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ABSTRACT 
The last decade has seen a rapid growth in both the volume and 
variety of network traffic, while at the same time, the need to 
analyze the traffic for quality of service, security, and misuse has 
become increasingly important. In this paper, we will present a 
traffic analysis system that couples visual analysis with a 
declarative knowledge representation based on first order logic. 
Our system supports multiple iterations of the sense-making loop 
of analytic reasoning, by allowing users to save their discoveries 
as they are found and to reuse them in future iterations. We will 
show how the knowledge base can be used to improve both the 
visual representations and the basic analytical tasks of filtering 
and changing level of detail. More fundamentally, the knowledge 
representation can be used to classify the traffic. We will present 
the results of applying the system to successfully classify 80% of 
network traffic from one day in our laboratory. 

CR Categories and Subject Descriptors: I.6.9 [Visualization] 
information visualization, applications of information 
visualization, visual analytics, H.5.0 [Information Interfaces and 
Presentation], data management and knowledge representation. 

1 INTRODUCTION 
The last decade has seen a rapid growth in both the volume and 
variety of network traffic, while at the same time it is becoming 
ever more important for analysts to understand network behaviors 
to provide quality of service, security, and misuse monitoring. To 
aid analysts in these tasks, researchers have proposed numerous 
visualization techniques that apply exploratory analysis to 
network traffic.  

The sense-making loop of information visualization is critical 
for analysis [5]. The loop involves a repeated sequence of 
hypothesis, experiment, and discovery. However, current visual 
analysis systems for network traffic do not support sense-making 
well because they provide no means for analysts to save their 
discoveries and build upon them. As such, it becomes the 
analyst’s burden to remember and reason about the multitude of 
patterns observed during visual analysis, which quickly becomes 
impossible in massive datasets typical of network traffic.  

In this paper we present a network traffic visualization system 
that enables previous visual discoveries to be used in future 
analysis. The system accomplishes this by allowing the analyst to 
interactively create logical models of the visual discoveries. The 
logical models are stored in a knowledge representation and can 
be reused. The reuse of knowledge creates an analytical cycle as 
summarized in figure 1. In addition to facilitating the sense-
making loop, knowledge representations allow the creation of 
more insightful visualizations that the analyst can use to discover 
more complex and subtle patterns. 

 To evaluate effectiveness, we will present the results of 
applying our system to analyze one day of network traffic from 

our laboratory. 
This paper will be structured as follows: section 2 will provide 

an overview of the visual analysis process; section 3 will give a 
sampling of related work in this area; section 4 will describe the 
system’s knowledge representation; section 5 will overview the 
visual knowledge creation; section 6 will demonstrate how the 
system leverages the knowledge base to improve visual analysis; 
section 7 will present our results from applying the system; 
section 8 will discuss the shortcomings of the current 
implementation; and section 9 will conclude the paper and 
provide future research directions. 

2 SYSTEM OVERVIEW 
The system has been designed to leverage the relationship 
between visual analysis and knowledge. The knowledge base is 
represented by logical models that describe traffic patterns. The 
analyst can interactively create logical models representing visual 
discoveries, and use the knowledge base of logical models to 
improve future visual analysis. In this section we will provide an 
overview of this process. 

 
Stage 1: Let us assume that the analyst can create a 

visualization that shows an interesting pattern – which either 
conforms to or challenges his domain knowledge. For example, 
the analyst knows that when a webpage is accessed, multiple *Email: lingxiao | gerth @graphics.stanford.edu 
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Fig. 1. The knowledge creation process as supported by the 
system. (1-2) the network analyst creates knowledge by 
selecting a pattern example on the visualization and 
interactively constructing and evaluating a model of the 
selected pattern to input to the knowledge base. (3-4). The 
system leverages the knowledge base to provide more 
insightful visual analysis tools, so that analyst can observe and 
model the behavior of more complex and subtle patterns. 



separate HTTP requests are generated. This is reasonable since a 
web page contains a collection of URLs representing information 
that needs to be retrieved. Therefore, a temporal visualization 
showing the traffic of a webpage access should show a sequence 
of HTTP requests, each of which is a connection to one of the 
HTTP ports. 

