
Enhancing Visual Analysis of Network Traffic Using Knowledge
Representation

Ling Xiao* John Gerth* Pat Hanrahan†

Stanford University

ABSTRACT
The last decade has seen a rapid growth in both the volume and
variety of network traffic, while at the same time, the need to
analyze the traffic for quality of service, security, and misuse has
become increasingly important. In this paper, we will present a
traffic analysis system that couples visual analysis with a
declarative knowledge representation based on first order logic.
Our system supports multiple iterations of the sense-making loop
of analytic reasoning, by allowing users to save their discoveries
as they are found and to reuse them in future iterations. We will
show how the knowledge base can be used to improve both the
visual representations and the basic analytical tasks of filtering
and changing level of detail. More fundamentally, the knowledge
representation can be used to classify the traffic. We will present
the results of applying the system to successfully classify 80% of
network traffic from one day in our laboratory.

CR Categories and Subject Descriptors: I.6.9 [Visualization]
information visualization, applications of information
visualization, visual analytics, H.5.0 [Information Interfaces and
Presentation], data management and knowledge representation.

1 INTRODUCTION
The last decade has seen a rapid growth in both the volume and
variety of network traffic, while at the same time it is becoming
ever more important for analysts to understand network behaviors
to provide quality of service, security, and misuse monitoring. To
aid analysts in these tasks, researchers have proposed numerous
visualization techniques that apply exploratory analysis to
network traffic.

The sense-making loop of information visualization is critical
for analysis [5]. The loop involves a repeated sequence of
hypothesis, experiment, and discovery. However, current visual
analysis systems for network traffic do not support sense-making
well because they provide no means for analysts to save their
discoveries and build upon them. As such, it becomes the
analyst’s burden to remember and reason about the multitude of
patterns observed during visual analysis, which quickly becomes
impossible in massive datasets typical of network traffic.

In this paper we present a network traffic visualization system
that enables previous visual discoveries to be used in future
analysis. The system accomplishes this by allowing the analyst to
interactively create logical models of the visual discoveries. The
logical models are stored in a knowledge representation and can
be reused. The reuse of knowledge creates an analytical cycle as
summarized in figure 1. In addition to facilitating the sense-
making loop, knowledge representations allow the creation of
more insightful visualizations that the analyst can use to discover
more complex and subtle patterns.

 To evaluate effectiveness, we will present the results of
applying our system to analyze one day of network traffic from

our laboratory.
This paper will be structured as follows: section 2 will provide

an overview of the visual analysis process; section 3 will give a
sampling of related work in this area; section 4 will describe the
system’s knowledge representation; section 5 will overview the
visual knowledge creation; section 6 will demonstrate how the
system leverages the knowledge base to improve visual analysis;
section 7 will present our results from applying the system;
section 8 will discuss the shortcomings of the current
implementation; and section 9 will conclude the paper and
provide future research directions.

2 SYSTEM OVERVIEW
The system has been designed to leverage the relationship
between visual analysis and knowledge. The knowledge base is
represented by logical models that describe traffic patterns. The
analyst can interactively create logical models representing visual
discoveries, and use the knowledge base of logical models to
improve future visual analysis. In this section we will provide an
overview of this process.

Stage 1: Let us assume that the analyst can create a

visualization that shows an interesting pattern – which either
conforms to or challenges his domain knowledge. For example,
the analyst knows that when a webpage is accessed, multiple *Email: lingxiao | gerth @graphics.stanford.edu

† Email: hanrahan@cs.stanford.edu

Fig. 1. The knowledge creation process as supported by the
system. (1-2) the network analyst creates knowledge by
selecting a pattern example on the visualization and
interactively constructing and evaluating a model of the
selected pattern to input to the knowledge base. (3-4). The
system leverages the knowledge base to provide more
insightful visual analysis tools, so that analyst can observe and
model the behavior of more complex and subtle patterns.

separate HTTP requests are generated. This is reasonable since a
web page contains a collection of URLs representing information
that needs to be retrieved. Therefore, a temporal visualization
showing the traffic of a webpage access should show a sequence
of HTTP requests, each of which is a connection to one of the
HTTP ports.

