

Edinburgh Research Explorer

Benchmarking micro-core architectures for detecting disasters at
the edge

Citation for published version:
Jamieson, M & Brown, N 2020, Benchmarking micro-core architectures for detecting disasters at the edge.
in 2020 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC). Institute of Electrical and Electronics
Engineers (IEEE), pp. 27 - 35, Second international workshop on the use of HPC for urgent decision
making, 13/11/20. https://doi.org/10.1109/UrgentHPC51945.2020.00009

Digital Object Identifier (DOI):
10.1109/UrgentHPC51945.2020.00009

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE/ACM HPC for Urgent Decision Making (UrgentHPC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 13. May. 2024

https://doi.org/10.1109/UrgentHPC51945.2020.00009
https://doi.org/10.1109/UrgentHPC51945.2020.00009
https://www.research.ed.ac.uk/en/publications/9f7adda0-b042-47d7-863e-1c472b543a50

Benchmarking micro-core architectures for
detecting disasters at the edge

Maurice Jamieson
EPCC

University of Edinburgh
Bayes Centre, 47 Potterrow, Edinburgh

maurice.jamieson@ed.ac.uk

Nick Brown
EPCC

University of Edinburgh
Bayes Centre, 47 Potterrow, Edinburgh

Abstract—Leveraging real-time data to detect disasters such as
wildfires, extreme weather, earthquakes, tsunamis, human health
emergencies, or global diseases is an important opportunity.
However, much of this data is generated in the field and the
volumes involved mean that it is impractical for transmission
back to a central data-centre for processing. Instead, edge devices
are required to generate insights from sensor data streaming
in, but an important question given the severe performance
and power constraints that these must operate under is that
of the most suitable CPU architecture. One class of device
that we believe has a significant role to play here is that of
micro-cores, which combine many simple low-power cores in a
single chip. However, there are many to choose from, and an
important question is which is most suited to what situation.
This paper presents the Eithne framework, designed to simplify
benchmarking of micro-core architectures. Three benchmarks,
LINPACK, DFT and FFT, have been implemented atop of this
framework and we use these to explore the key characteristics
and concerns of common micro-core designs within the context
of operating on the edge for disaster detection. The result of this
work is an extensible framework that the community can use
help develop and test these devices in the future.

Index Terms—disaster detection, edge computing, Internet of
Things, micro-core architectures, soft-cores, Eithne framework

I. INTRODUCTION

The ability to detect and track the unfolding of disasters
is often enabled by the Internet of Things (IoT), where
devices sit out on the edge, and are used to monitor a series
of sensors. Whether it be detecting wildfires, earthquakes,
extreme weather, or excessive pollution, these systems must
work reliably within challenging tolerances. One of the most
challenging aspects is that, because they are often battery
powered, the IoT devices must work efficiently yet draw
minimal amounts of power. Desktop and server processor
designs, such as the Intel i7 and Xeon, have significant power
draw requirements and as such are completely inappropriate
for such workloads.

Micro-core architectures look to deliver high performance
whilst addressing power consumption issues by implementing
large numbers of simple cores running in parallel on a single
chip. There have been some successes in deploying such
architectures in the data centre for HPC workloads, such as
the Sunway SW26010 of the Sunway TaihuLight (#3 June
2019 Top500 [1]) and the 2048 core PEZY-SC2 of the Shoubu

system B (#1 June 2019 Green500 [2]). However, more
generally micro-cores deliver significant benefits out in the
field [3] running embedded style workloads. Whilst power is
a critically important consideration, this is combined with the
challenge that these workloads often operate within specific
time constraints and as such an architecture that can deliver
performance and power efficiency is critical.

It has already been demonstrated that reconfigurable ar-
chitecture, such as field programmable gate arrays (FPGAs),
can deliver IoT based solutions with significantly lower power
consumption compared to central processing units (CPUs) or
graphics processing units (GPUs), however a major restriction
to leveraging FPGAs are the challenges in programming.
An alternative is the use of soft-cores, where an FPGA is
configured to appear and be programmed like traditional CPU
core(s). This has resulted in the ability to specialise CPU
architectures for the environment in question, in our focus the
specific disaster which is of interest, without the impediment
of expensive manufacturing costs associated with taping out
physical chips. Furthermore, FPGA-based soft-cores enable
researchers to experiment with CPU core designs, and this
is important to understand the optimal design of an embedded
micro-core architecture that will be deployed in the field.

When choosing an IoT architecture, whether it be a physical
chip or soft-core, it is important that the choice made is
a good one, however with over 40 implementations of the
RISC-V architecture alone, the ability to assess competing
designs simply and quickly is crucial. Furthermore, it is also
important to consider not only different micro-core instruction
set architectures (ISAs) but also variants within a particular
processor ISA. This is especially true for RISC-V based
designs due to the rich micro-architecture ecosystem. For
instance, when selecting a RISC-V CPU there is a choice
between many important aspects which all exhibit performance
and power trade-offs. Without hard numbers from benchmark-
ing to quantify the impact of such choices, it is difficult to
make informed decisions.

Whilst it would appear that the best approach would be to
run a set of the large number of currently available benchmarks
on the micro-cores, the process isn’t as simple as it would
at first seem. There are a number of architectural features
common to micro-cores that makes them significantly different

from traditional CPUs and difficult to benchmark, including
tiny amounts of on-chip RAM, and low-level knowledge
specific to each device such as memory maps and linker
files. Therefore, running existing benchmarks as-is on micro-
cores is at best difficult and more than not often impossible.
In order to be able to meaningfully compare and contrast
different micro-core architectures, a benchmark framework is
required to abstract over each architecture’s idiosyncrasies and
complexities.

