its own machine processing user. This could cause
issues from a policy perspective because connecting to an HPC
machine and running jobs under a single user from the control
system across many urgent decision makers might fall foul of
account sharing policies. This important issue must be kept in
mind when developing such a system, and can be mitigated
through negotiation with the affected HPC centres to relax
their policy/create an exception, or to have multiple machine
accounts, one per decision maker.

1) Job Submission: The vast majority, if not all, HPC
machines use batch systems to submit jobs. There are a
number of batch systems commonly used by HPC systems
such as PBS, Slurm, Torque etc. As the control system will
need to interact with several different HPC resources, each
with potentially a different batch system, the control system
must be aware of the different batch systems and how to use
each one. Whilst the different batch systems differ in their
command syntax, the general inputs to a batch command are
similar between batch systems. For example, all require the
node/core count, walltime and an accounting code, although



the format of these may be different. It should therefore be
possible to write a generic wrapper for submitting a job, taking
these aforementioned variables as inputs, which then parses
these into a submit command specific to the HPC machine. It
should be mentioned that libraries such as SAGA and Fabric
do possess limited functionality for batch job submission,
although we have found that the expressibility they provide
is not sufficient for a control system, which is not surprising
given the novel use of HPC this represents.

In addition to submitting jobs, the HPC interface must
also be capable of transferring input files and data onto the
HPC. Similar to above, functionality already exists in SAGA,
Paramiko and Fabric to provide SCP and SFTP file transfer,
although it may be worth writing an interface layer to abstract
lower level communication functions to higher level data
transfer commands. If data is on a remote object store, it would
be more efficient to transfer the data straight from the object
store to the HPC machine, rather than onto the control system
then onto the HPC machine. A file transfer abstraction layer
could simplify file transfers for the developer by making this
agnostic of the source and destination of files to be transferred.

2) Machine Status: The HPC interface must also be able
to query a machine’s queue for the status of jobs running
on it. This includes jobs submitted by the control system,
but also the status of all jobs so that the control system
can monitor the busyness of the queue and the status of
the HPC machine more generally. As discussed above, HPC
machines may use different batch systems so the commands
that must be used to query the queue and their output will
differ, however fundamentally the same information must be
provided and returned. It should thus be possible to write an
abstraction layer to query the queue status from a generic
HPC machine, which at a lower level uses the appropriate
commands and parses their output appropriately to obtain the
queue information.

Querying the statuses of jobs submitted by the control
system would be reasonably straightforward. The IDs of the
submitted jobs would be passed to the batch system and it
would return their statuses (e.g. Queued, Running, Complete,
Error, etc). Based on this information the control system
can then decide on whether further action is necessary, for
example, if a job had completed the control system can then
plan to transfer results off the HPC machine or submit a new
job as required.

A much more difficult yet interesting problem is that
of querying the status of the entire queue. The status and
properties of all the jobs on the HPC machine in all queues
on that machine must be returned. This information must be
collected for all machines. The control system can then track
all the jobs currently in a queue, queued and running, to gain
an understanding of how busy the machine is and construct
an estimated wait time for a possible job to be submitted.
Considering all queues on all machines, the control system
can then select the machine with the shortest queue time to
submit a job to.

Whilst considering the current state of a queue is useful, it

is far more powerful to collect historical information on each
machine and their queues. The control system can periodically,
for instance every 10 minutes, collect queue information and
store this in its database. This allows the control system to
model queue behaviours, and hence refine its predictions for
estimated wait times. One challenge is that, for jobs currently
running, the naı̈ve way to determine their remaining runtime is
to compare how long they have currently been running for to
their requested walltime. We found that when submitting jobs
users tend to overestimate the required walltime, so using the
requested walltime is always an overestimate of the remaining
runtime in the queue. With access to historical job data,
the control system can use this to statistically determine a
more likely remaining runtime for jobs, and hence improve
its predictions.