Stage 2: The analyst will then attempt to create a logical model

that describes the traffic underlying the pattern. To create the
logical model of the observed pattern, the analyst selects the data
points comprising an instance of the pattern. The system then
identifies a collection of predicates from the knowledge base that
can be used to describe the selected data. For example, for a
webpage access, the analyst selects a single sequence of HTTP
requests, causing the following predicates to be identified: “from
same machine”, “to same machine”, “high temporal locality”,
“high source port locality”, “destination port HTTP”.

The analyst then interactively creates a logical clause from
these predicates. This clause is iteratively constructed (stage 2.1)
and evaluated (stage 2.2). For example, the analyst may first
select the predicate “to same machine”, but find that it is too
general, and therefore add other predicates such as “high temporal
locality”, etc. to the conjunction, until he creates a clause that
models the web page access pattern correctly, which may be:
“from same machine” and “to same machine” and “high temporal
locality” and “destination port HTTP”.

Stage 3: Once the analyst has created a logical clause

describing the pattern, the system incorporates the model into the
knowledge base. The model can then be applied to all the data in
the system to label the traffic of that type. For example, the
system will label all the flows that are accepted by a web page
access model with the “web” label.

The analyst can now leverage the augmented data to create
more insightful visualizations, and perform further visual analysis.
For example, the analyst can now visualize only web traffic (all
the traffic that satisfies the web page load model), or he can filter
out the web traffic and concentrate his efforts on the remaining
traffic.

Using the enhanced visualizations may then lead to other

patterns being discovered (stage 1), modeled (stage 2) and
incorporated (stage 3). Thus, the analyst uses the system to
iteratively build upon his prior visual discoveries.

3 RELATED WORK
Visualizations of internet network traffic patterns have existed for
over a decade [4, 14]. Early visualizations were aimed at
understanding overall network loads and topology. These have
evolved into tools for monitoring quality of service at the scale of
the major network trunks [11]. More recently a host of
visualizations have been developed in both the research [7, 3, 9]
and commercial worlds [1, 15] to help analysts understand traffic
at smaller scales ranging from the corporate intranet down to
individual machines not only for quality of service but also for
network security. Because the volume of network traffic data is so
large, most visualization systems provide aggregation and/or
filtering mechanisms to reduce clutter and help the analyst focus
on the traffic of interest. This is typically achieved by employing
standard interactive dialog boxes, range sliders, dynamic queries,
brushing, etc.

Our work is most closely related to that found in NVision IP
[18] which has recently added monitoring of user actions [12]. In
NVision IP, the analyst’s selection actions are recorded as a
pattern tree using a rule set based on the well-known Berkeley

Packet Filter language [13]. These patterns may be saved in a file
and subsequently applied to other network datasets, thereby
permitting the analyst to capture the value of a particular set of
filtering operations as reusable knowledge. We expand the notion
of reuse by using first-order logic to capture the analyst’s domain
expertise in a knowledge base which goes beyond flow attributes,
and is extended as he leverages the knowledge base to perform
more effective visual analysis.

4 KNOWLEDGE REPRESENTATION
In this section we will describe the type of network traffic that the
system can analyze and the knowledge representation that is
currently used.

4.1 Data
Currently the system is designed for the analysis of the network
flow data captured from the layer 2 switches by a collector
running the open source Argus [2] sensor. Flow data is commonly
used in network analysis because it does not contain packet
payloads, and is thus more scalable, and avoids the social and
legal issues associated with packet content recording.

An Argus flow record contains the following fields:

Dimensions Measures
GMT Start time Duration
IP protocol Source packets
Source IP address Source bytes
Source port Source application bytes
Destination IP address Destination packets
Destination port Destination bytes
 Destination application bytes

These are augmented by the Source and Destination ASN

(autonomous system number – roughly corresponding to the ISP),
flags indicating the flow state at time of capture and fields for the
local hour and day of week.