 
Stage 2: The analyst will then attempt to create a logical model 

that describes the traffic underlying the pattern. To create the 
logical model of the observed pattern, the analyst selects the data 
points comprising an instance of the pattern. The system then 
identifies a collection of predicates from the knowledge base that 
can be used to describe the selected data. For example, for a 
webpage access, the analyst selects a single sequence of HTTP 
requests, causing the following predicates to be identified: “from 
same machine”, “to same machine”, “high temporal locality”, 
“high source port locality”, “destination port HTTP”.  

The analyst then interactively creates a logical clause from 
these predicates.  This clause is iteratively constructed (stage 2.1) 
and evaluated (stage 2.2). For example, the analyst may first 
select the predicate “to same machine”, but find that it is too 
general, and therefore add other predicates such as “high temporal 
locality”, etc. to the conjunction, until he creates a clause that 
models the web page access pattern correctly, which may be: 
“from same machine” and “to same machine” and “high temporal 
locality” and “destination port HTTP”. 

 
Stage 3: Once the analyst has created a logical clause 

describing the pattern, the system incorporates the model into the 
knowledge base. The model can then be applied to all the data in 
the system to label the traffic of that type. For example, the 
system will label all the flows that are accepted by a web page 
access model with the “web” label. 

The analyst can now leverage the augmented data to create 
more insightful visualizations, and perform further visual analysis. 
For example, the analyst can now visualize only web traffic (all 
the traffic that satisfies the web page load model), or he can filter 
out the web traffic and concentrate his efforts on the remaining 
traffic.  

 
Using the enhanced visualizations may then lead to other 

patterns being discovered (stage 1), modeled (stage 2) and 
incorporated (stage 3). Thus, the analyst uses the system to 
iteratively build upon his prior visual discoveries. 

3 RELATED WORK 
Visualizations of internet network traffic patterns have existed for 
over a decade [4, 14].  Early visualizations were aimed at 
understanding overall network loads and topology. These have 
evolved into tools for monitoring quality of service at the scale of 
the major network trunks [11].  More recently a host of 
visualizations have been developed in both the research [7, 3, 9] 
and commercial worlds [1, 15] to help analysts understand traffic 
at smaller scales ranging from the corporate intranet down to 
individual machines not only for quality of service but also for 
network security. Because the volume of network traffic data is so 
large, most visualization systems provide aggregation and/or 
filtering mechanisms to reduce clutter and help the analyst focus 
on the traffic of interest. This is typically achieved by employing 
standard interactive dialog boxes, range sliders, dynamic queries, 
brushing, etc. 

Our work is most closely related to that found in NVision IP 
[18] which has recently added monitoring of user actions [12]. In 
NVision IP, the analyst’s selection actions are recorded as a 
pattern tree using a rule set based on the well-known Berkeley 

Packet Filter language [13].  These patterns may be saved in a file 
and subsequently applied to other network datasets, thereby 
permitting the analyst to capture the value of a particular set of 
filtering operations as reusable knowledge.  We expand the notion 
of reuse by using first-order logic to capture the analyst’s domain 
expertise in a knowledge base which goes beyond flow attributes, 
and is extended as he leverages the knowledge base to perform 
more effective visual analysis. 

4 KNOWLEDGE REPRESENTATION 
In this section we will describe the type of network traffic that the 
system can analyze and the knowledge representation that is 
currently used.  

4.1 Data 
Currently the system is designed for the analysis of the network 
flow data captured from the layer 2 switches by a collector 
running the open source Argus [2] sensor. Flow data is commonly 
used in network analysis because it does not contain packet 
payloads, and is thus more scalable, and avoids the social and 
legal issues associated with packet content recording.  

An Argus flow record contains the following fields: 
 

Dimensions Measures 
GMT Start time Duration 
IP protocol Source packets 
Source IP address Source bytes 
Source port Source application bytes 
Destination IP address Destination packets 
Destination port Destination bytes 
 Destination application bytes 

 
These are augmented by the Source and Destination ASN 

(autonomous system number – roughly corresponding to the ISP), 
flags indicating the flow state at time of capture and fields for the 
local hour and day of week. 