Storing historical data also allows the control system to
highlight anomalies, for instance, if the machine suddenly
becomes busy every day at a specific point in time, or
whether the current machine load is abnormal. Additionally,
this historical data enables a reliability metric to be associated
with each machine, based on how often they are offline, which
can be borne in mind when submitting jobs. Whilst this is a
fairly crude approach to tracking machine health, it provides
some level of understanding whether the job is likely to run
through to completion or not and in the future can be extended
to capture whether specific jobs have failed.

It would be possible to use a machine learning approach
to consider the data for each queue on each machine and
use this to predict wait times etc (e.g. see [18], [19]). It
may also be possible to use a reinforcement learning [20]
approach to improve the prediction power of the system as new
queue data becomes available. Producing such a prediction
system is likely a reasonable amount of work, however, such
a system is a benefit to the wider HPC community, not just
for urgent decision making, so doing such work would be very
worthwhile.

C. Sensor Interface

The control system must be able to access data relevant
to the disaster. This can come in many forms, from satellite
data to weather forecasts to social media posts. Irrespective
of its origin, the data needs to be used both as an input to
simulations, but also potentially as a trigger to start an activity,
or to modify an existing activity, for example if circumstances
have changed drastically. Although we call this component the
sensor interface, it is important to note that it need not include
just sensors, but generally any interface to data external to the
control system and HPC machines. Similarly, a sensor in this
case is a provider of data, and may not represent an actual
sensor.

There are two approaches that can be used to obtain data,
namely push-based and pull-based approaches. In the push-
based approach, an external source notifies the control system
of new data or of any significant change in the data. Tech-
nologically, this would require the control system to export a
REST interface [21] that the external sensor can send HTTP



requests to with the new data. The sensor must also be aware of
the control system and know when it needs to push data to it.
In the pull-based approach, the control system will periodically
poll sensors for new data, likely using an HTTP GET request.

Upon obtaining data, the Sensor Interface must be able to
trigger events or actions for the control system to carry out.
For example this could be running processing work on the data
to reduce it to a useful form for simulations or to initiate off
new jobs or activities. Simple processing could be carried out
on the control system, but in principle this processing could
be deferred to an HPC machine as a job.

D. Simulation Manager

The simulation manager can be considered the heart of any
such control system. It is responsible for determining which
simulations must be run, where they need to be run, and
in which order to complete an activity. All the components
mentioned previously are thus tools that are used by the
simulation manager to obtain data, set up and run jobs on
HPC machines. The simulation manager must be aware of
the various activity types (e.g. forest fire, disease outbreak or
space weather event) and how to progress these activities. Each
activity could, in principle, have a quite complex workflow,
and so it is vitally important that the simulation manager has
the capability to understand and execute these workflows.

There are a variety of workflow technologies available, and
one must consider which one is most suitable for use in urgent
computing. From surveying the technological landscape it was
found that the two most mature and ubiquitous approaches
are the Common Workflow Language (CWL) and Apache
Taverna. A major benefit to both these technologies is that, not
only are there existing implementations of workflow engines
that can be leveraged, but also a wealth of other supporting
tools to perform tasks such as composing workflows and
visualising them.

The Common Workflow Language (CWL) is not a specific
implementation per-se, but instead an open standard for de-
scribing workflows [22]. The goal is to encode this information
in a way which makes the workflows portable and scalable
across a variety of software and hardware environments.
Driven by data-intensive science, and specifically the life
sciences, CWL is developed by a working group compris-
ing of members across the data workflow community. This
standard is becoming dominant in the workflow community
and workflow technologies that followed different description
formats have either moved to CWL or at-least support CWL
based descriptions.

By contrast, Apache Taverna [23] is an actual software suite
for designing and executing workflows. This is an Apache
incubator project, meaning that it is currently not mature
enough to be a full Apache project but is being supported
by the foundation to move to that status. This technology has
also been developed from life sciences and is currently in
use with some of the large organisations in that area such
as the National Center for Biotechnology Information, the
European Bioinformatics Institute, and the DNA Databank of

Japan. Oriented around a workbench, users can use their tools
to design workflows on the desktop and explore them to the
Taverna engine for execution either locally or remotely.