4.2 Declarative Language
The declarative language used to model patterns is first-order
logic, which is a well studied knowledge representation that is
capable of modeling human and machine reasoning [10, 3, 6]. As
an example of using first-order logic to describe network traffic,
let us reconsider the web page load example from section 2. The
clause that describes which HTTP connections form a web page
load event is as follows:

identical_source_IP(x,y) AND
identical_destination_IP(x,y) AND
time_within_2_seconds(x,y) AND
(destination_port_80(x) AND
 destination_port_80(y))

The variables x and y represent individual flow records. This

logical clause represents the knowledge that a web page load
consists of two flow records to port 80 (associated with HTTP
traffic) within 2 seconds between the same pair of machines.
Since parameters are not part of the universe of discourse, it is
necessary to create multiple predicate for different parameter
values. While tedious, we have found that most parameters
require only a few values.

Many types of traffic consist of multiple flows. To model
knowledge about traffic patterns composed of arbitrarily many
flows, we introduce the construct of a variable predicate which is

a predicate that can accept any number of arguments. The
following clause generalizes the previous pattern describing a web
page load to any number of HTTP connections:

identical_source_IP(x1,x2,…) AND
identical_destination_IP(x1,x2,…) AND
time_sequence_2_seconds(x1,x2,…) AND
(destination_port_80(x1) AND
 destination_port_80(x2) AND …)

To model network traffic, we initialize the system with the

built-in predicates in table 1. These predicates are organized by
the type of knowledge that is represented. Some represent
knowledge about the source or destination, the type of connection,
the characteristics of the traffic, temporal relations and trends,
variability etc. Others are provided for efficiency. The system also
provides an interface for analysts to add custom predicates.

4.3 Applying Models
Each model in the knowledge base is stored as a label definition
pair <Label, Clause>, where the Label is the name for the pattern,
and the Clause is a logical expression representing the pattern.

To apply a label definition to the flow events, the system
produces all the true groundings of the clause. A true grounding is
a set of events for which the clause evaluates to true. The label is
then associated with each element of a true grounding.

 If the clause contained only 1 variable, then the system will
append a column with the label name to any table that contains an
event satisfying the clause. The label thus becomes an additional
attribute of the object and can be used accordingly.

If the clause grounding contains more than 1 event, the system
will append the label to each event that is a member of a true
grounding as above. In addition, the system will also create a
collection of derived events, each of which corresponds to a true
grounding of the clause. For example, if the set of flows {a,b,c}
and {d,e} both satisfied the “Web Page Load” label clause, we
will create a derived event abc that corresponds to {a,b,c}, and
another event de that corresponds to {d,e}. Intuitively the derived
abc event represents the web access event that caused the flows

{a,b,c} to be observed, and similarly for de. The attributes of the
derived event are computed (according to user specification) from
the attributes of the events in the grounding.

Once created, the derived events become part of the universe of
discourse and can be used in predicate arguments, and can have
other derived events built from them. Hence, derived events
permit the analyst to reason at multiple levels, from the flow
events at the OSI transport level, up to derived events at the
application level and beyond.

5 VISUAL KNOWLEDGE CREATION
To create logical models, we have implemented a technique that
allows the analyst to select a pattern directly on the visualization,
then explore the model space by iteratively constructing and
evaluating candidate clauses; eventually converging to a clause
that models the pattern according to his domain knowledge. The
interactive techniques are only briefly described. Full details can
be found in [17].

In this section, we will motivate our approach and buildup the
event hierarchy by modeling web crawls based on the web page
access events from section 2.

5.1 Visual Representation
To create a model of a pattern, the analyst first needs to observe
an instance of the pattern in a visualization, which can be created
using domain knowledge, or as part of exploratory analysis. Due
to the strong temporal nature of network events, we have found
that event diagrams are especially useful. An event diagram is a
plot that maps time on the X axis, a dimension or measure on the
Y axis, and a circular mark for each event.