It is such a framework and exploration of common micro-
core architecture that this paper describes. This text is organ-
ised as follows, in Section II we describe the background and
related work already done in the community around bench-
marking soft-cores, before we describe the selected CPUs
in Section III and our Eithne framework and benchmarks in
Section IV. We provide a comparison of benchmark results, in-
cluding soft-core performance, power consumption, and code
density in Section V. We highlight some of the challenges
posed by the immaturity of the RISC-V ecosystem in Section
V-F and then conclude in Section VI, before discussing further
work.

II. BACKGROUND AND RELATED WORK

Whilst micro-core architectures have been around for for
some time, the ability to perform a detailed exploration of
the characteristics of the different options and how they
compare and contrast against each other is somewhat limited.
The experiments performed are often centred around very
specific benchmarks or codes, and difficult to recreate on other
technologies. This is typically even more pronounced for soft-
cores, as there are often numerous configuration options to
tune the architecture. For instance, in [4] the authors detail
a performance and resource comparison between Xilinx’s
MicroBlaze [5] and LEON3 [6] to determine their suitability
for multi-core embedded processors. These are both soft-cores
and whilst they conclude that the performance between these
technologies is similar, the survey omits to explore any of the
configuration options provided by the MicroBlaze, which can
have a significant impact on overall performance.

By providing configurable logic blocks sitting within a sea
of interconnect, FPGAs enable a chip to be programmed so
that it operates electronically based upon a software design.
By including other facets, such as fast memory and digital
signal processor (DSP) slices within these chips, complex
and high performance circuitry can be temporarily configured.
Soft-cores are a software description of a CPU, which is
then used by the tooling to configure the FPGA to represent
this electronically. Whilst it is generally accepted that FPGAs
are more power efficient than CPUs and GPUs [7], work
done in [8] concluded that this power efficiency extends to
soft-core processors running on FPGAs. This is important
in IoT use for disaster detection, as it potentially addresses
the programmability challenges of FPGAs, whilst maintaining
many of the power efficiency benefits of FPGAs.

A key feature of the existing body of work benchmarking
micro-core architectures is that comparisons have been per-

formed on a very piecemeal basis, with little thought in making
the process reusable across other technologies, benchmarks or
metrics. Therefore, a key question for the urgent computing
community when considering whether this is an appropriate
technology to deploy in the field, is firstly whether micro-cores
do provide performance and power benefits, secondly whether
soft-cores can provide improved power efficiency due to their
use of FPGAs, and lastly if one was looking to choose such
a technology then what characteristics would they be most
interested in.

III. HARDWARE AND METRICS SURVEYED IN THIS PAPER

The key objective of this research has been to determine the
impact of micro-core architecture features and configurations,
such as pipeline depth, and hardware floating point support,
on metrics of interest to use of these architectures for disaster
detection. Based on this application, we are interested in the
following metrics:

• Performance, detailing the performance that the micro-
core can deliver

• Power consumption, exploring the amount of power that
the micro-core draws

• Energy cost, which combines performance and power
consumption to consider the overall energy used for a
workload

• Resource usage, which is for soft-cores only and ex-
plores the amount of resources that are required. This
is important as increased resources result in larger, more
expensive chips.

• Code density, which explores the memory size required
for the specific codes being studied. This depends heavily
on the ISA, and increased memory requirements result in
increased cost and power consumption

• Ecosystem maturity, exploring the availability of and
support for, the general software ecosystem on the tech-
nology in question.

These criteria directly influence the suitability of micro-
cores for execution on the edge for disaster detection.

A. CPUs

In this paper various micro-core architectures, both physical
chips and soft-cores, along with numerous configurations
have been compared against to understand the benefits and
negatives of deploying the technologies in this specific area.
The following micro-core CPUs were chosen for comparison,
based on availability and, for soft-cores, ease of integration
into an FPGA multi-core design:

• PicoRV32 (soft-core)
• Xilinx MicroBlaze (soft-core)
• ARM Cortex-A9 (hard processor)
• Adapteva Epiphany-III (hard processor)
Whilst this list is a fraction of the available soft-cores,

within the context of this paper only a limited set can be real-
istically benchmarked and we selected such a short-list due to
their differences and interest. However, the Eithne benchmark

framework described in Section IV-A is extensible and can
can built upon to perform analysis of other technologies of
interest.

The PicoRV32 [9] is a von Neumann, non-pipelined open
source RISC-V soft-core that supports the RV32IMC instruc-
tion set [10]. This is the simplest soft-core considered in this
paper, and the von Neumann architecture means that both
code and data resides in the same memory space. This is
at odds with many other micro-core technologies which are
based on a Harvard architecture which allocate code and data
in different memories. The Xilinx MicroBlaze is an example
of this Harvard architecture approach, but furthermore it is
pipelined. This means that, unlike the PicoRV32 which must
wait until each instruction has entirely finished executing
before the next can start, the processing of an instruction
is split up across multiple stages. Each pipelined stage can
execute different instructions, completing a specific subset
before passing it onto the next. Whilst this makes the design
more complex, increasing power consumption and resource
usage, it means that multiple instructions are being processed
concurrently which can result in performance benefits.

The PicoRV32 only provides hardware support for integer
arithmetic, and floating point arithmetic must be implemented
in software, typically provided by the underlying runtime.
However, the Xilinx MicroBlaze contains an optional hardware
floating point unit (FPU), and enables direct execution of
hardware floating point arithmetic by the CPU. This increases
performance, but at the cost of increasing complexity and
potentially power usage, so a key question is whether such
a trade-off is worth it given the typical workloads found in
edge-based disaster detection and tracking.