Considering the possible workflows required to carry out
an urgent computing activity, we concluded the following four
criteria that a workflow system must possess:

1) Support concurrent execution of different parts of the
workflow at different levels in the hierarchy.

2) The ability to execute multiple, different, workflows
concurrently and progress these independently from one
another.

3) Reasonable performance characteristics, whilst these are
not computationally intensive it is important that the
workflow engine is able to progress workflows in a
timely manner.

4) Support conditional branching in workflows, where dif-
ferent routes will be taken depending upon specific pre-
conditions.

CWL does not support the fourth criterion of conditional
branching, which could form an important part of activity
workflows. Apache Taverna does support conditional work-
flows to some extent, although this does not seem like a
commonly used feature, but it is a heavy weight technology
and from testing has raised doubts around criterion 3. The
other danger of Taverna is that, due to its incubator status, it
is currently in-flux, with the overarching workflow description
language having changed recently and there are no guarantees
that the Apache foundation will bring it to full project status.
As such, Taverna represents a significant risk as it could
change substantially or even cease to exist in its current
form. Whilst the above analysis seems to exclude both of
the considered workflow technologies as they do not meet
our criteria, it may still be possible to leverage the workflow
technologies to describe specific parts of the workflow, rather
than the workflow as a whole. It is required, however, to write
a custom workflow solution for the overarching workflows of
different activities.

E. User Interface

There must be an interface to the control system and in
particular, the simulation manager, so that an urgent decision
maker can track the progress of simulations, modify their pa-
rameters, quickly view results and initiate new simulations and
activities as required. Given the ubiquity of web applications
today, it is reasonable to create a web-based interface to the
control system, as a plethora of web technologies that can be
leveraged exist. For more detailed visualisation of simulation
results, a technology such as Paraview [24] or VisIt [25] may
be required, however a simple web interface suffices for the
majority of requirements. The advantage of a web interface is
that the only software requirements on the side of the urgent
decision maker is a modern web browser. This permits the
urgent decision maker to gain access to the control system
whilst out in the field with hardware such as a mobile phone
or tablet, thereby freeing them from requiring to be close to
a reasonably powerful workstation.



An HTML document is static (e.g. unchanging), however
this can be made interactive through the use of JavaScript
which permits the web page to be dynamically updated. Any
such web interface will have to provide information which
can vary based on the website user, any ongoing activities,
and various other factors. This variability in information can
be achieved either by the web interface serving dynamically
created HTML documents on the fly as the user requests
them, or by the web interface serving a static HTML page
with embedded JavaScript that then fetches and displays the
required data. This data would be retrieved (on the server side)
from the relational database.

As previously mentioned, a web interface is sufficient
for basic tasks, however fails for visualisation of complex
simulation output. For this, more complex specialist tools
are required which are able to display remote data. One
such tool is Paraview, which can connect to a remote HPC
machine and be used to display simulation data. Although
ideal for visualisation, these tools are not suitable for use as an
interface to the control system. Access to the control system
and Visualisation of data therefore require both a web interface
and visualisation software such as Paraview. The Web interface
could be used to provide a handle to the data which can then be
displayed by the visualisation software, however. For example
the web interface could provide the user with an IP address,
port, and any credentials required to connect the visualisation
software to a running simulation or to display remote results.

IV. THE VESTEC CONTROL SYSTEM

In this section we will describe the design and technology
decisions we have made as part of the VESTEC project given
the discussion in Section III. Firstly, we chose to develop
the control system in Python, namely Python 3. Python was
chosen because of its ease of use, large ecosystem of libraries
and the ease at which it can be integrated with C/C++ if
necessary. We use Python 3 because Python 2 planned for
returement at the end of 2019 [26], although we note that this
slightly reduces our choice of libraries to use as several have
not been ported to Python 3. From Section III it is clear that
the control system naturally partitions into several separate
components, such as the database and persistent storage,
HPC machine interface, sensor interface, web interface and
workflow manager. We therefore chose to create separate
components which communicate to each other. Structuring
the system like this allows each component to be tested in
isolation, and also permits different people/teams to work on
each component individually. For deployment, we use Docker
[27], [28] containerisation whereby each component resides
within a Docker container, and the whole control system is
run using docker compose [29]. Use of containerisation allows
the system to be developed on a local machine but then easily
ported to a server without having to worry about having a
specific software stack or configuration on that server. Figure
2 displays a schematic for the VESTEC control system’s
components and how they are connected.