In the web crawl scenario, the analyst can use the visualization
shown in the figure below, which uses an event diagram to show
network traffic from Google to a set of local machines.

5.2 Selecting Patterns
The analyst selects a pattern by selecting the set of marks making

up an instance of the pattern directly on the visualization.
Intuitively, the set of selected points is an example of the pattern
for which a model is desired.

In the web crawl scenario, the analyst observes that there are
rapid bursts of HTTP requests from Google, each of which may
be caused by a web crawl. He therefore selects one burst of traffic
on the visualization as an example web crawl, as seen above.

5.3 Identifying Predicates
Using the selected data points, the system identifies a list of
predicates from the knowledge base that are true for this set of
events. These predicates are presented to the analyst as candidate
terms for more complex logical clauses.

Table 1. A selection of the types of predicates used in the system.
(S) means the predicate involves a single argument; (V) means the
predicate involves multiple arguments.

Knowledge Type Sample Predicate Descriptions
Location (S) Dest IP is DNS server

(S) Src ASN is Google
Connection (S) Protocol is TCP

(S) Dest port is 80
Traffic characteristics (S) Total bytes sent is > 3000

(S) The duration is < 1 s
Temporal (V) One event before another

(V) In tight time sequence
Identical (V) Has same src IP

(V) Has same dest AS number
Counts (V) Number of arguments
Approximate (S) Data is within 2KB of 20KB
Order (V) First argument has dest port 21

(V) Last argument has dest port 514
Trend (V) Amount of data is increasing

(V) Dest IP number is increasing
Variability (V) High distinct dest port usage

(V) High dest IP access rate

In the web crawl scenario, the identified predicates include the
following:

destination_port_80, destination_Stanford,
identical_source_asn, time_sequence_30s,
time_sequence_60s, more_than_4_events,
more_than_32_events

We were quite surprised that the “identical source IP” predicate

was not included. This led to the discovery that Google crawls a
website using multiple machines, counter to our expectations.

5.4 Constructing a Logical Model
To construct a model, the analyst interactively constructs and
evaluates candidate clauses until he finds one that accurately
models the desired pattern. To generate a candidate clause, the
analyst selects a combination of predicates from the list of
predicates. These predicates are formed into a conjunction; that is,
the clause identifies those events that satisfy all the predicates. To
allow the analyst to evaluate the candidate model, the system
immediately shows those groups that satisfy the model. Again, the
interactive techniques used are described in [17].

In the web crawl scenario, the analyst knows that a web crawler
will access numerous pages possibly from multiple web servers in
quick succession. Therefore, he selects the predicates “time
sequence 60 seconds” and “more than 4 events”. The true
groundings of the conjunction are shown below, where each

grounding is a uniform color surrounded by a bounding box.

Unfortunately, this simple conjunction is satisfied by several

spurious patterns. In particular, multiple bursts are grouped
together (the purple rectangle is really two web crawls), and there
seems to be short sequences of HTTP requests that may
correspond to human navigation (the small boxes on the right).
Therefore, the analyst modifies the model clause by selecting the
predicates: “more than 32 events” and “time sequence 30
seconds”.

Since this conjunction is more restrictive, only two sets of
events satisfy the model. Note that the web crawler accesses
several machines (circles at different y locations). This is because
web pages frequently reference pages on other web servers.

Once the analyst has converged on a clause that models the
pattern, he names the pattern, and commits the clause to the
knowledge base. In the web crawl scenario, the final clause is:

time_sequence_30s(x1,x2,…) AND
more_than_32_events(x1,x2,…) AND
identical_source_AS_number(x1,x2,…) AND
(is_web_access_event(x1) AND
 is_web_access_event(x2) AND …)

The predicate “identical source AS number” is needed to

generalize the web crawl pattern beyond Google.

5.5 Applying the Clause
Once the analyst commits the model, the system applies the model
to the entire data set. Below we show the web crawl events from
different ASNs. The picture shows that the model successfully
generalized to find many web crawls from Google (15169) and
also from Inktomi (14776).