The ARM Cortex-A9 and Adapteva Epiphany-III are phys-
ical micro-core CPUs. An important question is whether
physical chips, which run at higher clock frequencies, exhibit
significant benefits over their soft-core brethren for IoT work-
loads. The Cortex-A9 is a Harvard, superscalar, out of order,
pipelined, architecture with FPU. Superscalar means that the
architecture is capable of completing more than one instruction
per clock cycle, and it typically achieves this by leveraging
out or order execution, where the order of physical instruction
execution is determined only by dependencies rather than the
order in which they are issued by the programmer. This is a
very common approach, and the CPU will commit completed
instructions in program order to ensure a consistent view of
execution on behalf of the programmers. The Epiphany-III is
rather similar, with 16 von Neumann, superscalar cores, and
32KB of scratchpad static RAM (SRAM) per core.

B. Hardware boards

The Xilinx PYNQ-Z2 [11] single board computer (SBC)
was selected as the platform for all soft-core devices explored
in this paper. The on-board Xilinx Zynq 7020 FPGA contains a
dual-core 650MHz ARM Cortex-A9 running Linux, accessing
512MB of on-board but off-chip dynamic RAM (DRAM).
The programmable logic of the Zynq 7020 contains 53,200
configurable LookUp Tables (LUTs), 4.9Mb of block RAM

(BRAM) and 220 DSP slices which are commonly used for
floating point arithmetic. Whilst one can configure a small
number of cores with a large amount of memory per core,
realistically eight cores, each with 32KB memory, is the best
balanced that can be achieved, and that is the configuration
we have selected. However, the reader is able to reuse our
benchmarks and framework to explore the performance of
other configurations. The Adapteva Parallella [12] was used
to host the Epiphany-III, providing a 650MHz dual-core ARM
Cortex-A9 running Linux, with 1GB of DRAM and the 600
MB/s link to the Epiphany co-processor.

IV. SOFTWARE BENCHMARKS

Three benchmarks have been selected to compare the overall
performance of the selected technologies. We have selected
these benchmarks to test different facets of the technology,
firstly the LINPACK single-precision [13] benchmark has been
chosen due to its role in stressing raw floating point perfor-
mance, which will be interesting to explore in the context
of the micro-cores. LINPACK determines the performance of
a system in millions of floating point operations per second
(MFLOPS) by performing LU factorization as follows [14]

1) Set up a random matrix A of size N
2) Set up the vector X which has all values set to 1
3) Set up a vector B which is the product of A and the

vector X
4) Compute an LU factorization of A
5) Use the LU factorization of A to solve A ∗X = B

The number of floating point operations required for the
two LU factorizations is

ops = 2 ∗N ∗N ∗N/3 + 2 ∗N ∗N

and the MFLOPS value is calculated by

MFLOPS = ops/(t ∗ 1000000)

In addition to LINPACK we have also implemented the
Discrete Fourier Transform (DFT) and Fast Fourier Transform
(FFT) benchmarks [15]. These were chosen due to their
relevance in the embedded community, and also represent a
very common workload across numerous disaster scenarios,
for instance interpreting streaming sensor data to identify any
anomalies that might represent some sort of emergency, such
as an earthquake. These Fourier benchmarks compute the
forward and backwards transform of data.

Whilst we have chosen these particular benchmarks to drive
the exploration of micro-core characteristics in this paper, it
is important to note that the Eithne benchmark framework
as described in Section IV-A is easily extensible with other
benchmarks that suit specific disaster use-cases.

A. Eithne Benchmark framework

To minimise the impact of different micro-core architectures
on the benchmark results, the Eithne1 framework has been
developed which enables a suite of benchmarks to be run

1Eithne (/Enj9/ ”enya”): Gaelic for ”kernel” or ”grain”.

across many different devices with limited or no modification
required. The framework uses a single execution model across
all devices, where the kernels are transferred to the device to be
benchmarked, and a listener is launched awaiting data transfers
and launch requests from the host benchmark application. This
ensures that the communications link architecture, such as
shared memory or universal asynchronous receiver-transmitter
(UART), does not significantly impact the measurement of ker-
nel execution. Data transfers are separated from kernel launch
requests to enable the measurement of the communications
link latency and bandwidth. Most importantly, this framework
has been developed with extensibility in mind, where new
devices, benchmarks, or metrics can be trivially added.

Fig. 1. Eithne framework architecture

Figure 1 illustrates the Eithne framework’s layered ar-
chitecture, provided as a stack of functionality. Adding a
new benchmark, device or communication mechanism only
requires that specific layer of the framework is modified, with
all other layers remaining unchanged. This not only simplifies
supporting new technologies, benchmarks and metrics, but also
isolates the remaining code, reducing the regression testing
effort required.

The high-level flow for the LINPACK benchmark is outlined
in Figure 2 and in this paper we use LINPACK to outline
the modifications required to run benchmarks on micro-core
architectures using the Eithne framework.

B. LINPACK

A single-precision C version of the LINPACK BENCH
benchmark [14] was modified to run on the Eithne framework
by separating out the sgesl and sgefa kernels, and their
support functions, such as saxpy and ddot, from the rest
of the initialisation, verification and timing code. These kernel
codes were placed in a kernels.c file, along with the Eithne
framework initialisation function which is outlined in Listing
1. This code first registers the kernel input and output data
variables; a, b, ipvt, job, and info in Listing 1. These are then
compiled and downloaded to the device, with kernel execution
and data transfers being performed by the framework.

