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ICE: An Interactive Configuration Explorer for
High Dimensional Categorical Parameter Spaces.
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Department of Computer Science, Stony Brook University

Fig. 1. A B C: Interface of our Interactive Configuration Explorer (ICE) tool used to explore high dimensional parameter spaces. This
example shows the use of the ICE in a computer systems performance optimization scenario. A is the Parameter Explorer. It shows
the distribution and statistics of the numerical target variable in the context of the various categorical variables (or parameters), labeled
by the green buttons at the bottom of the interface (e.g., Workload, File System). Each parameter has levels e.g., Workload has 4
levels (dbsrvr, filesrvr, mailsrvr, and websrvr), and each level has an associated bar displaying the statistical information about the
numerical target variable (here, system throughput) for this level. Analysts can interactively deselect (and select) parameter levels to
filter out the associated parameter configurations throughout. B is the Aggregate View, which visualizes the joint distributions of all
currently selected parameter levels. C is the Provenance Terminal, to keep track of the changes in the target variable over the course
of the user interactions. D shows the information contained in each bar inside the Parameter Explorer and Aggregate View.

Abstract—There are many applications where users seek to explore the impact of the settings of several categorical variables with
respect to one dependent numerical variable. For example, a computer systems analyst might want to study how the type of file
system or storage device affects system performance. A usual choice is the method of Parallel Sets designed to visualize multivariate
categorical variables. However, we found that the magnitude of the parameter impacts on the numerical variable cannot be easily
observed here. We also attempted a dimension reduction approach based on Multiple Correspondence Analysis but found that the
SVD-generated 2D layout resulted in a loss of information. We hence propose a novel approach, the Interactive Configuration Explorer
(ICE), which directly addresses the need of analysts to learn how the dependent numerical variable is affected by the parameter
settings given multiple optimization objectives. No information is lost as ICE shows the complete distribution and statistics of the
dependent variable in context with each categorical variable. Analysts can interactively filter the variables to optimize for certain goals
such as achieving a system with maximum performance, low variance, etc. Our system was developed in tight collaboration with a
group of systems performance researchers and its final effectiveness was evaluated with expert interviews, a comparative user study,
and two case studies.

1 INTRODUCTION

Visual analytics of multivariate categorical data with numerical de-
pendent variables is crucial in many different applications, including
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survey analysis [12], road accidents analysis [61], customer feedback
analysis [67], and computer systems performance research [7, 11, 59].
To study and compare categorical variables, we often need to under-
stand their behavior with respect to one or more numerical variables,
as numerical variables have well-defined statistical meaning and hierar-
chy. For example, in a road accidents study, the categories (Monday,
Tuesday, etc.) of the variable (day of accident) can be correlated by
studying the number of accidents on each day. Similarly for computer
systems performance analysis, the configurations of the categorical
variable (hard disk types) can be compared by studying their effects
on the system’s throughput. Sedlmair et al. [56] defined six analysis
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tasks that often recur in similar parameter spaces: optimization, par-
titioning, outliers, fitting, sensitivity and uncertainty. Our objective
is to support optimization, partitioning and sensitivity analysis of the
parameter space with an expressive visual interface. ICE can be used
to analyze the spread of the dependent numerical variable with respect
to every parameter. Also, the parameter space can be partitioned with
interactive filtering based on user goals.

Most existing parameter-visualization methods decompose a high-
dimensional space into a matrix of small multiples, each showing the
relation among two parameters. Some researchers use bivariate scatter-
plot projections of the full space while others use HyperSlices, a set
of orthogonal 2D slices, each holding the target configuration as a
center focal point [5,52]. The shortcoming of such methods is that they
only show two parameters per plot, turning the quest for insight about
multivariate relationships into a visual search across the plots, requiring
mental fusion of disjoint relationships. Also, only a few techniques
exist for analyzing the parameter spaces of categorical variables, such
as Parallel Sets [37] and SVD-based displays generated by Multiple
Correspondence Analysis [20] These visualization techniques can be
classified mainly into two types: (1) dimension-reduction techniques
for categorical data and (2) data splitting based on categorical features.
Both techniques suffer from certain shortcomings,

One of these shortcomings is information loss. For techniques based
on MCA and similar dimension reduction procedures, the generated
layout suffers from information loss. For complex datasets, parameter
relationships might not be preserved in lower dimensions, which can
result in a misinterpretation of the parameter space.