6 USING THE KNOWLEDGE BASE
The system is designed to leverage the knowledge base to
facilitate more effective visual analysis. In this section, we
describe three ways that the system improves visual analysis.

6.1 Controlling Visual Attributes
The knowledge base may be used to control visual attributes of
the flows. This results in visualizations that show important
knowledge to the analyst, and are hence more insightful. As a
simple example, we can map color to the type of traffic associated
with the flow as seen in figure 2.

6.2 Changing Level of Detail
Analysts often want to reason at a higher level of abstraction.
Given the size of the dataset, looking at low-level flow events
often is overwhelming. Changing level of detail is achieved in our
system by visualizing derived events.

To demonstrate the use of derived events to emphasize macro
patterns in the data, consider the following scenario in which we
examine the structure of scan traffic. Figures 3 and 4 show
scatterplots of source and destination number of bytes transferred
for two types of traffic, fast and slow scans. Figure 3 shows this
for individual flow records, while figure 4 shows the aggregated
traffic for each individual fast or slow scan. There are much
fewer scan events than flow events, reducing the complexity of
the display. More importantly, the characteristics of the traffic are

more evident: slow scans tend to have more extreme source to
destination byte ratios than fast scans, and fast scans tend to send
and receive less data than slow scans.

To evaluate the change in level of detail, we can calculate how
many flow events are collapsed into each derived event for
general traffic types. This technique very effectively reduces the
amount of data that needs to be displayed.

Traffic Type # flows /

derived event
flows /
derived event

HTTP 6.47 375,563 / 58,019
Chat 52.9 12,537 / 237
Mail 1.22 10,178 / 8,355
Port scan 112.00 336 / 6
Port map 2.91 45,139 / 15,538
Scan 1167.13 60,691 / 52
SSH Attack 385.99 34,353 / 89
SSH Login 499.09 11,479 / 23
Web Crawl 580.98 72,622 / 125

6.3 Enhanced Filtering
In addition to supporting flexible filtering on event attributes, our
system can also filter using pattern labels, and on patterns defined
by logical clauses – analogous to modeling the pattern and then
using the model to perform filtering.

To illustrate how filtering on pattern labels is more semantically
meaningful, we will use residual analysis to identify traffic
patterns. Let us assume that we are currently in the process of
labeling network traffic, and have produced the event diagram of
figure 5(a). Using the knowledge creation process, we produce a
model of the pattern shown in figure 5(b) - which is mail, and
apply it to generate labels over the data. We then compute the
residual by filtering out traffic with label “mail” from figure 5(a)
to yield figure 5(c), in which we can observe and model the
pattern shown in figure 5(d) – which is a scan. Then in turn, we

compute the residual by filtering out traffic with label “scan” from
figure 5(c), to produce figure 5(d). This process can continue until
we have labeled all the salient features in the visualization.

7 EVALUATION
To evaluate the system, we attempted to label the network traffic
for one day from our lab. This data was labeled by two authors,
one with extensive experience administering the network.

Fig. 2. Event diagram of source-port for the following traffic
types: mail (green), DNS (blue), scan (red), SSH logins (purple),
SSH attacks (orange), chat (indigo). Some interesting patterns
are: (1) SSH attacks cycle over ports in the upper half of the port
space (2) Servers that resolve host names for their logs via DNS
create long sloping trails (3) scans exhibit a variety of different
patterns

Fig. 3. Scatter plot of source bytes (Y) vs. destination bytes (X) for
every flow in fast scans (blue) and slow scans (orange)

Fig. 4. Scatter plot of average source bytes (Y) vs. average
destination bytes (X) for derived fast scan events (blue) and slow
scan events (orange). One can clearly observe that slow scans tend
to have either high destination bytes with low source bytes, or vice
versa, while fast scans tend to have more balanced and lower
source and destination bytes.