1 void kernel_init(EithneTargetId id, EithneSharedMem
buffer) {

2 EithneKernel kernels[] = { sgefa, sgesl };
3

4 EITHNE_INIT_DEVICE(vars,id,buffer+
EITHNE_DATA_OFFSET,buffer,kernels);

Fig. 2. LINPACK benchmark host / device flow

5

6 EITHNE_REGISTER_ARRAY(vars,A,EITHNE_FLOAT_ARRAY,a,
N*LDA);

7 EITHNE_REGISTER_ARRAY(vars,B,EITHNE_FLOAT_ARRAY,b,
N);

8 EITHNE_REGISTER_ARRAY(vars,IPVT,
EITHNE_INTEGER_ARRAY,ipvt,N);

9 EITHNE_REGISTER_SCALAR(vars,JOB,EITHNE_INTEGER,job
);

10 EITHNE_REGISTER_SCALAR(vars,INFO,EITHNE_INTEGER,
info);

11

12 EITHNE_START_LISTENER;
13 }

Listing 1. Kernel framework initialisation function

The remaining LINPACK code was modified to use the
Eithne framework API calls to allocate memory, register
variables, transfer data and launch kernels. The host initial-
isation code for kernels running on the Adapteva Epiphany
co-processor, Xilinx MicroBlaze and PicoRV32 soft-cores is
outlined in Listing 2.

1 buffer = EITHNE_ALLOC_MEM(sizeof(float)*N*LDA);
2

3 EITHNE_INIT_HOST(vars,HOST_ID,buffer+
EITHNE_DATA_OFFSET,buffer);

4 EITHNE_INIT_CORES(16);
5 EITHNE_START_CORES(16);
6

7 EITHNE_REGISTER_ARRAY(vars, A, EITHNE_FLOAT_ARRAY, a
, N*LDA);

8 EITHNE_REGISTER_ARRAY(vars, B, EITHNE_FLOAT_ARRAY, b
, N);

9 EITHNE_REGISTER_ARRAY(vars, IPVT,
EITHNE_INTEGER_ARRAY, ipvt, N);

10 EITHNE_REGISTER_SCALAR(vars, JOB, EITHNE_INTEGER,
job);

11 EITHNE_REGISTER_SCALAR(vars, INFO, EITHNE_INTEGER,
info);

Listing 2. Host framework initialisation code

Listing 3 outlines the addition of the required Eithne frame-
work API calls to launch and time the sgefa kernel to
the existing LINPACK code. The kernel function parameters
are replaced by the EITHNE_SEND and EITHNE_RECV API
calls. However, due to the previous registration API calls, the
underlying kernel input and output variables such as a and
ipvt are used unchanged, thereby minimising the impact to
the existing codes.

1 /* Input to SGEFA */
2 EITHNE_SEND(vars, TARGET_ID, A);
3

4 t1 = cpu_time ();
5 EITHNE_EXECUTE(TARGET_ID, SGEFA);
6 t2 = cpu_time ();
7

8 /* Output variables from SGEFA */
9 EITHNE_RECV(vars, TARGET_ID, A);

10 EITHNE_RECV(vars, TARGET_ID, IPVT);
11 EITHNE_RECV(vars, TARGET_ID, INFO);

Listing 3. Executing and timing the LINPACK sgefa kernel

In all experiments N was set to 20, this was found to be
an appropriate parameter setting which takes into account the
fact that the micro-cores have very limited memory. As the
LINPACK matrix order size N impacts the overall MFLOPS
result, we felt it was important to keep this consistent across all
devices to enable a like-for-like comparison of performance.

C. DFT and FFT

Both DFT and FFT benchmarks [16] were implemented
using the Eithne framework. The main dtf and fft kernels
and support functions were extracted from the surrounding
initialisation and timing code and placed in a kernels.c
file, along with the kernel framework code initialisation code
similar to that outlined in Listing 1 but updated to reflect the
FFT and DFT variables and kernels.

Eithne kernels have a void parameter list as the input and
output variables are transferred by the framework. Since the
fft kernel is recursive, a wrapper function was created to
isolate the changes to the kernel code, as shown in Listing 4.

1 void fft_wrapper(void) {
2 fft(xfer_sig, xfer_f, xfer_s, 1<<N, xfer_inv);
3 }
4

5 void fft(const Comp *sig,Comp *f,int s,int n,int inv
) {

6 int i, hn = n >> 1;
7 Comp ep = comp_euler((inv ? PI : -PI)/(float)hn)

,ei;
8 Comp *pi = &ei, *pp = &ep;
9 if (!hn) *f = *sig;

10 else
11 {
12 fft(sig, f, s << 1, hn, inv);
13 fft(sig + s, f + hn, s << 1, hn, inv);
14 pi->a = 1;
15 pi->b = 0;
16 for (i = 0; i < hn; i++)
17 {
18 Comp even = f[i], *pe = f + i, *po = pe

+ hn;
19 comp_mul_self(po, pi);
20 pe->a += po->a;
21 pe->b += po->b;

22 po->a = even.a - po->a;
23 po->b = even.b - po->b;
24 comp_mul_self(pi, pp);
25 }
26 }
27 }

Listing 4. FFT kernel and wrapper

V. BENCHMARK RESULTS

Based upon the software framework described in Section
IV-A, the benchmarks of Section IV-B and Section IV-C have
been executed on the hardware described in Section III. In this
section we use these results as a tool to explore, and compare
and contrast, the different characteristics of these technologies
and consider their suitability for use on the edge in the context
of urgent computing.