4.2 Declarative Language 
The declarative language used to model patterns is first-order 
logic, which is a well studied knowledge representation that is 
capable of modeling human and machine reasoning [10, 3, 6]. As 
an example of using first-order logic to describe network traffic, 
let us reconsider the web page load example from section 2. The 
clause that describes which HTTP connections form a web page 
load event is as follows: 

 
identical_source_IP(x,y) AND 
identical_destination_IP(x,y) AND 
time_within_2_seconds(x,y) AND 
( destination_port_80(x) AND 
  destination_port_80(y)) 
 
The variables x and y represent individual flow records. This 

logical clause represents the knowledge that a web page load 
consists of two flow records to port 80 (associated with HTTP 
traffic) within 2 seconds between the same pair of machines. 
Since parameters are not part of the universe of discourse, it is 
necessary to create multiple predicate for different parameter 
values. While tedious, we have found that most parameters 
require only a few values. 

Many types of traffic consist of multiple flows. To model 
knowledge about traffic patterns composed of arbitrarily many 
flows, we introduce the construct of a variable predicate which is 



a predicate that can accept any number of arguments. The 
following clause generalizes the previous pattern describing a web 
page load to any number of HTTP connections: 

 
identical_source_IP(x1,x2,…) AND  
identical_destination_IP(x1,x2,…) AND  
time_sequence_2_seconds(x1,x2,…) AND 
( destination_port_80(x1) AND  
  destination_port_80(x2) AND  …) 
 
To model network traffic, we initialize the system with the 

built-in predicates in table 1. These predicates are organized by 
the type of knowledge that is represented. Some represent 
knowledge about the source or destination, the type of connection, 
the characteristics of the traffic, temporal relations and trends, 
variability etc. Others are provided for efficiency. The system also 
provides an interface for analysts to add custom predicates. 

4.3 Applying Models 
Each model in the knowledge base is stored as a label definition 
pair <Label, Clause>, where the Label is the name for the pattern, 
and the Clause is a logical expression representing the pattern. 

To apply a label definition to the flow events, the system 
produces all the true groundings of the clause. A true grounding is 
a set of events for which the clause evaluates to true. The label is 
then associated with each element of a true grounding.  

 If the clause contained only 1 variable, then the system will 
append a column with the label name to any table that contains an 
event satisfying the clause. The label thus becomes an additional 
attribute of the object and can be used accordingly. 

If the clause grounding contains more than 1 event, the system 
will append the label to each event that is a member of a true 
grounding as above. In addition, the system will also create a 
collection of derived events, each of which corresponds to a true 
grounding of the clause. For example, if the set of flows {a,b,c} 
and {d,e} both satisfied the “Web Page Load” label clause, we 
will create a derived event abc that corresponds to {a,b,c}, and 
another event de that corresponds to {d,e}. Intuitively the derived 
abc event represents the web access event that caused the flows 

{a,b,c} to be observed, and similarly for de. The attributes of the 
derived event are computed (according to user specification) from 
the attributes of the events in the grounding.  

Once created, the derived events become part of the universe of 
discourse and can be used in predicate arguments, and can have 
other derived events built from them. Hence, derived events 
permit the analyst to reason at multiple levels, from the flow 
events at the OSI transport level, up to derived events at the 
application level and beyond. 

5 VISUAL KNOWLEDGE CREATION 
To create logical models, we have implemented a technique that 
allows the analyst to select a pattern directly on the visualization, 
then explore the model space by iteratively constructing and 
evaluating candidate clauses; eventually converging to a clause 
that models the pattern according to his domain knowledge.  The 
interactive techniques are only briefly described. Full details can 
be found in [17]. 

In this section, we will motivate our approach and buildup the 
event hierarchy by modeling web crawls based on the web page 
access events from section 2.  

5.1 Visual Representation 
To create a model of a pattern, the analyst first needs to observe 
an instance of the pattern in a visualization, which can be created 
using domain knowledge, or as part of exploratory analysis. Due 
to the strong temporal nature of network events, we have found 
that event diagrams are especially useful. An event diagram is a 
plot that maps time on the X axis, a dimension or measure on the 
Y axis, and a circular mark for each event. 

In the web crawl scenario, the analyst can use the visualization 
shown in the figure below, which uses an event diagram to show 
network traffic from Google to a set of local machines. 

5.2 Selecting Patterns 
The analyst selects a pattern by selecting the set of marks making 

up an instance of the pattern directly on the visualization. 
Intuitively, the set of selected points is an example of the pattern 
for which a model is desired.  