The primary goal of this experiment was to demonstrate the
utility of using knowledge representation to aid the visual
identification of traffic patterns. To test this hypothesis, we
produce a set of models based on the identified patterns, and use
them to classify the data. We were also interested in the accuracy
of the resulting classification, and the overall usability of the
system for this task.

The data that we used for this experiment was one day of
network flows collected from an Argus sensor connected to the
network switch in our laboratory. We collected approximately 1
million flow records for this experiment. Further statistics are
shown below.

Property Value
Number of flows 1,297,635
Number of local IP’s 1,0651
Number of remote IP’s 39,589
Total bytes sent and received 168,012,562,973
Total number of packets 207,121,399

1 Includes spoofed addresses

 (a). Currently unidentified traffic.

 (c). The residual flows after filtering out “mail” labels from (a).

 (e). The residual flows after filtering out “scan” labels from (c).

 Fig. 5. Event diagrams showing flows with source port on (Y).

 (b). Flows that correspond to mail.

 (d). Flows that correspond to scans.

Before we started the evaluation process, we discussed the
types of network knowledge that we needed to represent with
experts on network behavior. We then designed an initial set of
predicates that is expressive enough to capture this knowledge, as
well as efficient to compute. A subset of this initial set of
predicates is shown in table 1. During the analysis process, we
extended this set of predicates as we discovered new patterns that
could not be described using the initial set. Several new built-in
predicates were added during this experiment. This was meant to
be a pilot study. A production system would have a much larger
set of built-in predicates.

To discover traffic patterns, we used a variety of visual
representations, although depictions of sequences of events in
time were the most useful.

We used a structured analysis process. The first step was to
look for instances of an interesting pattern. Once these instances
have been identified, a model of the pattern is produced based on
the observed instances, and generalized to the entire dataset. Then
we sought new patterns and used them to produce new models.
Not including the time spent designing the predicates and
implementing efficient logical evaluation methods, the labeling
process took around one week to complete.

The resulting set of traffic models consisted of the 21 label
definitions listed below. Most of the models were simple
conjunctions. Here are two examples:

Portmap = first_dest_port_111(x1,x2,…) AND
 identical_src_ip(x1,x2,…) AND
 identical_dest_ip(x1,x2,…) AND
 time_sequence_0.5s(x1,x2,…)

Fast Scan = identical_src_ip(x1,x2,…) AND
 dest_ip_in_sequence(x1,x2,…) AND
 more_than_50_events(x1,x2,…) AND
 high_dest_ip_access_rate(x1,x2,…) AND
 (is_tcp(x1) AND is_tcp(x2) AND …) AND
 (low_duration(x1) AND low_duration(x2) AND
 …) AND
 (low_total_data(x1) AND low_total_data(x2) AND
 …)

The set of models produced was able to classify approximately

80% of the traffic in the dataset. In the classification process, we
gave priority to voluminous and significant patterns. A complete
list of models and the percentage of traffic of each type is shown
in table 2.

To quantify the accuracy of the classification precisely, we
would need an independent way of classifying the traffic on our
network, which we unfortunately do not have. Instead, we applied
the models over the entire dataset, and performed extensive visual
inspection on the classified traffic, and hand verified patterns by
examining the raw data they were derived from. We did discover
that in some cases the classification was wrong. These cases can
be divided into the following 3 categories, in which the first
contained the vast majority of cases:
1. The underlying data for the flows was wrong. In particular

we were surprised to discover that Argus periodically drops
data, and confuses the orientation of the flows.

2. Some traffic was misclassified by errors in our models. We
were able easily correct these mistakes using the interactive
clause creation technique.

3. Some traffic was misclassified because the knowledge
representation was not sufficiently expressive. We attempted
to correct these cases by tuning the model clauses; however,

we found that this procedure only led to a trade off between
false positives and false negatives.

Thus, in most cases we were able to rectify errors by improving
the models.

These results are evidence that the analyst was able to utilize
the knowledge representation to accurately identify traffic
patterns, and that the models produced were faithful to his domain
knowledge.

Table 2. List of models and percentage of traffic associated with
each type.