A. Performance

1) LINPACK: Figure 3 illustrates the performance of differ-
ent micro-core technologies running the LINPACK benchmark
via the Eithne framework. It can be seen that the physical
micro-core processors have significantly higher performance
than soft-cores, which can be mainly explained by the higher
clock rates of between five and six times. However, for the
Epiphany-III, there are other performance design features that
expand this gap that will be covered in Section V-A2 below.

It is interesting to note that the power consumption for all
soft-cores running on the Zynq 7020 is almost the same, even
when the soft-cores have very different performance profiles,
as is the case for the integer-only PicoRV32 and MicroBlaze
with FPU. This initial analysis would seem to support the
view that FPGA-based designs are more power efficient than
physical CPUs, per [7]. However, as we will discover in
Section V-C, the overall power required to execute the code
to completion is perhaps a more important figure influencing
the choice of micro-cores deployed in the field.

Fig. 3. Micro-core LINPACK benchmark performance / power consumption

2) DFT and FFT: The performance results for the DFT
and FFT benchmarks detailed in Table I are somewhat similar
to those seen for LINPACK, where the Epiphany-III physical

processor is 653 times faster than the PicoRV32. The integer-
only MicroBlaze is 2.6 times faster than the PicoRV32 due
to its pipelined architecture, and the hardware floating point
MicroBlaze is 13.7 times faster than the PicoRV32. Assuming
that the performance scaled linearly with clock frequency, the
Epiphany would be 109 times faster than the PicoRV32, and
7.5 times faster than the MicroBlaze, when running at a clock
speed of 100MHz.

TABLE I
DFT / FFT MICRO-CORE PERFORMANCE

Device DFT (seconds) FFT (seconds)
PicoRV32 0.11096 0.11130

MicroBlaze 0.04259 0.04266
MicroBlaze & FPU 0.00808 0.00825

Epiphany-III 0.00017 0.00017

When comparing the PicoRV32 against the MicroBlaze,
one can observe the performance advantages of a pipelined
architecture and hardware floating point support. However,
results from the Epiphany-III highlight the further benefits of
a 64 register, superscalar CPU that can execute two floating
point and a 64-bit memory load operation every clock cycle
[17].

B. Power consumption

In Section V-A it was seen that more complex architectures
deliver significantly better performance than simpler ones,
which is not a major surprise. Furthermore, the fact that
physical processors can operate at a much higher clock fre-
quency also delivers numerous performance benefits. However,
a key question is whether there are any power consumption
disadvantages of such designs, and this was calculated by
measuring the voltage and amperage of each board running
the benchmarks using a wiring harness and two UNI-T UT60E
multimeters.

1) LINPACK: Power consumption for the LINPACK
benchmark, along with the measured floating point perfor-
mance (in MFLOPS), is illustrated in Figure 3. From the
results, it can be seen that the (integer only) MicroBlaze soft-
core is five times more energy efficient than the Epiphany-III
and 4 times more so than the Cortex-A9. The overall number
of cores is likely to play a factor here, namely the fact that
the Epiphany-III has 16 cores, the Cortex-A9 has 2, and the
MicroBlaze was configured with 8 cores.

When the clock rate (MicroBlaze 100Mhz, Epiphany
600MHz and Cortex-A9 650MHz) and the number of cores
is taken into account, then we find for that each core, the
Epiphany is approximately two times more power efficient
than the MicroBlaze, but the MicroBlaze is six and a half
times more power efficient than the Cortex-A9. By contrast,
the PicoRV32 is about two times less power efficient than
the MicroBlaze, and six times less power efficient than the
Epiphany-III, but is still around two times more power efficient
than the Cortex-A9.

The fact that the much simpler PicoRV32 drew more power
than the more complex MicroBlaze surprised us, but it can

most likely be explained by the fact that more complex (AXI4)
bus support logic is required for a multi-core PicoRV32 design,
whereas the multi-core MicroBlaze uses a much simpler Local
Memory Bus (LMB) design.

As expected, power consumption increases with clock rate.
However, as outlined, the Watts, MHz and core results for the
Epiphany-III are twice as efficient than for the MicroBlaze,
making it the most power efficient core design of those tested.
This may be due in part to general power inefficiencies in
the soft-core designs or the impact of the greater instruction
decoding logic of the soft-cores versus the Epiphany-III.
For instance, the MicroBlaze has 129 instructions and the
Epiphany-III only has 41, and this is a consideration when one
is running a micro-core in the field for this workload, namely
based on the specialised nature is it possible to significantly
limit the number of instructions?

2) DFT / FFT: The larger DFT / FFT benchmark kernel
binaries, due to the inclusion of sin() and cos() functions,
required more BRAM than is available on the 8 soft-core
devices. Therefore, 4 core designs for the MicroBlaze and
PicoRV32 were synthesised, each with 128KB of scratch-
pad memory. The MicroBlaze design also included hardware
floating point support, MicroBlaze+FPU, implemented using
FPGA DSP slices, unlike the integer-only MicroBlaze used in
the 8-core bitstream for the LINPACK benchmark.

It is interesting to compare the impact of enabling hardware
floating point support in the MicroBlaze, and this impacted
power consumption significantly, resulting in the simpler Pi-
coRV32 drawing 14% less power than the MicroBlaze+FPU
running the DFT and FFT benchmarks.