In the web crawl scenario, the analyst observes that there are 
rapid bursts of HTTP requests from Google, each of which may 
be caused by a web crawl. He therefore selects one burst of traffic 
on the visualization as an example web crawl, as seen above. 

5.3 Identifying Predicates 
Using the selected data points, the system identifies a list of 
predicates from the knowledge base that are true for this set of 
events. These predicates are presented to the analyst as candidate 
terms for more complex logical clauses.  

Table 1. A selection of the types of predicates used in the system. 
(S) means the predicate involves a single argument; (V) means the 
predicate involves multiple arguments. 

Knowledge Type Sample Predicate Descriptions 
Location (S) Dest IP is DNS server 

(S) Src ASN is Google 
Connection (S) Protocol is TCP 

(S) Dest port is 80 
Traffic characteristics (S) Total bytes sent is > 3000 

(S) The duration is < 1 s 
Temporal (V) One event before another 

(V) In tight time sequence 
Identical (V) Has same src IP 

(V) Has same dest AS number 
Counts (V) Number of arguments  
Approximate  (S) Data is within 2KB of 20KB 
Order (V) First argument has dest port 21 

(V) Last argument has dest port 514 
Trend (V) Amount of data is increasing 

(V) Dest IP number is increasing 
Variability (V) High distinct dest port usage 

(V) High dest IP access rate 



In the web crawl scenario, the identified predicates include the 
following:   

 
destination_port_80, destination_Stanford, 
identical_source_asn, time_sequence_30s, 
time_sequence_60s, more_than_4_events, 
more_than_32_events 
 
We were quite surprised that the “identical source IP” predicate 

was not included. This led to the discovery that Google crawls a 
website using multiple machines, counter to our expectations. 

5.4 Constructing a Logical Model 
To construct a model, the analyst interactively constructs and 
evaluates candidate clauses until he finds one that accurately 
models the desired pattern. To generate a candidate clause, the 
analyst selects a combination of predicates from the list of 
predicates. These predicates are formed into a conjunction; that is, 
the clause identifies those events that satisfy all the predicates. To 
allow the analyst to evaluate the candidate model, the system 
immediately shows those groups that satisfy the model. Again, the 
interactive techniques used are described in [17]. 

In the web crawl scenario, the analyst knows that a web crawler 
will access numerous pages possibly from multiple web servers in 
quick succession. Therefore, he selects the predicates “time 
sequence 60 seconds” and “more than 4 events”. The true 
groundings of the conjunction are shown below, where each 

grounding is a uniform color surrounded by a bounding box. 
 
Unfortunately, this simple conjunction is satisfied by several 

spurious patterns. In particular, multiple bursts are grouped 
together (the purple rectangle is really two web crawls), and there 
seems to be short sequences of HTTP requests that may 
correspond to human navigation (the small boxes on the right). 
Therefore, the analyst modifies the model clause by selecting the 
predicates: “more than 32 events” and “time sequence 30 
seconds”. 

Since this conjunction is more restrictive, only two sets of 
events satisfy the model. Note that the web crawler accesses 
several machines (circles at different y locations). This is because 
web pages frequently reference pages on other web servers.   

Once the analyst has converged on a clause that models the 
pattern, he names the pattern, and commits the clause to the 
knowledge base. In the web crawl scenario, the final clause is: 

 
time_sequence_30s(x1,x2,…) AND 
more_than_32_events(x1,x2,…) AND 
identical_source_AS_number(x1,x2,…) AND 
( is_web_access_event(x1) AND 
  is_web_access_event(x2) AND …) 
 
The predicate “identical source AS number” is needed to 

generalize the web crawl pattern beyond Google. 

5.5 Applying the Clause 
Once the analyst commits the model, the system applies the model 
to the entire data set. Below we show the web crawl events from 
different ASNs. The picture shows that the model successfully 
generalized to find many web crawls from Google (15169) and 
also from Inktomi (14776). 

 

 
 

6 USING THE KNOWLEDGE BASE 
The system is designed to leverage the knowledge base to 
facilitate more effective visual analysis. In this section, we 
describe three ways that the system improves visual analysis. 