Another shortcoming is that the existing techniques are not overly
well suited for visually optimizing multiple objectives at the same time.
Consider a systems engineer who wants to filter configurations based on
high throughput and small throughput variance simultaneously. These
two user goals in this case are the objectives for searching through the
parameter space which have to be optimized simultaneously. Visualiz-
ing the parameter space in context of the dependent numerical variable
for multiple objectives is not possible with dimension-reduction tech-
niques. Parallel Sets, on the other hand, allow for multi-objective
filtering but the polylines or sectors can become too cluttered as the
number of variables and levels in the dataset increases.

We collaborated with a group of computer systems researchers who
faced exactly these challenges. We began with assessing the require-
ments of an effective visualization tool that would effectively enable
them to study a set of categorical variables in context of a numerical
dependent variable in light of multiple optimization objectives. Based
on an analysis of these requirements we then iteratively derived a novel
approach for this purpose, called the Interactive Configuration Explorer
(ICE) that is subject of this paper.

ICE is a tool especially designed for tuning a large number of cat-
egorical parameters, for objectives based on a dependent numerical
variable, like in computer system performance optimization [9] where
the objective is based on the throughput behavior of the system. One
of the important reasons for developing ICE is to assist the analyst in
visualizing the search space at every stage in the optimization process.
Hence, the parameters are visualized based on the range and distribu-
tion of the dependent numerical variable they span. This representation
is free of any information loss because the categorical variables are not
transformed into numerical variables but are studied as individual iden-
tities, hence preserving the properties for both ordered and unordered
categorical variables. We evaluate ICE for performance, effectiveness
and generality with the help of two case and two user studies. The main
contributions of our work are:

• Visualize a greater number of categorical variables with a view
facilitating comparison between all parameter levels.

• Assist in multi-objective optimization based filtering on large
parameter spaces.

• Compare multiple configurations (set of parameters) based on
their impact on the dependent numerical variable.

Our paper is organized as follows. Section 2 presents related work.
Section 3 present the dataset and domain setting we used to gain a

Fig. 2. Visualizing our systems performance dataset with t-SNE(left) and
spectral clustering(right). Each datapoint is projected into two dimensions
and the color of a point represents the throughput value on the normalized
scale from -1 to 1. The objective is to visualize the clusters of throughput
values. But no clusters with respect to the throughput could be seen as
the values are spread uniformly across the plot.

practical backdrop for this otherwise rather general design. Section 4
presents a requirement analysis characterizing these types of applica-
tions. Section 5 describes our methodology, the ICE, along with two
case studies rooted within the systems domain. Section 6 presents some
helpful implementation hints. Section 7 outlines a thorough evalua-
tion we performed with a set of more general case studies to show the
generality of our tool. Section 8 concludes.

2 RELATED WORK

In this section, we will discuss the existing techniques available for
studying mixed multivariate datasets including both categorical and
numerical attributes applied in related domains [25, 65]. The main
objectives of visual analytics in these domains includes the study of cor-
relations between categorical variables and clustering in the parameter
space with projection methods (fused displays and dimension reduction
techniques) or parallel sets.

2.1 Techniques to study correlation

There are multiple specialized techniques available to study correla-
tion between features in high-dimensional data. Since the data in
consideration is categorical with one dependent numerical variable,
most techniques like Pearson correlation will give ambiguous results.
Hence, specialized correlation methods like Cramer’s V (based on
Chi-squared statistic) are used [4, 17]. There also exist statistical tests
for correlating categorical variables by comparing their behavior on
numerical variables, like T-test, chi-square test, One-Way ANOVA and
the Kruskal Wallis test. Techniques also exist to study correlation of
multivariate temporal data [10, 62]. However, for datasets with very
high dimensionality, it can be hard to study correlations in the overall
distribution of the dataset. Hence, methods to study correlation on
large datasets over parts of the distribution have been devised [58]. The
results from these techniques can then be used as input to fused displays
where these correlations are visualized in the form of scatter-plots and
networks [69].