TABLE II
DFT AND FFT BENCHMARK POWER CONSUMPTION

Device Idle (Watts) Load (Watts)
PicoRV32 2.05 2.19

MicroBlaze 2.36 2.54
Epiphany-III 3.46 4.36

As detailed in Table II, the Epiphany-III uses approximately
1.8 times the power of both the PicoRV32 or MicroBlaze+FPU
whilst running the benchmark. However, as for LINPACK,
when we consider overall efficiency per core, we find that the
Epiphany delivers a lower figure of 0.27 Watts/core at 600MHz
against 0.55 Watts/core at 100MHz for the PicoRV32 and 0.63
Watts/core at 100MHz for the MicroBlaze+FPU. Bearing in
mind that CPU power consumption increases with frequency
[18], the Epiphany-III draws significantly less power than the
soft-cores when scaled to the same clock rate of 100MHz,
estimated at 0.045 Watts/core at 100MHz, a fourteen times
greater power efficiency than the PicoRV32.

C. Energy cost

Whilst the absolute power consumption of a processor is
important, the power consumption to solution is also of great
interest. For instance, the power consumption required for
processing streams of input data to generate a result which
determines whether a disaster is unfolding or not. Effectively,

Fig. 4. Micro-core FFT benchmark energy consumption

such a metric describes the overall energy cost of the system,
and power consumption to solution or energy (E) is defined
as:

E = Pt

Figure 4 outlines the overall energy consumption for the
FFT benchmark running on the selected micro-cores. The
poor performance of the PicoRV32 results in a 328 times
greater overall energy consumption than the much more pow-
erful Epiphany-III processor for the same FFT kernel. The
MicroBlaze+FPU, which is around fourteen times faster that
the PicoRV32, uses around twelve times less energy overall
to run the FFT benchmark than the PicoRV32. Therefore it
can be seen here that the significant performance advantages
of the MicroBlaze+FPU and Epiphany-III, mean that whilst
the absolute power consumption is larger than the PicoRV32,
there is still an overall energy benefit.

D. FPGA area / resources

Resource usage is important, as it dictates the overall size of
the FPGA chip required to host specific soft-cores. Put simply,
small FPGAs such as the Spartan are cheap [19], whereas as
the number of resources scale up, the overall cost increases
significantly. Table III details the FPGA resources utilised by
each of the 8-core soft-core designs, where all of the soft-cores
were configured to have a total of 64KB of on-chip RAM. This
use of block RAM (BRAM) on-chip memory is the primary
limiting factor in scaling the number of micro-cores further
on the Zynq 7020.

The integer-only MicroBlaze and PicoRV32 cores have a
comparable LUT (look-up table) utilisation of 38% and 35%
respectively. The PicoRV32 has been configured to support
the RISC-V M (ISA MUL, DIV and REM instructions) and
uses 15% DSP slices for its implementation, whereas the
MicroBlaze integer-only core does not use any DSP slices. The
slightly increased LUTRAM and FF (flip-flop) requirements of
the MicroBlaze over the PicoRV32 are likely to be attributable
to the pipeline support and additional decoding logic required

for the larger MicroBlaze instruction set versus the simpler
RISC-V IMC instruction set.

The hardware floating point version of the MicroBlaze,
MicroBlaze+FPU, uses 47% more LUTs, 30% more FF and
22 times more DSP slices than the integer-only MicroBlaze
design. This represents a very significant increase in resources,
and whilst the increase in DSP slice utilisation is to be
expected, as this is the primary way in which floating point
is executed by the FPGA, the increase in LUT usage was
unexpected. Given an unlimited amount of on-chip memory,
these figures would mean that the hardware floating point
MicroBlaze could scale to 36 cores and the PicoRV32 to 53
cores on the Zynq 7020.

TABLE III
MICROBLAZE AND PICORV32 SOFT-CORE Z7020 RESOURCE

PERCENTAGE UTILISATION

Soft-core LUT LUTRAM FF BRAM DSP
PicoRV32 35% 3% 13% 91% 15%

MicroBlaze 38% 6% 23% 91% 0%
MicroBlaze+FPU 56% 7% 30% 91% 22%

E. Code density

On-chip memory is often a major limiting factor when it
comes to micro-cores. This is especially true with soft-cores,
as from a resource usage perspective it was demonstrated in
Section V-D that BRAM is the factor that determines the
overall number of soft-cores that can be implemented on a
particular FPGA. Therefore, the size of the resultant kernel
binaries is an important consideration with respect to the
choice of processor instruction set architecture.

All of the micro-cores selected for the benchmarks use the
GNU C Compiler (GCC). Whilst it would be ideal to use
the same version of GCC across all devices, some micro-
cores, such as the Epiphany-III and RISC-V, only support
specific versions of GCC. Therefore, for the benchmarks, we
used the recommended version of GCC for each micro-core
architecture. Apart from micro-core specific linker files and
compiler flags (little-endian for the MicroBlaze), the GCC
compiler options were identical across all architectures. Due
to the aforementioned RAM limitations, the kernel codes were
optimised for size (GCC option -Os), rather than for speed
(GCC option -O3).

Figure 5 illustrates the FFT kernel binary size produced
by GCC for the micro-cores. The three soft-core options are
roughly equivalent at 109KB for the PicoRV, 102KB for the
integer-only MicroBlaze and 100KB for the hardware floating
point MicroBlaze. The kernel binary for the MicroBlaze with
hardware floating point is slightly smaller than the binary for
the integer only core, as that must include software floating
point emulation routines. However, at 23KB, the FFT kernel
binary size for the Epiphany is significantly smaller than for
the soft-cores.

This difference is stark, and a surprising aspect of this com-
parison is that a larger instruction set does not seem to result
in a smaller binary file size. For example, the RV32IMC ISA

Fig. 5. Micro-core FFT benchmark kernel size

has 76 instructions, the MicroBlaze ISA 129 and the Epiphany-
III ISA 41 instructions. Therefore, one would assume that the
Epiphany-III binary would be the largest, as fewer instructions
must be explicitly composed together. Yet the Epiphany has,
by far, the smallest binary file size.