6.1 Controlling Visual Attributes 
The knowledge base may be used to control visual attributes of 
the flows.  This results in visualizations that show important 
knowledge to the analyst, and are hence more insightful. As a 
simple example, we can map color to the type of traffic associated 
with the flow as seen in figure 2.   

6.2 Changing Level of Detail 
Analysts often want to reason at a higher level of abstraction. 
Given the size of the dataset, looking at low-level flow events 
often is overwhelming. Changing level of detail is achieved in our 
system by visualizing derived events. 

To demonstrate the use of derived events to emphasize macro 
patterns in the data, consider the following scenario in which we 
examine the structure of scan traffic. Figures 3 and 4 show 
scatterplots of source and destination number of bytes transferred 
for two types of traffic, fast and slow scans. Figure 3 shows this 
for individual flow records, while figure 4 shows the aggregated 
traffic for each individual fast or slow scan.  There are much 
fewer scan events than flow events, reducing the complexity of 
the display. More importantly, the characteristics of the traffic are 

 
 

 



more evident: slow scans tend to have more extreme source to 
destination byte ratios than fast scans, and fast scans tend to send 
and receive less data than slow scans. 

To evaluate the change in level of detail, we can calculate how 
many flow events are collapsed into each derived event for 
general traffic types. This technique very effectively reduces the 
amount of data that needs to be displayed. 

 
Traffic Type # flows /  

# derived event 
# flows /  
# derived event 

HTTP 6.47 375,563 / 58,019 
Chat 52.9  12,537 / 237 
Mail 1.22  10,178 / 8,355 
Port scan 112.00  336 / 6 
Port map 2.91 45,139 / 15,538 
Scan 1167.13  60,691 / 52 
SSH Attack 385.99 34,353 / 89 
SSH Login 499.09 11,479 / 23 
Web Crawl 580.98 72,622 / 125 

6.3 Enhanced Filtering  
In addition to supporting flexible filtering on event attributes, our 
system can also filter using pattern labels, and on patterns defined 
by logical clauses – analogous to modeling the pattern and then 
using the model to perform filtering.  

To illustrate how filtering on pattern labels is more semantically 
meaningful, we will use residual analysis to identify traffic 
patterns. Let us assume that we are currently in the process of 
labeling network traffic, and have produced the event diagram of 
figure 5(a). Using the knowledge creation process, we produce a 
model of the pattern shown in figure 5(b) - which is mail, and 
apply it to generate labels over the data. We then compute the 
residual by filtering out traffic with label “mail” from figure 5(a) 
to yield figure 5(c), in which we can observe and model the 
pattern shown in figure 5(d) – which is a scan. Then in turn, we 

compute the residual by filtering out traffic with label “scan” from 
figure 5(c), to produce figure 5(d). This process can continue until 
we have labeled all the salient features in the visualization. 

7 EVALUATION 
To evaluate the system, we attempted to label the network traffic 
for one day from our lab. This data was labeled by two authors, 
one with extensive experience administering the network.                                      

 
 

 
Fig. 2. Event diagram of source-port for the following traffic 
types: mail (green), DNS (blue), scan (red), SSH logins (purple), 
SSH attacks (orange), chat (indigo). Some interesting patterns 
are: (1) SSH attacks cycle over ports in the upper half of the port 
space (2) Servers that resolve host names for their logs via DNS 
create long sloping trails (3) scans exhibit a variety of different 
patterns 

 
Fig. 3. Scatter plot of source bytes (Y) vs. destination bytes (X) for 
every flow in fast scans (blue) and slow scans (orange) 

 
Fig. 4. Scatter plot of average source bytes (Y) vs. average 
destination bytes (X) for derived fast scan events (blue) and slow 
scan events (orange). One can clearly observe that slow scans tend 
to have either high destination bytes with low source bytes, or vice 
versa, while fast scans tend to have more balanced and lower 
source and destination bytes. 



                                                                                                   

The primary goal of this experiment was to demonstrate the 
utility of using knowledge representation to aid the visual 
identification of traffic patterns. To test this hypothesis, we 
produce a set of models based on the identified patterns, and use 
them to classify the data. We were also interested in the accuracy 
of the resulting classification, and the overall usability of the 
system for this task.  

The data that we used for this experiment was one day of 
network flows collected from an Argus sensor connected to the 
network switch in our laboratory.  We collected approximately 1 
million flow records for this experiment. Further statistics are 
shown below. 

