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Abstract—Brushing is a fundamental interaction for visual analytics. A brush is usually defined as a closed region of the screen 

used to select data items and to highlight them in the current view and other linked views. Scatterplots are also standard ways to 

visualize values for two variables of a set of multidimensional data. We propose a technique to brush and interactively cluster 

multidimensional data navigating through a single of their scatterplot projection.  

Index Terms—Visual analytics, brushing, scatterplot, multidimensional data, axis-parallel projection

 

INTRODUCTION  

Brushing is a standard interaction technique for visual analytics. A 
brush is usually a closed region of the display used to select data 
items and to highlight them in the current view and other linked 
views. The reason for brushing data can be the focus on specific 
visual patterns like outliers or clusters in one view that the user 
wants to link to other views for further analysis. It is also a way to 
select data to be filtered out or to be highlighted permanently to keep 
track of detected patterns for future interactions. Clusters are 
important patterns in Exploratory Data Analysis. Data within a 
cluster are more similar to each other than to other data clusters.  
Two-dimensional (2D) scatterplots are also a standard way for data 
visualization where each data is represented as a point in a 2-
dimensional Cartesian space. When data are multidimensional (MD), 
2D scatterplots can show an orthogonal projection of the data onto 
the plane formed by two of the data variables. However, this 
projection hides the MD cluster structure by possibly overlapping 
several distinct MD clusters in a single one. Even Scatter Plot 
Matrices (SPLOM) are unable to show this cluster structure for three 
possible reasons: the clusters are not pairwise linearly separable (Fig. 
1a); the clusters are pairwise linearly separable but not by a 
hyperplane orthogonal to any one or two of the MD variables 
(Blue/red and red/green points in Fig. 1b); or the clusters are 
pairwise linearly separable by such a hyperplane but this is hidden by 
another cluster lying in between in any of the 2D scatterplots 
(Blue/green points separability hidden by the red points in Fig. 1b).  
In this work we focus on an interactive clustering task (a standard 
high-level analytic task in Exploratory Data Analysis) and define an 
MD brush which enables the user to solve these issues, exploring 
similarities between MD data through their 2D scatterplot, and to 
keep track of this exploration by coloring the MD clusters found.  

1 MULTIDIMENSIONAL BRUSHING  

We consider a set P of D-dimension data x=(x1,…xD) as vectors in 
the data space E=IRD , their orthogonal projection as a scatterplot of 
points (xa,xb) (a and b in {1,…,D}) in the 2D plane Eab and we define 
a brush BS as a ball in S subspace of E with Euclidean radius rS and 
center vS. In the sequel every distances and radius are Euclidean. 

1.1 Brushing in 2D space 

A standard brushing Bab(P) in the scatterplot Eab consists in selecting 

points from P whose distance to vab=(va,vb) is lower or equal to rab. 

The points selected are assigned a color or shape contrasting to non-

selected points. The radius rab of this 2D-brush can be tuned with a 

slider or the mouse wheel, while its center position vab can be 

assigned to the mouse pointer position. This brush selects data points 

in the subspace Qab = Bab x E\a\b. The brush is local in Eab but not in 

E\a\b (E = Eab x E\a\b) so it ignores any cluster structure in the E\a\b 

subspace as illustrated in Fig. 1. 
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Fig. 1: 10D data scatterplot along two of their variables: (a) data from a 10D 
unit variance Normal (UVG) (grey and blue) centered within a 10D 5-unit 
radius sphere (grey and red); Below, histogram of the data, the ones within 
a 4-unit radius tube along the x-axis are highlighted. (b) data from three 10D 
UVG centered at (0,…,0); (2,…,2) and (4,…,4). Data histograms along the 
(0,…,0) to (1,…,1) diagonal. User task: clusters (colors) are unknown, they 
are to be discovered interactively. 

1.2 Brushing in MD space 

The multidimensional brush (MD-brush) is obtained by setting S=E, 
the MD-brush is then a D-dimension ball BE with radius rE centered 
at some point v in E, that can be visualized as a disc Bab with radius 
rab and center vab=(va,vb) in the scatterplot Eab. This Bab disc defines a 
Magic Lens [1]: the appearance of the data points lying within this 
disc is altered based on the MD-brush selection process. 
MD-brush selection: Data whose MD distance to vE is lower or equal 
to rE are lying within the MD-brush. Among these points, only the 
ones who also lie within the 2D magic lens are selected. We 
highlight these selected points by changing their shape (Fig. 2.). This 
highlighting in the scatterplot is linked to the current MD-brush 
selection and changes instantly with it.  
MD-brush positioning: The mouse pointer position in Eab 
corresponds to a whole D-2 subspace of E, so it cannot be used in 
general to set the HD position of the MD-brush center v. Therefore 
we propose to set v to the HD position of the nearest 2D data point to 
the mouse pointer. 
Magic lens radius rab tuning: The radius of the magic lens can be 
tuned using the mouse wheel. The smaller the radius, the more local 
the analysis of the MD cluster structure in the neighborhood  of the 
MD-brush center v but the lower the number of points selected to get 
statistically relevant outcomes. 
MD-brush radius rE tuning: The radius of the MD-brush is not 
straight-forward to tune. Indeed, while it seems natural to set rE 
equal to rab, the probability for BE to be empty while Bab is not would 
increase with D. This is an effect of the curse of dimensionality [2]. 
If distances between data in Eab scale with unity on average, then 
MD distances between data in E scale with the square root of D. 
Moreover if we consider a D-variate unit variance Normal 
distribution of data points centered at v, the distances of the data 
points to v follow a Chi distribution, so the smallest rE so that BE 
captures all the points lying within Bab may be far larger than rab.  