User 
Interface

Simulation 
Manager

HPC 
Interface

Machine 
Status 

Manager

Sensor 
Interface

Fig. 2. A schematic of the VESTEC control system. Note that every
component is connected to the database (centre) and to the simulation manager
(top), but not all components are necessarily connected to each other.

The individual components of the control system require to
communicate with each other to coordinate and achieve the
full functionality required of the system. To this end, they
need to be able to communicate with each other through well-
defined interfaces. At present we are using a RESTful [21]
interface between components, using the Python Flask web
microframework [30], whose simplicity and flexibility is of
major benefit here. Each component exposes a RESTful inter-
face, with messages being sent with HTTP requests, carrying
any required information in JSON. Whilst REST has become
a very popular choice it does have several disadvantages [31]
in the context of implementing the VESTEC system:

• REST is blocking, such that it requires that the client
receives a response from the service before it can pro-
ceed. Hence whilst naturally synchronous operations, for
instance, waiting for resulting data from the server, are
fairly simple, supporting asynchronous operations is not.

• REST is a text-oriented protocol, with data most often
returned in JSON format. Over HTTP(S) this can become
problematic due to the overhead of data transfer.

• Clients must know exactly which services they need to
connect to and access, for instance, it is not possible to
broadcast a message out to many different web services
and for an appropriate one to handle it.

Therefore, in addition to a REST approach, within the
VESTEC system a message oriented paradigm has been
adopted. This is where messages are sent from a client to some
broker asynchronously, and these are then forwarded onto the
most appropriate handler.

Advanced Message Queueing Protocol (AMQP) [32], which



Producer

my_queue
Consumer

my_queue

another_queue

another_queue
Consumer

Fig. 3. An illustration of the AMQP central concepts of producers, queues
and consumers.

is a very popular and standard way of driving interaction via
messages, has been selected and various implementations of
the protocol are available. In the general AMQP approach,
a number of independent queues are declared, each with
associated consumer(s) that will pick data from the queues
in a specific order, often based on the first-in first-out method,
and process this as appropriate. This is illustrated in Figure
3. Producers generate the messages and there can be any
number of these interacting with the queues, sending data to
different queues at different points if necessary. Messages in
the queues are persisted so, for instance, if the system was
to fail then data is not lost but instead will continue to be
consumed once the system has been restarted. Such behaviour
is important for a production version of the VESTEC system,
where data loss in the event of failure could have severe
consequences. AMQP supports multiple patterns of message
routing and, as such, it is possible to define powerful interac-
tions. For example, messages can be published to one or more
queues, to which multiple consumers can subscribe, without
the publisher having to be explicitly aware of this. One can
also connect multiple consumers to the same queue which
enables parallelism at the message consumption level, where
multiple consumers execute concurrently consuming different
messages in the same queue. Another major benefit of AMQP
is that they can be easily scaled up across multiple servers
to improve reliability or performance. The services also offer
message buffering which means that they can cope with an
influx of messages at a greater rate than the consumer(s) can
process.

One can also use AMQP much like a conventional HTTP
request using a Remote Procedure Call (RPC) style of messag-
ing where the original message is dispatched with a suitable
reply-to metadata header and the consumer can then use this
as the return address to answer the query. At the code level, for
VESTEC the RabbitMQ [33] implementation of AMQP has
been selected. Due to the simplicity of the technical solution,
the VESTEC system is currently built on just RESTful web
services (using Flask) internally. As the development phase
progresses the plan is for a number of these to be replaced by
AMQP. Whilst not all components of the VESTEC system
will be connected via AMQP, because it is not necessary,
this technology will play an important role for a number of
components in the future.