2.2 Clustering techniques

Since most categorical data consist of unordered nominal values [71],
most clustering algorithms are not directly applicable to study cat-
egorical parameter spaces. Advanced techniques like k-mode [30],
SQUEEZER [24] and COOLCAT [3] have been developed to work
especially on categorical data. Some of the latest research has focused
more on advanced clustering techniques in a supervised learning en-
vironment [64] based on human perception. All of these techniques
differ based on the similarity criterion used for clustering as different
similarity criterion are designed to capture specific relationships in
the data. However, in multi-objective filtering scenarios, clustering
as a concept is limited in its scope as each algorithm captures only a
particular relationship in the dataset based on the similarity criterion.
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Fig. 3. Left: MCA plot of our system performance dataset. System throughput has been discretized into six categories labelled as numbers from
1 to 6 on the plot with blue nodes. A shows the high throughput region and ext2 (a File System parameter level) is the closest level, i.e., most
correlated with the highest throughput region (the blue node labeled ’6’). B shows the moderate-high throughput region (the blue node labeled ’4’)
with block size 2,048 being the most correlated level. Similarly, C shows that block size = 4,096 is most correlated to the low throughput region (the
blue node labeled ’2’). Right: Parallel sets displaying the system performance data with five categorical variables. Throughput is the dependent
numerical variable which we converted into a categorical variable via equi-width binning. The polylines show what percentage of data belongs to
what parameter settings. It is difficult to gain any insight into the dataset as the plot gets too cluttered with more variables.

2.3 High dimensional Data Visualization techniques

Projecting high dimensional data into lower dimensions is another tech-
nique to visualize relationships between attributes and the data points.
Scatter-plot matrices [23] is a way to visualize pairwise relationships
between the variables in which multiple plots are generated where each
plot compares two attributes from the dataset. Different variations
of this technique include bivariate scatter-plot projections of the full
space and HyperSlices based approach [5, 52]. However, all of these
technique do not scale with the number of attributes as the number
of plots increases exponentially. This makes it difficult to mentally
fuse the disjoint relationships obtained from individual plots. Similarly,
3D volume datasets can be represented with Multicharts [15] and dy-
namic volume lines [66] but these techniques are also limited in their
application domain.

Parallel Sets [37] is another popular method for visual analytics of
multidimensional categorical data. It maps data into ribbons which
subdivide according to the percentage of the population they represent.
Each categorical variable is mapped to an axis which is divided into
sections according to the percentage of data contained in each category
(see Figure 3 (right)). However, as the number of parameters in the
dataset increases, the plot can become too cluttered to project any useful
information. An example parallel sets plot of our systems performance
data is shown in Figure 3 (right), showing the excessive overlap of
ribbons with only five variables. The complete parallel sets plot is
given in the supplementary material.

Another class of dimension reduction techniques include MDS [38,
39], PCA, Kernel PCA, locally linear embedding (LLE) [54], Fisher’s
discriminant analysis [47], spectral clustering [49] and t-distributed
stochastic neighbor embedding (t-SNE) [45]. Although these tech-
niques have been designed to work with numerical data, categorical
data can be converted to numeric form and can be visualized using
these techniques. To convert categorical data into numerical format,
we can use one-hot encoding or the re-mapping technique described
by Zhang et al. [70]. These methods are good for visualizing relation-
ships between the datapoints but their effectiveness decrease as the
dimensionality of the dataset increase. An example case is shown in
Figure 2 where no clear clusters based on the dependent numerical
variable (throughput) could be seen with spectral clustering and t-SNE
on the systems performance dataset.

To better cater the need of projecting a larger number of dimen-
sions to lower dimensions, another class of multi-variate projection

techniques exist which arranges variables in radial layouts e.g. Star
Coordinates [33,34,40] or RadViz [14,21,28]. Both of these techniques
are similar as they generate a radial layout with variables as anchor
points on the circumference of a circle and the data points are system-
atically places inside the circle based on their value for each variable.
Star coordinates project a linear transformation of data while RadViz
projects a non-linear transformation [55]. These projection techniques
work well to project and visualize clusters in high dimensional numeri-
cal data [50]. Also, Star coordinates and RadViz can be combined to
create a smooth visual transition over multiple dimensions of the data
to visualize multiple dimensions of the dataset interactively [41, 42].
While these techniques work well for numerical data, they cannot be
applied directly to categorical parameter spaces. A variation, concen-
tric RadViz [51] can be used to study different categorical variables as
concentric RadViz circles but the main objective is to study data dis-
tribution for given parameter combinations. However, the correlation
between different categories cannot be visualized with this technique.