 
Property Value 
Number of flows 1,297,635 
Number of local IP’s 1,0651 
Number of remote IP’s 39,589 
Total bytes sent and received 168,012,562,973 
Total number of packets 207,121,399 

                                                                 
1 Includes spoofed addresses 

 
    (a). Currently unidentified traffic. 

 
   (c). The residual flows after filtering out “mail” labels from (a). 

 
    (e). The residual flows after filtering out “scan” labels from (c). 

     Fig. 5. Event diagrams showing flows with source port on (Y). 

 
    (b). Flows that correspond to mail. 

 
    (d). Flows that correspond to scans. 



Before we started the evaluation process, we discussed the 
types of network knowledge that we needed to represent with 
experts on network behavior. We then designed an initial set of 
predicates that is expressive enough to capture this knowledge, as 
well as efficient to compute. A subset of this initial set of 
predicates is shown in table 1. During the analysis process, we 
extended this set of predicates as we discovered new patterns that 
could not be described using the initial set. Several new built-in 
predicates were added during this experiment. This was meant to 
be a pilot study. A production system would have a much larger 
set of built-in predicates. 

To discover traffic patterns, we used a variety of visual 
representations, although depictions of sequences of events in 
time were the most useful.   

We used a structured analysis process. The first step was to 
look for instances of an interesting pattern. Once these instances 
have been identified, a model of the pattern is produced based on 
the observed instances, and generalized to the entire dataset. Then 
we sought new patterns and used them to produce new models. 
Not including the time spent designing the predicates and 
implementing efficient logical evaluation methods, the labeling 
process took around one week to complete. 

The resulting set of traffic models consisted of the 21 label 
definitions listed below. Most of the models were simple 
conjunctions.  Here are two examples: 

 
Portmap = first_dest_port_111(x1,x2,…) AND  
  identical_src_ip(x1,x2,…) AND 
  identical_dest_ip(x1,x2,…) AND 
  time_sequence_0.5s(x1,x2,…) 
 
Fast Scan =  identical_src_ip(x1,x2,…) AND  
 dest_ip_in_sequence(x1,x2,…) AND 
 more_than_50_events(x1,x2,…) AND  
 high_dest_ip_access_rate(x1,x2,…) AND 
 (is_tcp(x1) AND is_tcp(x2) AND …) AND  
 (low_duration(x1) AND low_duration(x2) AND  
       …) AND  
 (low_total_data(x1) AND low_total_data(x2) AND 
       …)  
 
The set of models produced was able to classify approximately 

80% of the traffic in the dataset. In the classification process, we 
gave priority to voluminous and significant patterns. A complete 
list of models and the percentage of traffic of each type is shown 
in table 2. 

To quantify the accuracy of the classification precisely, we 
would need an independent way of classifying the traffic on our 
network, which we unfortunately do not have. Instead, we applied 
the models over the entire dataset, and performed extensive visual 
inspection on the classified traffic, and hand verified patterns by 
examining the raw data they were derived from. We did discover 
that in some cases the classification was wrong. These cases can 
be divided into the following 3 categories, in which the first 
contained the vast majority of cases:  
1. The underlying data for the flows was wrong. In particular 

we were surprised to discover that Argus periodically drops 
data, and confuses the orientation of the flows.  

2. Some traffic was misclassified by errors in our models. We 
were able easily correct these mistakes using the interactive 
clause creation technique.  

3. Some traffic was misclassified because the knowledge 
representation was not sufficiently expressive. We attempted 
to correct these cases by tuning the model clauses; however, 

we found that this procedure only led to a trade off between 
false positives and false negatives. 

Thus, in most cases we were able to rectify errors by improving 
the models.  

These results are evidence that the analyst was able to utilize 
the knowledge representation to accurately identify traffic 
patterns, and that the models produced were faithful to his domain 
knowledge. 

Table 2. List of models and percentage of traffic associated with 
each type. 