For the database component of the VESTEC system, we are
using a MariaDB database server. The different components
of the system connect to the database in Python using the

PonyORM [34] object relational mapper. As mentioned in
Section III-A, using an ORM abstracts the database technol-
ogy away from the programmer. As such, using PonyORM
means that we can change the database server from MariaDB
to something else at a later date with minimal effort. For
connecting to object storage, we use the Minio [35] Python
client, which allows APIs to connect to any Amazon S3 API
compatible object store. Given Amazon S3’s ubiquity, using
Minio permits us to be able to use a large number of object
storage technologies at a later date.

For the HPC machine interface, we use Fabric and the
lower level Paramiko library upon which Fabric is built. Fabric
provides much of the functionality we need (as described in
Section III-B) however not all. We, therefore, built abstractions
upon this that implement the functionality we need. We also
wrote a Python class that can interpret the output from PBS
queues and store this in the database so that the queue can
be monitored over large times. We have been collecting data
on the queues of two of the machines we have access to,
ARCHER [36] and Cirrus [37] for the previous four months
and we plan to use this data to train a machine learning
model to help predict the wait time for jobs. The HPC
machine interface is structured as two components, the HPC
machine interface, but also the machine status manager, which
is responsible for analysing queue data to gain an insight on
the queues to help with choosing which machine to run jobs
on. We have taken the design decision to use AMQP to connect
the HPC machine interface to the rest of the VESTEC system
because the technology promotes an asynchronous way of
working, which REST does not. This means that heavily used
parts of the system, such as the HPC machine interface, can
proceed asynchronously from other parts and will thus process
and respond to requests in an orderly fashion, as marshalled by
the active message queue, rather than acting as a bottleneck as
other parts of the VESTEC system are blocking for a response.
This is particularly important when, for example, we need to
transfer a sizeable file to the HPC machine as we do not want
the system to block until this is complete.

As discussed in Section III-D we found that existing work-
flow implementations are not flexible enough to meet the
requirements of the simulation manager, however some could
be leveraged to carry out parts of the workflow. The approach
chosen for the VESTEC control system is to use CWL, due
to its standardised nature, but only use this to describe each
individual activity of the workflow, and connect these using
a bespoke implementation written for the VESTEC system.
Whilst the intention was initially to avoid this, given the
current state of these technologies it is the best option at
this time. In fact, much of this can be abstracted through
the use of AMQP, where queues are defined dynamically
according to the different workflow rules and the production
of a message occurs when a trigger fires, the corresponding
rule looked up and the message is placed on a specific queue
which is then consumed by the next action to execute. In this
manner, the workflow engine builds upon AMQP, producing
and consuming messages, along with determining how to route



Fig. 4. Illustration of the planned sensor approach where a RESTful approach
is used to obtain data from sensors, then this is fed into appropriate AMQP
queues for processing by consumers.

these which involves looking up which queue to place the
message on.

The sensor interface is currently the least mature component
of the VESTEC server. We plan to have a RESTful system
(e.g. Flask) for any push-based requests from sensors, and an-
other system to pull for data. Once these systems have acquired
the data, they will act as an AMQP producer, publishing the
received sensor data to the corresponding queue representing
that type of sensor. Consumers, one for each sensor type, will
listen to their queue and consume messages from them. This
is illustrated in Figure 4. The role of these consumers will
be to perform any sensor type-specific actions, such as data
conversion. Whilst there is no plan to convert data to any
common format, the meta-data will need to be standardised
and it might be that only the meta-data is carried forward
into the rest of the VESTEC system, with the consumer
storing the actual data in an appropriate object store which
can be retrieved at a later time as required. The consumer
will then interact with the workflow manager to drive the
handling of the arrival of this data. Orienting the majority
of the complexity involved in processing sensor data within
the AMQP approach means that consumers, which contain
the majority of the work to process sensor data, are protected
by the queues and-so if they fall behind, the messages simply
queue up. AMQP consumers can also be configured to run
concurrently, potentially across multiple machines, and the
underlying AMQP implementation then handles this. Lastly,
as described above, the AMQP implementation persists the
messages in the queue, so if the VESTEC system fails for
whatever reason, then sensor data is not lost but will start
being delivered again once the system restarts.