Model Name # Flows % of Traffic
Chat 12,527 1.0 %
DNS 131,764 10.2 %
Fast scan 19,322 1.5 %
IMAP mail 15,885 1.2 %
LDAP 121,365 9.4 %
Microsoft file access 57,461 4.4 %
Multi source IP 74,577 5.7 %
NFS 62,103 4.8 %
NTP 35,027 2.7 %
Pop mail 1,763 0.1 %
Port scan 336 0.02 %
Portmap 45,273 3.5 %
Wrong direction 25,824 2.0 %
Send mail 19,322 1.5 %
Single source IP 63,732 4.9 %
Slow scan 41,639 3.2 %
SSH dictionary attack 34,353 2.6 %
SSH successful login 11,479 0.9 %
Success login traffic 23,605 1.8 %
Web crawl 72,622 5.6 %
Web page load 386,652 29.9 %

The performance of the system on a dataset of this size was fast

enough to be used interactively although there are opportunities to
improve the algorithms. It typically took less than 30 seconds to
produce and update a visualization. Applying a model to the entire
dataset took approximately 10 minutes.

We found that understanding network behaviors became easier
as we iterated with the system. We believe this is because the
main challenge is understanding the voluminous low level
network traffic. Once the patterns in the traffic emerge, higher
level application events are much more intuitive to understand.
We also found that the process of interactive exploration
stimulated the analyst to recall many facts that he was not able to
remember before. We believe many of the rules and patterns used
to classify the traffic could not have been produced without an
interactive system.

8 DISCUSSION
In this section we will focus on three points of discussion, first,
the usability of the system, second, the effectiveness of the logical
models, and finally, whether the approach can be generalized to
other applications.

The performance of the system is dependent on the amount of
data that is being examined. In the 1.2 million record dataset, most
of the visual analysis tasks take less than 15 seconds, and applying
models can take up to 10-15 minutes. The experience of the
analyst would improve if the system were faster. There are
various directions we are pursuing. Some logical predicates are
expensive to compute; we intend to implement special-purpose
algorithms to speed up these predicates. The performance would
also improve if we had faster database technology.

 Another option is to remove the more expensive predicates
from the system, although this would limit the expressiveness of
the knowledge representation. To efficiently evaluate models on a
large dataset, we have already made compromises in the
expressiveness of the language. For example, in the current
implementation, all variable predicates must have an associated
ordering, in which elements of a true grounding are contiguous;
second, a variable predicate cannot be used with a fixed predicate
(accepts a fixed number of arguments greater than 1) in the same
clause. However, while these compromises yielded significant
increases in efficiency, the language remained able to describe
important network patterns, as we demonstrated.

A related problem is the binary nature of logic, which can not
describe models with uncertainty. The misclassified traffic
corresponding to false positive and false negatives are those very
close to the decision boundary, and intuitively are those that the
analyst is not confident about. To express this knowledge, we are
investigating methods of using probabilistic reasoning. For
example, Markov Logic Networks can be used to reason
probabilistically from a first order logic representation [16].

While the current system uses the knowledge base to enhance
network analysis using Gantt charts, event diagrams, and scatter
plots; we believe that the flexible use of knowledge representation
is a general technique that can improve other types of
visualizations and applications. The effectiveness of the approach
will ultimately depend on relationship between the types of
patterns that can be shown, and the types of patterns that can be
modeled. For example, within network traffic, modeling
temporally related objects was particularly effective. While the
current implementation uses first order logic for network traffic
analysis, it is an example of the iterated analysis approach, which
is independent of the knowledge representation, and can be
tailored to different types of patterns and applications.

9 CONCLUSIONS AND FUTURE WORK
We have presented a network traffic analysis system that supports
the use of previous visual discoveries to enhance future visual
analysis. In particular, we have shown how analysts using our
system can build upon previous visual analysis discoveries to
visually explore, and analyze more complex and subtle patterns.