Another technique, Multiple Correspondence Analysis (MCA) [20]
is specifically designed for projecting categorical data. Numerical data
can also be visualized with MCA by discretizing it into categories. It
can be used to generate fused displays in which the levels of categorical
variables are plotted within the same space than the data points. Similar
to PCA, one can select a bivariate basis which maximizes the spatial
expanse of the plot. In these displays the distance between two points
represents a notion of association. As shown in Figure 3 (left), MCA is
effective in visualizing associations among the levels of the categories.
However, there is a certain loss of information due to the omission of
the higher order basis vectors. It also tends to get cluttered when the
number of data points (the parameterized configurations) or even the
number of categories and levels grow large.

3 DATASET

While our method readily applies to any categorical dataset with a
numerical (or categorical) target variable, our specific use case was to
support a team of systems researchers in their aim to learn about the
impact of configuration choices on throughput and its variability in a
benchmark computer system. The dataset we used had been collected
over a period of three years in the research team’s lab at our university.

A set of several experiments were run to measure the system per-
formance for a large number of configurations. Currently, the dataset
consists of 10 dimensions with 100k configurations and about 500k data
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points (i.e., system configurations that were each executed on average
five times to ensure stable results). The attributes in the dataset include
Workload Type, File System, Block Size, Inode Size, Block Group, Atime
Option, Journal Option, Special Option, I/O Scheduler, and Device
type. All of these variables are categorical where a configuration is a
set of categories from at least one of these variables. Some of these
variables are ordinal (e.g., Block Size can be 1KB, 2KB, or 4KB only)
while others are nominal (e.g., JournalOp can be writeback, ordered,
journal, or none). The dependent numerical variable is the Throughput
of each parameter configuration.

Direct optimization techniques have been applied to search for op-
timal configuration in such large parameter spaces. Some of the ap-
plied techniques include Control Theory [43, 44, 72], Genetic Algo-
rithms [18, 29], Simulated Annealing [13, 36] and Bayesian Optimiza-
tion [57]. However these techniques prove to be too slow and some-
times result in sub-optimal solutions as our experiments confirm [9,68].
Hence, there is a need to visualize the search space and the efficacy
of the search techniques. Our ICE tool helps in visualizing and filter-
ing these large parameter spaces to learn about optimal settings and
trade-offs for the underlying system’s performance.

4 REQUIREMENT ANALYSIS

To systematically evolve our ICE tool with the needs of the systems
researchers in mind, we applied Munzner’s nested model for visualiza-
tion design [46, 48]. Building the ICE tool following the nested model
greatly helped in the step-by-step development with proper evaluation
at each stage of the implementation. The first of the four stages of
developing the eventual visual tool was to gather, from the domain
experts, a list of requirements expected to be met by our tool. Our many
discussions culminated in the following list of seven requirements:

R1: Statistics visualization. System researchers are typically inter-
ested in assessing the impact of a parameter on throughput via statistical
measures. Hence, the framework should display the Mean, Median,
some Percentiles, Min, Max, Range and Distribution of the resulting
throughput for each variable independently. Visualizing a complete
distribution curve is important to prevent any incorrect statistical infor-
mation. For example, the mean of a bimodal distribution and a normal
distribution might be the same, but they are different distributions
requiring different systems approaches to optimize. A full distribu-
tion curve of the data can complement the statistical information, thus
preventing any deceptive conclusions about a parameter.

R2: Comparative visualization. Comparing the impact and trade-
offs of different parameters on system throughput is crucial for choosing
the best configuration in such a large parameter space. The ability to
compare different parameter settings helps analysts to determine the
right set of parameters by repeated selection and filtering to arrive at
the desired system performance.

R3: Filtering. When dealing with large parameter spaces, choosing
a system configuration with the best performance is non-trivial. Fil-
tering by choosing the best parameters iteratively can reveal complex
hierarchical dependencies between the parameters and system through-
put. For example, assume analyst Mike seeking to optimize a system
running a database server workload. He can first choose the best File
System type, followed by the best Block Size and so on until there is
no more improvement in the system performance.

R4: Support informed predictions. As discussed in R4, filtering
is important for reducing the large parameter space to a smaller space
of interest. Yet, guidelines are needed that can help an analyst choose
the right parameters to reach a desired goal. Assume analyst Jane who
has a system running a Database server workload and a File System of
type ext2. Now she wishes to choose the system configuration which
gives a minimum variation in the performance: i.e., the narrowest range
of throughput thus yielding a “stable” throughput behavior. To achieve
these goals, the visualization scheme should provide the necessary cues.