In fact, this supports the assertion in [20] where the authors
state that one does not need more than 100 instructions, and
further research in [20] also demonstrates that GCC only
uses between 5-20% of all the instructions across a range
of processors (x86, x86-64, PowerPC and MIPS). When one
considers the silicon area and power requirements of a CPU’s
instruction set decoding logic, it would seem prudent to keep
a micro-core’s ISA as small as possible. This could be a key
factor in the Epiphany-III’s impressive performance and power
consumption figures that we obtained for the LINPACK, DFT
and FFT benchmarks.

F. Maturity of the software ecosystem

The Epiphany-III and MicroBlaze are commercial products
and, the MicroBlaze especially which is supported by Xilinx,
offer a fairly large software ecosystem. This is especially the
case for C compilation, which is very popular in embedded
computing. Furthermore, both these technologies can be ob-
tained off the shelf, and simple to operate. However, whilst
there are over forty RISC-V based implementations available,
for this paper, we have found that actually being able to
configure multi-core FPGA designs with these is a different
matter. There are a number of challenges to successfully using
RISC-V soft-cores, ranging from the ability to synthesise the
source files, often designed for simulation rather than for
use as an IP component within an FPGA bitstream, to the
immaturity of the development tools.

During the work conducted in this paper, we have observed
a number of idiosyncrasies of the RISC-V ecosystem that we
found especially challenging.

1) Lack of RISC-V soft-core verification: Many of the avail-
able open source RISC-V soft-cores have not been verified
against the published RISC-V ISA standards. For example, the

VectorBlox ORCA [21] is stated [22] to support the RV32IM
ISA and provides options for hardware multiply and divide
instructions, but does not implement the REM instruction
specified in the M ISA option. The consequence is that that
codes compiled by the official RISC-V GCC toolchain with
this option enabled will freeze on the ORCA, and resulted in it
being excluded from our comparisons. Tracking down this type
of issue is time consuming and beyond the expertise of many
programmers due to the lack of support for debugging tools
on a number of the available soft-cores, such as the PicoRV32
and ORCA.

2) Low-level GCC linker file knowledge: The RISC-V uses
register x2 as the stack pointer, which needs to be initialised
before C functions are called. This is usually performed
by an assembly language routine called when the binary is
loaded onto the core. For simple codes, this initialisation
routine can be compiled or linked without issue. However, for
more complex codes requiring the -ffunction-sections
-Wl,-gc-sections GCC optimisation flags to reduce
the size of the binary, the GCC optimiser will remove the
initialisation code because it is managed in the linker file
and the code will fail to run on the core. Ensuring that
GCC does not remove this code but in a manner where the
compiler can still perform size optimisation requires in-depth
understanding of segments and modification of the RISC-V
linker file. Therefore, compiling and running codes such as
the LINPACK and FFT benchmarks on RISC-V soft-cores
is far more involved than simply taking existing codes and
recompiling them for the RISC-V.

3) Inconsistent RISC-V compressed instruction set sup-
port: Although RISC-V supports a compressed instruction set
(RV32C) that can reduce the size of a compiled binary by up to
30% [23], the majority of the 32 bit RISC-V soft-cores do not
support compressed instructions. When we consider that the
FFT kernel binaries compiled using the RV32IMC ISA were
too large to fit in 64KB, and as such we had to reduce our
design down to four 128KB cores, the provision of compressed
instruction support could provide significant benefits for code
density.

VI. CONCLUSIONS AND FURTHER WORK

Micro-core architectures have significant potential in the
monitoring of the environment, operating on streams of sensor
data to detect disasters. Running on the edge, important
characteristics of the technology differ greatly from those
typically found in the data-centre. However, given the choice
of architectures available, an important question is which one
is most applicable, the answer to which will often depend upon
the situation in question.

In this paper, to address this, we have introduced a frame-
work that greatly simplifies the benchmarking of micro-cores.
Layering our design makes it far easier to plugin new archi-
tectures, benchmarks, and metrics, which until now has been
very difficult to achieve. We then ran a series of benchmarks
across some of the more popular micro-core architectures,

exploring resulting measurements based upon characteristics
most important in the IoT domain.

We demonstrated that, irrespective of clock frequency, the
Epiphany-III physical chip delivers significant performance
and is more energy efficient than the other architectures. Given
FPGA processor implementations have between eighteen and
twenty six times greater circuit delay than their custom
CMOS [24] equivalents, this is not surprising, however it
does illustrate that performance is important when optimising
for energy efficiency. However, in terms of absolute power
draw the PicoRV32 consumed around half the power of the
Epiphany-III. We have also shown that the most important
limiting factor for soft-cores tends to be the amount of on-chip
memory, BRAM, present. Therefore, the size of kernel binaries
produced for a particular processor’s ISA is a critical limitation
to the number of viable cores that can be implemented.

Whilst [8] found that their many soft-core processor was
highly energy efficient, our results paint a different picture.
They estimated the energy efficiency of their customised soft-
core was 1623 MOPS/Watt, compared to 26 MOPS/Watt for an
i7 running eight threads. However, we measured the MicroB-
laze soft-core at 6 MFLOPS/Watt and the ARM Cortex-A9
at 55 MFLOPS/Watt. There is a difference here, for instance
[8] measured operations per second, and us explore floating
point operations per second, but it is demonstrated by this
work that the power efficiency of physical processors is at
least nine times higher than the soft-cores.