Our plans for future work in extending this system revolve
around 3 main directions. First, our current implementation
supports only a small fraction of visualization techniques, and we
would like to extend its visualization capabilities to make patterns
more salient. Second, we would like to increase the
expressiveness of the predicates, so that the analyst can describe
more complex patterns. Finally, domain knowledge, and the
patterns that are observed do not always follow the hard
constraints of logic, and as such, we would like to extend the
knowledge representation to allow for probabilistic reasoning.

ACKNOWLEDGEMENTS
This work was supported by the Stanford Regional Visualization
and Analytics Center (RVAC). This Center is supported by the
National Visualization and Analytics Center (NVAC(tm)), a U.S.
Department of Homeland Security program operated by the
Pacific Northwest National Laboratory (PNNL), a U.S.
Department of Energy Office of Science laboratory.

REFERENCE
[1] Arcsight. http://www.arcsight.com/whitepapers.htm, 2005
[2] Argus. http://www.qosient.com/argus/packets.htm, 2001
[3] R. Ball, G. Fink, and C. North. “Home-centric visualization of

network traffic for security administration,” In Proceedings of the
2004 ACM workshop on Visualization and data mining for computer
security, 2004

[4] R.A. Becker, S.G. Eick, and A.R. Wilks. “Visualizing Network
Data” In IEEE Transactions on Visualization and Computer
Graphics, 1995

[5] S.K. Card, J.D. Mackinlay, and B. Shneiderman. 1999 Readings in
Information Visualization: Using Vision to Think, San Francisco :
Morgan Kaufmann Publishers, 1999

[6] H.B. Enderton. A Mathematical Introduction to Logic, New York:
Academic Press, 2001

[7] R. Erbacher. “Visual traffic monitoring and evaluation,” In
Proceedings of the Conference on Internet Performance and Control
of Network Systems II, 2001

[8] M.R. Genesereth, N.J. Nilsson. Logic foundations of artificial
intelligence. San Francisco: Morgan Kaufmann Publishers, 1987

[9] J.R. Goodall, W. Lutters, P. Rheingans, and A. Komlodi.
“Preserving the Big Picture: Visual Network Traffic Analysis with
TNV”, in IEEE Workshop on Visualization for Computer Security,
2005

[10] D. Hilbert, W. Ackerman. Grundzüge der theoretischen Logik
(Principles of Theoretical Logic), Springer-Verlag, 1928

[11] M. Lad, D. Massey, and L. Zhang. “Visualizing Internet Routing
Dynamics using Link-Rank”, UCLA Technical Report TR050010,
March 2005

[12] K. Lakkaraju, R. Bearavolu, A. Slagell, W. Yurcik, and S. North.
“Closing-the-Loop in NvisionIP: Integrating Discovery and Search
in Security Visualizations,” In IEEE Workshop on Visualization for
Computer Security, 2005

[13] S. McCanne, V. Jacobson “The BSD Packet Filter: A New
Architecture for User-level Packet Capture,” In Winter USENIX
conference, 1993.

[14] T. Munzner, E. Hoffman, K. Claffy, and B. Fenner. “Visualizing the
global topoloby of the Mbone,” In IEEE Symposium on Information
Visualization, 1996

[15] Q1Labs. http://www.q1labs.com/resources/white_papers.html, 2005
[16] M. Richardson, and P. Domingos. “Markov Logic Networks,”

Technical Report, Department of Computer Science and
Engineering, University of Washington, Seattle, WA.
http://www.cs.washington.edu/homes/pedrod/mln.pdf, 2004

[17] L. Xiao, J. Gerth, P. Hanrahan, "Creating Logic Clauses
Dynamically From Pattern Selections," submitted to IEEE
Symposium on Information Visualization, 2006

[18] W. Yurcik, K. Lakkaraju, James Barlow, and Jeff Rosendale. “A
prototype tool for visual data mining of network traffic for intrusion
detection”. In 3rd IEEE International Conference on Data Mining
(ICDM) Workshop on Data Mining for Computer Security
(DMSEC), 2003