R5: Provenance visualization. Iterative filtering is useful but it
needs to be attached to a visual provenance scheme where the analyst
can keep track of the progress at each stage in the filtering progress.
Likewise, the analyst should be able to move back to any past state in
the pipeline to undo any actions if required.

R6: Aggregate view. Requirements R1-R4 focus on analyzing
the impact of throughput with each parameter in the dataset where
the goal is to assist in informed predictions. At the same time, the
interface should also give a summarizing view of the span of throughput
performance that is reachable with the evolving system configuration.

During our meetings with the systems research team, we soon real-
ized that they presently had very few visual tools at hand to analyze
their large parameter spaces with these seven requirements in mind.
They were open to the use of visual tools, but they strived for easy-to-
understand traditional visualization tools, as opposed to highly special-
ized designs with a possibly steep learning curve. Their motivation was
to develop a tool that would gain wide acceptance within the systems-
research community and use well recognized standards and metrics,
made visual and interactive via our tool.

We also concluded that dashboards with standard visualizations,
such as bar, line, and pie charts were insufficient to fully capture the
requirements we collected, at least not in an easy and straightforward
manner. Other visualization paradigms such as parallel sets and MCA
plots were similarly ruled out (see our study in Section 2.3 above).

We thus needed to find a balance between an advanced visualization
design and one that would convey the identified established perfor-
mance metrics in an intuitive way. We believe that the emerged design
and the lessons learned throughout the process are sufficiently general
and apply to domains much wider than computer systems analysis.

5 INTERACTIVE CONFIGURATION EXPLORER (ICE)
The ICE interface is divided into three components (see Figure 1). The
first section is the Parameter Explorer (A). Its design satisfies majority of
the requirements (R1 to R4) as it visualizes and allows users to tune the
target variable’s distribution for each parameter in the dataset. It allows
the analyst to turn off parameters that are deemed irrelevant as well as
filter out configurations with unwanted or non-competitive parameter
level settings, both by toggling on/off the parameter and parameter
level (category) bars, respectively, enabling the user to conduct the
iterative optimization of the target parameter, system throughput in
this case. It also supports zooming and panning for better comparison
of the bars. To the right of the Parameter Explorer is the Aggregate
View (B). The Aggregate View displays the throughput distribution for
the configurations selected in the Parameter Explorer, thus satisfying
requirement R6. The third component of the ICE is the Provenance
Terminal (C). It satisfies requirement R5 and allows the user to easily
track, roll back, and edit the parameter filtering progress.

5.1 The Range-Distribution (R-D) Bars
Sections A, B of the ICE interface consist of a set of Range-Distribution
(R-D) bars. Each bar contains the probability distribution function
with additional statistical information about the dependent numerical
variable. The R-D bars are arranged and delimited similarly to a vertical
Gantt or timeline chart, with one bar dedicated to one parameter level,
and are grouped by the variables. The lower/upper limit of each bar
is determined by the lowest/highest value of the dependent numerical
variable that can be achieved for all configurations with the parameter
level the bar represents.

A completely annotated bar displaying the information that each
part of the bar contains is shown in Figure 4. Each bar is a sequence of
combinations of grays which represent the range of percentiles. The
color codes are chosen with the help of ColorBrewer [22] to show a
continuous diverging effect of percentiles on the bar. The magenta
region shows the distribution of the target variable over the range.
Statistical information is shown with lines separating the percentile
ranges and a black dot displaying the mean value. See Section 5.6 for
more detail on how we arrived at these specific design choices.

5.2 Parameter Explorer
The Parameter Explorer is designed for the goal of visualizing a numer-
ical variable with respect to individual parameters in the dataset: i.e.,
the requirements R1 to R4. As mentioned, multiple bars are stacked,
grouped by parameters and their levels. This grouping allows for easy
comparison of the impact of numerical variable on the parameters. As
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Fig. 4. Annotations of Range-Distribution Bar used in the Parameter
Explorer and the Aggregate View. The example shows system throughput
as the dependent numerical variable.

shown in Figure 5, the level names are listed underneath each bar and
the parameters are shown as buttons below the group of levels. The bars
for each variable are grouped within a blue box. The statistics (mean
and percentiles) are shown as alternating shades of gray for each param-
eter level, hence partially satisfying R1. The distribution of dependent
variable is shown as a magenta distribution curve. The grouping of bars
with each bar containing the information about the impact on the de-
pendent variable clearly reveals the correlation between the parameters
levels, if there is any. For example, in Figure 1, the Workload types
dbsrvr and websrvr can easily be compared based on the throughput
values they span. A system running a wbsrvr workload has much less
variation in the throughput as compared to the system running a dbsrvr
workload. Similarly, all parameters can be correlated based on user
objectives for a system optimization. This satisfies requirements R2
and R1.