Further work includes extending our benchmarking frame-
work to include other micro-core architectures, and to explore
other relevant codes to disaster detection. Specifically, we
think that connecting to real-world sensors and supporting the
streaming in of data would be a sensible next benchmark.
This would be another possible metric, how fast data can be
streamed into a chip, and one where the soft-cores might
have an edge due to the large number of IO connections
that some FPGAs possess. Eithne currently separates data
communications / transfers from the execution of kernels,
therefore it has the support to enable the measurement of data
bandwidth. Furthermore, there are embedded GPUs, such as
NVIDIA’s Jetson that would be interesting to also compare
against. In terms of the micro-core architectures selected,
there are higher performance RISC-V implementations, and
exploring some of the customisable CPUs developed by SiFive
would also be of interest.

Therefore, we conclude that micro-core architectures have
potential for use in disaster detection, however this is best
done with physical chips rather than soft-cores. Our hypothesis
that soft-cores could provide the best of all worlds; high
performance, energy efficiency and programmability is simply
not the case. For production edge computing then one should
utilise physical chips, such as the Epiphany-III, with soft-cores
useful for prototyping and the exploration of architectural
configurations.

REFERENCES

[1] (2019) June 2019 — TOP500 Supercomputer Sites. [Online]. Available:
https://www.top500.org/lists/2019/06/

[2] (2019) June 2019 — GREEN500 Supercomputer Sites. [Online].
Available: https://www.top500.org/green500/lists/2019/06/

[3] K. L. Labowski, P. W. Jungwirth, J. A. Ross, and D. A. Richie, “Im-
plementing hilbert transform for digital signal processing on epiphany
many-core coprocessor,” in 2016 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2016, pp. 1–6.

[4] M. Makni, M. Baklouti, S. Niar, M. W. Jmal, and M. Abid, “A com-
parison and performance evaluation of FPGA soft-cores for embedded
multi-core systems,” in 2016 11th International Design Test Symposium
(IDT), Dec. 2016, pp. 154–159.

[5] J. Seely, S. Erusalagandi, and J. Bethurem, “The MicroBlaze Soft
Processor: Flexibility and Performance for Cost-Sensitive Embedded
Designs,” p. 14, 2017.

[6] (2019) LEON3. [Online]. Available:
https://www.gaisler.com/index.php/products/processors/leon3

[7] “BLAS Comparison on FPGA, CPU and GPU,” Jul. 2010, pp. 288–293.
[8] D. Castells-Rufas, A. Saa-Garriga, and J. Carrabina, “Energy Efficiency

of Many-Soft-Core Processors,” p. 8, 2016.
[9] C. Wolf. (2018, Nov.) PicoRV32: A Size-Optimized RISC-V CPU.

Contribute to cliffordwolf/picorv32 development by creating an account
on GitHub. [Online]. Available: https://github.com/cliffordwolf/picorv32

[10] A. S. Waterman, Design of the RISC-V instruction set architecture.
University of California, Berkeley, 2016.

[11] (2019) PYNQ-Z2. [Online]. Available:
http://www.tul.com.tw/ProductsPYNQ-Z2.html

[12] (2013, Sep.) The Parallella Computer. [Online]. Available:
http://www.adapteva.com/parallella/

[13] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK Benchmark:
past, present and future,” Concurrency and Computation: Practice
and Experience, vol. 15, no. 9, pp. 803–820, Aug. 2003. [Online].
Available: http://doi.wiley.com/10.1002/cpe.728

[14] (2019) LINPACK bench - The LIN-
PACK Benchmark. [Online]. Available:
https://people.sc.fsu.edu/ jburkardt/c src/linpack bench/linpack bench.html

[15] (2019) Direct DFT and Cooley-Tukey FFT Al-
gorithm C Implementation. [Online]. Available:
https://gist.github.com/Determinant/db7889995f08fe982418

[16] (2019) Direct DFT and Cooley–Tukey FFT Al-
gorithm C Implementation. [Online]. Available:
https://gist.github.com/Determinant/db7889995f08fe982418

[17] (2014, Mar.) Epiphany Architecture Reference. [Online]. Available:
http://www.adapteva.com/docs/epiphany arch ref.pdf

[18] A. K. Datta and R. Patel, “CPU Scheduling for Power/Energy Manage-
ment on Multicore Processors Using Cache Miss and Context Switch
Data,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 5, pp. 1190–1199, May 2014.

[19] P. Alfke, “Xilinx virtex-6 and spartan-6 fpga families,” in 2009 IEEE
Hot Chips 21 Symposium (HCS). IEEE, 2009, pp. 1–20.

[20] C. Mutigwe, J. Kinyua, and F. Aghdasi, “Instruction Set Usage Analysis
for Application-Specific Systems Design,” vol. 7, no. 2, p. 5, 2013.

[21] (2019, Jul.) RISC-V by VectorBlox. Contribute to VectorBlox/orca
development by creating an account on GitHub. [Online]. Available:
https://github.com/VectorBlox/orca

[22] (2019, Aug.) RISC-V Cores, SoC platforms and SoCs. Contribute
to riscv/riscv-cores-list development by creating an account on
GitHub. Original-date: 2019-02-21T19:47:14Z. [Online]. Available:
https://github.com/riscv/riscv-cores-list

[23] D. Patterson and A. Waterman, The RISC-V Reader: An Open Architec-
ture Atlas. Strawberry Canyon, 2017.

[24] H. Wong, V. Betz, and J. Rose, “Comparing FPGA vs. Custom Cmos
and the Impact on Processor Microarchitecture,” in Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011,
pp. 5–14, event-place: Monterey, CA, USA. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950419