We have adopted the approach of serving static HTML (with
JavaScript) to the user’s web browser for the web interface.
The JavaScript then fetches data from the VESTEC system
using HTTP requests via a defined API. Built on AJAX, this
approach issues asynchronous requests to the VESTEC server
by sending a request to a specific URI with optional input
data and proving a callback function which is executed when
a response is received from the server. We have structured the
system with a NGINX server to serve the HTML, and a sepa-
rate component running Flask to respond to the requests from
the AJAX calls. With regards to accessing remote data directly

for visualisation with Paraview, we have not implemented
this yet, but we envisage the web interface presenting the
user with an IP address, port number and any authentication
necessary to connect their Paraview Client directly to the HPC
machine. This prevents any remote connections from having
to go through the VESTEC server, thus reducing the network
load on the server and also removing the need for us to develop
a means to enable forwarding such network traffic from the
HPC machine to the user.

V. DISCUSSION AND CONCLUSIONS

In this paper we have explored the requirements for a
generic urgent computing control system. We have described
the various components that this system must contain, as well
as the possible technologies that could be used to construct
the components and build the system as a whole. The system
must consist of some form of permanent storage, incorporating
a database to record its state and possible an object store for
storing any sizeable data required by the system. It must also
be able to connect to HPC machines, both for submission of
jobs and retrieval of job results, but also to monitor queue
status and machine health. A system must be able to retrieve
data from data sources in order to prepare simulations and
react to changes in circumstances of the disaster. It must
be able to coordinate and execute the potentially complex
workflows involved in collecting and pre-processing data,
running simulations, post-processing simulation results, and
possibly using these to run further simulations. Finally, it must
provide an interface for the urgent decision maker to view
results of simulations and to initiate/control simulations.

We then outlined the design decisions made in the VESTEC
control system. We chose to write the system in Python,
with the option to write some components/routines in C/C++
if we required the extra performance a compiled language
provides. Each component is developed separately and com-
municates through RESTful interfaces, although we plan to
use AMQP, namely RabbitMQ between some components to
overcome some limitations of REST. The components run
within Docker containers, and the full system is executed with
docker compose to allow easy development and deployment.
For the database we have adopted use MariaDB, using the
PonyORM object relational mapper to interface the Python
code to the database. We use the MinIO Python API to
connect the system to any object stores we will require. The
HPC machine interface is based on Fabric and Paramiko to
connect to HPC machines, submit jobs and transfer data. For
workflow management/execution we plan to write our own
system as no pre-existing workflow technologies meet our
needs, however, the common workflow language may be used
to express certain parts of our workflows where applicable.
Finally, a HTML/JavaScript web page is used as the interface
to the system, which can forward connection details to an HPC
machine to the urgent decision maker if they require advanced
results visualisation through Paraview.

One challenge we have yet to overcome is that of how
to steer currently running simulations. This is a desirable



functionality as if a new unforeseen development occurs with
the disaster, the simulations can be changed almost instantly
to reflect this rather than having to submit new simulations,
which may have to wait in a machine’s queue for some time.
This also could come in useful for the urgent decision maker
to modify running forecasts to investigate the effects of a
proposed course of action on the disaster’s evolution, again
avoiding the time penalty of having to wait in a queue if
new jobs were to be submitted. In order to steer simulations,
we would have the simulation codes to expose an interface
from which we can communicate with it to inform it of
changes. This could either be via some RESTful-like interface
or via the HPC machine’s filesystem. Given that some HPC
machines’ compute nodes are not connected to the internet,
communication over filesystem seems to be a more likely
approach. We will continue to research the best way to achieve
this once work on the control system is nearly completed,
however we note that much of this functionality will be
required in the application codes, with the VESTEC control
system only having to provide the urgent decision maker with
a means to access the application code’s interface.