Analysts can use the Parameter Explorer to filter within a large set
of possible configuration spaces. As shown in Figure 5, the user has the
ability to select one or more levels for each parameter; for example, the
level dbsrvr is selected (level name shown in black) and the remaining
levels in Workload are not (level names shown in red). Also, the user
can completely select or remove a parameter from the dataset; for
example, Block Size (button shown in red) is toggled off by the analyst,
so it is not considered in generating the aggregate view. This satisfies
the filtering requirement R3.

We specifically designed the Parameter Explorer to accommodate
many parameters in a small space. One bar is generated for one param-
eter level, and depending on the screen size, analysts can accommodate
several parameters in a single screen for quick comparison and filtering
of the parameter space. Compared to parallel sets (Figure 3, right),
where at the finest level one line is drawn for each data point, or groups
of identical data points (see bottom portion of the plot), the space effi-
ciency of ICE in displaying parameter levels is highly optimized. The
simple stacked bars concept of ICE prevents the data cluttering that
plagues the parallel sets since it captures the configuration statistics
succinctly in each bar. Figure 5 shows a portion of the Parameter Ex-
plorer for the system performance dataset. The complete view of the
Parameter Explorer is available in the supplement material.

The analyst can click on the level label to toggle it. Parameter Ex-
plorer and the Aggregate View are updated based on the filtered param-
eter space data. In this way, analysts can iteratively move closer to the
configurations with the desired value of the target variable, throughput.

Fig. 5. The Parameter Explorer in action for the system performance
dataset. Analysts can select parameters from the Parameter Explorer
and visualize throughput distributions and statistics in real time.

5.3 Provenance Terminal
The Provenance Terminal (see Figure 6) is used to keep track of the
progress of the iterative filtering activities. In this process, the analyst
might want to toggle between multiple parameter configurations to
compare the resulting dependent variable distributions. The Prove-
nance Terminal can be used to see and compare the dependent variable
ranges for the various iterated parameter configuration. It also allows
the analyst to roll back to a previous parameter configuration if the
evolution gets stuck without hope to further improve it. This satisfies
requirement R6. The maximum value of the dependent variable at each
stage of the selection is shown with a red circular pointer on a red line,
while the minimum value is shown with a blue circular pointer on a
blue line. This view is updated with each user interaction.

An example use case of the Provenance Terminal can be that of a
system administrator searching for the best configuration but with a
minimum variation of the throughput. The latter will reduce the uncer-
tainty in the predicted performance when the found parameter settings
are applied in practice. The analyst would start off by selecting (Work-
load:Dbsrvr → FileSystem:Xfs) as shown in stages 1–5 in Figure 7.
We see that the minimum and the maximum throughput values almost
converge to a very small range, but the maximum throughput value is
compromised. To correct this, the analyst can go back to stage 4 by
clicking on the red or blue pointer. This leads to a replication of this
stage at the end of the chain as stage 6. Now the analyst can take a
different path to get a better overall throughput while simultaneously
optimizing for minimum throughput range: i.e., stages 7–8 in Figure 7
(Workload:Dbsrvr → FileSystem:Ext2 → InodeSize:128). In this way,
the Provenance Terminal helps in comparing multiple configurations:
i.e., comparing steps 1–5 (configuration 1) and steps 6–9 (configuration
2).

5.4 Aggregate View
The Aggregate View, located to the right of the Parameter Explorer
B in Figure 1 displays a single R-D bar. While the main purpose of
each Parameter Explorer R-D bar is to convey the dependent numerical
variable distributions possible if the respective parameter level is chosen,
the Aggregate View communicates the distribution possible with all
currently selected parameter levels. As such it can be used to quickly
visualize the impact of a transition from one parameter configuration
to another. Whereas the Provenance Terminal summarizes the top
and bottom end of the achievable dependent variable’s value only, the
Aggregate View offers detailed distribution information for the current
parameter configuration.