Model Name # Flows % of Traffic 
Chat 12,527 1.0 % 
DNS 131,764 10.2 % 
Fast scan 19,322 1.5 % 
IMAP mail 15,885 1.2 % 
LDAP 121,365 9.4 % 
Microsoft file access 57,461 4.4 % 
Multi source IP  74,577 5.7 % 
NFS 62,103 4.8 % 
NTP 35,027 2.7 % 
Pop mail  1,763 0.1 % 
Port scan 336 0.02 % 
Portmap 45,273 3.5 % 
Wrong direction 25,824 2.0 % 
Send mail  19,322 1.5 % 
Single source IP  63,732 4.9 % 
Slow scan 41,639 3.2 % 
SSH dictionary attack 34,353 2.6 % 
SSH successful login 11,479 0.9 % 
Success login traffic 23,605 1.8 % 
Web crawl 72,622 5.6 % 
Web page load 386,652 29.9 % 

 
The performance of the system on a dataset of this size was fast 

enough to be used interactively although there are opportunities to 
improve the algorithms. It typically took less than 30 seconds to 
produce and update a visualization. Applying a model to the entire 
dataset took approximately 10 minutes. 

We found that understanding network behaviors became easier 
as we iterated with the system. We believe this is because the 
main challenge is understanding the voluminous low level 
network traffic. Once the patterns in the traffic emerge, higher 
level application events are much more intuitive to understand. 
We also found that the process of interactive exploration 
stimulated the analyst to recall many facts that he was not able to 
remember before. We believe many of the rules and patterns used 
to classify the traffic could not have been produced without an 
interactive system.  

  

8 DISCUSSION 
In this section we will focus on three points of discussion, first, 
the usability of the system, second, the effectiveness of the logical 
models, and finally, whether the approach can be generalized to 
other applications.  



The performance of the system is dependent on the amount of 
data that is being examined. In the 1.2 million record dataset, most 
of the visual analysis tasks take less than 15 seconds, and applying 
models can take up to 10-15 minutes. The experience of the 
analyst would improve if the system were faster. There are 
various directions we are pursuing. Some logical predicates are 
expensive to compute; we intend to implement special-purpose 
algorithms to speed up these predicates. The performance would 
also improve if we had faster database technology.  

 Another option is to remove the more expensive predicates 
from the system, although this would limit the expressiveness of 
the knowledge representation. To efficiently evaluate models on a 
large dataset, we have already made compromises in the 
expressiveness of the language. For example, in the current 
implementation, all variable predicates must have an associated 
ordering, in which elements of a true grounding are contiguous; 
second, a variable predicate cannot be used with a fixed predicate 
(accepts a fixed number of arguments greater than 1) in the same 
clause. However, while these compromises yielded significant 
increases in efficiency, the language remained able to describe 
important network patterns, as we demonstrated.  

A related problem is the binary nature of logic, which can not 
describe models with uncertainty. The misclassified traffic 
corresponding to false positive and false negatives are those very 
close to the decision boundary, and intuitively are those that the 
analyst is not confident about. To express this knowledge, we are 
investigating methods of using probabilistic reasoning. For 
example, Markov Logic Networks can be used to reason 
probabilistically from a first order logic representation [16]. 

While the current system uses the knowledge base to enhance 
network analysis using Gantt charts, event diagrams, and scatter 
plots; we believe that the flexible use of knowledge representation 
is a general technique that can improve other types of 
visualizations and applications. The effectiveness of the approach 
will ultimately depend on relationship between the types of 
patterns that can be shown, and the types of patterns that can be 
modeled. For example, within network traffic, modeling 
temporally related objects was particularly effective. While the 
current implementation uses first order logic for network traffic 
analysis, it is an example of the iterated analysis approach, which 
is independent of the knowledge representation, and can be 
tailored to different types of patterns and applications. 

9 CONCLUSIONS AND FUTURE WORK 
We have presented a network traffic analysis system that supports 
the use of previous visual discoveries to enhance future visual 
analysis. In particular, we have shown how analysts using our 
system can build upon previous visual analysis discoveries to 
visually explore, and analyze more complex and subtle patterns. 

Our plans for future work in extending this system revolve 
around 3 main directions. First, our current implementation 
supports only a small fraction of visualization techniques, and we 
would like to extend its visualization capabilities to make patterns 
more salient. Second, we would like to increase the 
expressiveness of the predicates, so that the analyst can describe 
more complex patterns. Finally, domain knowledge, and the 
patterns that are observed do not always follow the hard 
constraints of logic, and as such, we would like to extend the 
knowledge representation to allow for probabilistic reasoning. 
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