Within the VESTEC project the control system will only
federate over three HPC machines, ARCHER and Cirrus, both
hosted by EPCC in Edinburgh, Scotland, and the Beskow
[38] system hosted by KTH in Stockholm, Sweden. Ideally,
a system such as VESTEC could have access to many HPC
machines to be able to balance the load of any large urgent
computing requirements and to maximise the possibility of
getting high throughput of urgent computing jobs. Unlike
the approach adopted by SPRUCE, we do not use tokens
to raise our queue priority, but rather federate over many
HPC machines in the hope that some of these machines may
have relatively short queue times. It remains an open question
whether this is entirely sufficient, but a major benefit is that it
doesn’t require special arrangements with the HPC centres to
gain queue-jumping abilities. That being said, it is definitely a
possibility that the VESTEC system could be combined with
a token-based system to allow us to run jobs more quickly.
One alternative to using HPC machines is to use the cloud,
however, this is not as attractive an option as it may initially
seem. In a previous study for VESTEC [39], it was found that
the performance of cloud systems tends to be significantly
lower than a corresponding HPC machine, mainly due to
filesystem performance, the cost was higher, and the cloud
is not as elastic as one would hope, with reasonably long
startup wait times for large, infrequent compute requirements.
Whilst these make it impractical to rely upon a cloud-based
resource, it would still be plausible to supplement the HPC
machines we federate over with some cloud resources for some
jobs/applications.

ACKNOWLEDGMENTS

This work was funded under the EU FET VESTEC H2020
project, grant agreement number 800904.

REFERENCES

[1] (2018) Visual Exploration and Sampling Toolkit for Extreme
Computing. [Online]. Available: https://vestec-project.eu

[2] (2018) Using lidar to assess destruction in Puerto Rico.
[Online]. Available: http://news.mit.edu/2018/mit-lincoln-laboratory-
team-uses-lidar-assess-damage-puerto-rico-0830

[3] (2018) Lincoln Laboratory honored for providing access
to technology for disaster response. [Online]. Avail-
able: https://www.ll.mit.edu/news/lincoln-laboratory-honored-providing-
access-technology-disaster-response

[4] (2014) Next Generation Incident Command System Fact Sheet.
[Online]. Available: https://www.dhs.gov/publication/st-next-generation-
incident-command-system-fact-sheet

[5] S. H. Leong and D. Kranzlmller, “Towards a general
definition of urgent computing,” Procedia Computer Science,
vol. 51, pp. 2337 – 2346, 2015, international Conference
On Computational Science, ICCS 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915012107

[6] (2017) The Met Office supercomputer is one of the most powerful
in the world dedicated to weather and climate. [Online]. Available:
https://www.metoffice.gov.uk/about-us/what/technology/supercomputer

[7] (2017) CSIR and SA weather services partner for the
development of weather and climate products and services.
[Online]. Available: https://www.csir.co.za/csir-and-sa-weather-services-
partner-development-weather-and-climate-products-and-services

[8] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh, “Spruce: A
system for supporting urgent high-performance computing,” in Grid-
Based Problem Solving Environments, P. W. Gaffney and J. C. T. Pool,
Eds. Boston, MA: Springer US, 2007, pp. 295–311.

[9] (2014) How to call a C program from Java? [Online]. Available:
https://javapapers.com/core-java/how-to-call-a-c-program-from-java/

[10] M. F. Sanner, “Python: a programming language for software integration
and development,” J Mol Graph Model, no. 1, 1999.

[11] SQLite. Accessed 2019-08-21. [Online]. Available:
https://www.sqlite.org

[12] MySQL. Accessed 2019-08-21. [Online]. Available:
https://www.mysql.com

[13] MariaDB.org - Supporting continuity and open collaboration. Accessed
2019-08-21. [Online]. Available: https://mariadb.org

[14] S. Wambler. (2006) Mapping Objects to Relational
Databases: O/R Mapping In Detail. [Online]. Available:
http://www.agiledata.org/essays/mappingObjects.html

[15] G. Iwai, Y. Kawai, T. Sasaki, and Y. Watase, “SAGA-based user environ-
ment for distributed computing resources: A universal Grid solution over
multi-middleware infrastructures,” Procedia Computer Science, no. 1,
2010.