5.5 Interaction with ICE: Two Case Studies
To get a sense for how analysts would interact with ICE we present
two use cases involving the systems performance dataset. One practical
application is to analyze a system’s performance stability. Systems
vary greatly in their performance for different workloads which can be

5

https://doi.org/10.1109/VAST47406.2019.8986923


Fig. 6. Provenance Terminal on the system performance dataset, show-
ing how the aggregate throughput range changes with each parameter
selection. The red (blue) line denotes the maximum (minimum) through-
put achievable with the current parameter settings. The initial stage
(stage 1) shows the range of throughput for the current overall dataset.
Stage 2 shows the updated provenance terminal where the analyst had
selected only database server (dbsrvr) as the workload type. Each of
these filtering steps can be rolled back by clicking on any of the pointers.

quantified by the aforementioned range, i.e., the difference between
the maximum and the minimum throughput for a particular configura-
tion [8]. A large range means less stability and less predictability.

The first use case shows how one would optimize a system running a
mail server workload. Figure 8 shows the steps involved in the filtering
process. First, the analyst selects the workload type as Mail Server
by clicking the respective label. The File System throughput values
change as shown in the first step in Figure 8. The primary concern
here is to minimize the variation in the throughput for a more stable
and predictable mail service. The analyst can clearly see that choosing
the btrfs File System gives the minimum throughput range and thus is
more stable and predictable for the user of the service. While its overall
throughput is lower than for ext2 and ext4, these File Systems are less
reliable and would leave users of the mail service often frustrated.

However, sometimes there is a situation when the user cannot change
the File System (i.e., because it requires a costly disk reformat and
restore), and thus it has to be set to ext4 regardless of the application.
Such cases are quite common in practice, when it is not possible to
change some parameters of the system. In such a case, the analyst
can return to the previous state of filtering by ways of the provenance
terminal. After selecting the ext4 File System, the next parameter to
tune is the block size which has throughput values as shown in Stage
2 of Figure 8. Comparing the throughput distributions for each level
in block size, the user selects block size of 1024 since it results in
the highest throughput value with minimum variation. After choosing
Block Size = 1024, the parameter explorer view is updated with new
throughput distributions for each parameter level. The next parameter
the user can filter is the device type, shown as Stage 3 in Figure 8. For
the given configuration, the device type ssd cannot be chosen since
there is no sample with such configuration in the dataset. The label is
henceforth colored red. Now the analyst can select either a sas or sata

Fig. 7. The Provenance Terminal in configuration filtering. A system
administrator is optimizing configurations for minimum throughput vari-
ation. Stages 1–5 show parameter filtering for the configuration (Work-
load:Dbsrvr → FileSystem:Xfs). This configuration achieves a minimum
range of the throughput but the maximum throughput is reduced. To
get a better throughput, we check if choosing a different configuration
after step 4 might help. The user can roll back to step 4 by clicking on
the node (yielding step 6) and choose a different configuration (Work-
load:Dbsrvr → FileSystem:Ext2 → InodeSize:128) shown in steps 7–9 to
get a minimal range of throughput without compromising the maximum
value.

Fig. 8. Using ICE to optimize a computer system running a mail server
workload. Left to Right: Three stages of the optimization process.

device. This presents a trade-off where sas has a lower range while
sata gives a higher throughput.

5.6 Design Alternatives
There were four design alternatives which we had to choose from. In
this section we discuss why we chose the current design of the ICE tool
given the alternatives.

• R-D bars instead of box plot: Box plots are great for repre-
senting the distribution of data with the help of percentiles, but
they show only fifty percent of the data (i.e., from 25th to 75th

percentile). They also assume that the data points are normally
distributed which can be restrictive: it certainly is a restriction in
our application as is apparent in the distributions shown in any of
the R-D bars.

• R-D bars instead of parallel sets: Bars make it possible to repre-
sent the parameters and their levels in a smaller space as compared
to parallel sets. The R-D bars also prevent data cluttering because
they capture the configuration statistics succinctly without the
need to draw individual lines (see also Section 5.2).