 
 1 QCRI. michael.aupetit@gmail.com.  2 IRT SystemX.  
nicolas.heulot@gmail.com.  3 INRIA AVIZ.jean-daniel.fekete@inria.fr  

mailto:michael.aupetit@gmail.com
mailto:nicolas.heulot@gmail.com
mailto:AVIZ.jean-daniel.fekete@inria.fr


We propose to support the user by visualizing as a bar graph, the 
distribution of the MD distances of any data points in Bab to the 
center v of BE together with the Chi distribution of the distances of 
points drawn from a D-variate Normal distribution centered at v with 
a diagonal covariance matrix  whose non-zeros elements are all 
equal to ² =rab

. The radius of the 95% quantile circle of a 
bivariate unit variance Normal is equal to 2.45. So if MD data would 
come from a single D-variate Normal centered at v with variance , 
then their 2D projection in Eab would be also a Normal with center 
vab and variance² so that the Magic Lens Bab would contain 95% of 
the data. Thus this setting assumes the user selects a 2D cluster in Bab 
and sees how the distances would be distributed if all of the data 
within the magic lens would represent the 95% core mass of a single 
D-variate Normal-distributed cluster. This allows the user to tune rE 
so the empirical MD distance distribution within BE is similar to the 
theoretical Chi distribution thus defined. If the empirical distribution 
appears to be denser than the theoretical one for smaller MD 
distances, that means points are even more concentrated or lie within 
a lower dimensional subspace clustered around v. We draw a vertical 
line indicating the 95th percentile of the Chi distribution which can 
be used as a default setting for rE (Fig. 2 and 3). 
MD-brush clustering: A control key enables the user to permanently 
color the selected points to keep track of MD clusters found. The 
interactive clustering process we propose is in the spirit of density-
based automatic clustering approaches [3]. The user starts 
positioning the Magic Lens at some point in the scatterplot, then 
tunes the MD-brush radius rE to get a near Normal-cluster-like MD 
distance distribution, then assigns the selected points to the current 
cluster and keeps up exploring the border of the current MD cluster 
point by point to enlarge or retract it. Notice that focusing the next 
MD-brush on a currently selected point in the 2D scatterplot 
corresponds to navigate continuously from a data point to its 
neighbours in the MD space E. 

2 ANALYTIC CASE  

The data used for the experiment are letters ‘a’, ‘b’, ‘c’, ‘d’ and ‘e’ 
from the ISOLET dataset provided by the UCI machine learning 
repository. Each one of these letters were pronounced twice by 150 
English speakers, 617 features were extracted from the signals. We 
kept the first 30 speakers for each letter so we got 300 instances 
of 617-dimension data that we further reduce to keep the 10 leading 
principal components using PCA. We attempted to extract manually 
the 5 clusters using the MD-brush through the scatterplot of the first 
two leading principal components. The basic interactive process of 
MD-brushing is demonstrated in Fig. 2, 3 and 4. At the end we got 3 
clusters, one of which appeared to contains 3 of the original clusters 
(Fig. 4). We checked (Table 1) that these 3 clusters where not 
pairwise linearly separable in the 10D feature space, while they were 
all pairwise linearly separable with the two other clusters, supporting 
the correctness of the clusters we found with MD-brush.  
 
 
 
 
 
 
 
 
 
 
Fig. 2: the first 2 principal components scatterplot of 10D ISOLET data 
(black dots). The blue circle is the Magic Lens associated to the MD-brush. 
The histogram shows in blue the empirical distance distribution to the center 
of the brush (star), and in brown the theoretical distance distribution for 10D 
data within this circle (Chi distribution). Setting the radius rE at the red line 
value provides the MD-brush selection (circled dots) which can be stored as 
part of a cluster (red spots with dark red for the focused data point).  
 

 
 
 
 
 
 
 
 
 
 
Fig. 3: After some MD-brush clustering (left), the circled dots and the blue 
spots are within the current MD-brush while yellow dots are not, therefore 
the circled dots will be added to the blue cluster. Later (right), a case where 
no clear cluster appears (no MD distance on the left of the red line), setting 
rE to 40 shows that the center lies at the border of blue and red clusters. It 
will be assigned arbitrarily to the blue one.  
 
 
 
 
 
 
 
 
 
Fig. 4: Coming back to the small magenta cluster (left) it appears to be 
within the MD-brush with many data from the yellow cluster (yellow spots). 
The same is true for the small green cluster (not shown). Both will be finally 
assigned to the yellow one. The final MD-brush clustering result (center) and 
the true classes (right, with letters ‘a’,’b’,’c’,’d’,’e’ encoded as red, green, 
blue, magenta, and yellow colors respectively). The yellow MD-brush cluster 
is very close to the true blue class, the red one very close to the true red 
class, and the dark blue very close to the union of magenta, yellow and 
green true classes.  
 
 
 
 

 
Table 1: true class pairwise linear separability of the ISOLET data. 

3 D ISCUSSION  

We showed that an MD-brush can help to explore MD data through a 
single 2D scatter plot visualization, and recover MD cluster 
structures that other standard scatterplot-based visualization like 
SPLOM even equipped with brush and link, would fail to reveal. 
MD-brush relies only on the MD distances between the data points, 
so it could be used with other MDS-like projection but this has not 
been studied yet. Moreover, this work is to be complemented with a 
user-study to test how intuitive it is for non-expert users to recover 
MD clusters within various datasets and how the design could be 
improved for instance to display the distances’ histogram within the 
scatterplot. At last, a future work would be to study how MD-brush 
could be extended combined with SPLOM, to select the space E to 
be explored for subspace clustering. 
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