[16] Paramiko. Accessed 2019-08-21. [Online]. Available:
http://www.paramiko.org

[17] A. Hannah, “Fabric: a system administrator’s best friend,” Linux Journal,
no. 226, 2013.

[18] J. Guo, A. Nomura, R. Barton, H. Zhang, and S. Matsuoka, “Machine
learning predictions for underestimation of job runtime on hpc system,”
in Supercomputing Frontiers, R. Yokota and W. Wu, Eds. Cham:
Springer International Publishing, 2018, pp. 179–198.

[19] V. Jancauskas and T. Piontek, P. Kopta and B. Bosak , “Predicting queue
wait time probabilities for multi-scale computing,” Philosophical trans-
actions. Series A, Mathematical, physical, and engineering sciences, no.
377, 2018.

[20] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” CoRR, vol. cs.AI/9605103, 1996. [Online].
Available: http://arxiv.org/abs/cs.AI/9605103

[21] L. Richardson and S. Ruby, RESTful web services. O’Reilly Media,
2008.

[22] B. Chapman, J. Chilton, M. Heuer, A. Kartashov, D. Leehr, H. Ménager,
M. Nedeljkovich, M. Scales, S. Soiland-Reyes, and L. Stojanovic,
Common Workflow Language, v1.0, P. Amstutz, M. Crusoe, and
N. Tijani, Eds. United States: figshare, 7 2016, specifica-
tion, product of the Common Workflow Language working group.
http://www.commonwl.org/v1.0/.

[23] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows of
services,” Nucleic acids research, no. 34, 2006.



[24] Welcome to Paraview. Accessed 2019-08-21. [Online]. Available:
https://www.paraview.org

[25] VisIt. Accessed 2019-08-21. [Online]. Available:
https://hpc.llnl.gov/software/visualization-software/visit

[26] (2008) PEP 373 – Python 2.7 Release Schedule. [Online]. Available:
https://www.python.org/dev/peps/pep-0373/

[27] Enterprise Container Platform for High-Velocity Innovation. Accessed
2019-08-21. [Online]. Available: https://www.docker.com

[28] C. Boettiger, “An introduction to Docker for reproducible research,”
ACM SIGOPS Operating Systems Review, no. 41, 2015.

[29] Overview of Docker Compose. Accessed 2019-08-21. [Online].
Available: https://docs.docker.com/compose/

[30] M. Grinberg, Flask web development: developing web applications with
python. O’Reilly Media, 2018.

[31] J. Fernandes, I. Lopes, J. Rodrigues, and S. Ullah, “Performance evalu-
ation of restful web services and amqp protocol,” in Fifth International
Conference on Ubiquitous and Future Networks (ICUFN), 2018.

[32] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Com-
puting, no. 6, 2006.

[33] Messaging that just works - RabbitMQ. Accessed 2019-08-21. [Online].
Available: https://www.rabbitmq.com

[34] PonyORM - Python ORM with beautiful query syntax. Accessed
2019-08-21. [Online]. Available: https://ponyorm.org

[35] MinIo - object storage for AI. Accessed 2019-08-21. [Online].
Available: https://min.io

[36] ARCHER. Accessed 2019-08-21. [Online]. Available:
https://www.archer.ac.uk

[37] Cirrus. Accessed 2019-08-21. [Online]. Available:
https://www.cirrus.ac.uk

[38] (2019) Beskow. [Online]. Available: https://www.pdc.kth.se/hpc-
services/computing-systems/beskow-1.737436

[39] N. Brown, R. Nash, G. Gibb, B. Prodan, M. Kontak, V. Olshevsky, and
W. Der Chien, “The role of interactive super-computing in using hpc for
urgent decision making,” in High Performance Computing. Springer,
7 2019.