• Displaying the distribution: Violin plots [27] and bean
plots [32] are better in displaying distributions, as opposed to
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Fig. 9. Block diagram showing the implementation of the ICE tool. Green
shows the requests handled by the Visualization engine and Blue shows
the requests handled by the backend components i.e. Filtering Engine,
Dataset and the provenance stack.

box plots. We choose to display only one half of the violin plots
inside of the R-D bars because it better utilizes the bar real es-
tate. This is important since there might be a large number of
parameters and so the width available to each bar is limited. In
the interest of accommodating more parameter levels in a uniform
looking display, the system experts suggested that half-violin
plots inside the bars were a better design.

• Choice of colors: The color choices for percentiles and the dis-
tribution on the R-D bars were decided with a user study. In an
interactive session, the system researchers were presented with
several possible color combinations for the R-D bars chosen from
color brewer [22]. The present selection of colors were deemed
most appropriate by the experts in terms of visual interpretation.

6 IMPLEMENTATION

Figure 9 shows the block diagram of different components of our ICE
tool. There is a backend server consisting of a Database, Filtering En-
gine, and a Provenance Stack. The frontend consists of a Visualization
Engine which runs in a browser. The backend is a python flask server
and the frontend is created with D3 [6]. A database stores the original
dataset which can be uploaded from the ICE interface.

The Filtering engine updates the existing data based on a user request
from the Visualization engine. The data is then grouped separately for
the Parameter Explorer and the Aggregate View and sent to the Vi-
sualization engine for display. Another component to the backend is
the Provenance Stack, which keeps track of the dependent variable
values with each user request. With every interaction, the Filtering en-
gine updates the Provenance Stack which then updates the Provenance
Terminal.

6.1 Data filtering
To filter and display large amount of data in real time is challenging.
ICE is optimized for filtering speed using one-hot encoding filtering and
random sampling. One-hot encoding is used to convert categorical data
to binary variables for faster processing with no loss of information. An
example of converting the categorical data to numerical with one-hot
encoding is provided in the supplementary material. This technique
greatly reduces the time complexity of searching for a parameter level.
Where regular searching for a categorical parameter level has O(NM)
complexity, one-hot encoding has O(N) time complexity (N is the
number of datapoints and M is the number of parameter levels). Another
benefit of using one-hot encoding is that it generates a sparse version
of the dataset which is easier for the modern systems to process with
specialized data structures [16, 19, 53, 60].

For the requirement to display distribution curves for each parameter
level, the time to display the filtered data also needs to be optimized. If

Fig. 10. Observations of information loss with sampling and time to
generate the visualization on the ICE tool. Filtering time is much smaller,
hence the orange and blue lines almost overlap. Note that the Y axis
starts at 400.

we try to use every datapoint in the calculation of the distribution, the
time to display the visualization would not scale well with the size of
the dataset. The time to display full data on our dataset with around
100k configurations is around 1,400 milliseconds, which is too slow.
Hence, sampling of the data is required to estimate distributions. We
evaluated the trade-off between information loss with random sampling
and the time to display the data. Figure 10 shows that as the distribution
similarity (p-value) of the complete and sampled dataset increase, the
time to generate the visualization also increase. To measure information
loss with sampling, we used the Kolmogorov-Smirnov test by com-
paring data distribution from the sampled dataset with the complete
dataset.

After evaluating the loss of information with sampling and the time
to display the visualizations, a sample size of 20% proved to be an
appropriate option. This is because the display time curve has a steep
increase as we go to higher sample sizes but the the p-value does
not increase much after 20%—hence a good trade-off. ICE on the
systems performance dataset uses 20% of the full dataset (20k data
points) which takes around 800 milliseconds of display and filtering
time. These results also give a good threshold for dataset size which
can be fully displayed with ICE without sampling. In the current
implementation of ICE, the datasets with less than 20k data points are
processed without sampling. For larger datasets, the sample size is
determined when the p-value crosses a .5 threshold.

7 EVALUATION

In this section, we evaluate our ICE using the techniques suggested in
the nested model-based visualization design literature [46, 48]. We first
used the Analysis of Competing Hypotheses (ACH) [26] method as
a mechanism to efficiently identify which of the existing techniques
(see Section 2) would need to be formally compared with ours via a
user study. The ACH is a methodology for an unbiased comparison
of a set of competing hypotheses, in our case the various visualization
techniques in terms of the requirements put forward in Section 4.

The ACH showed that only ICE and Parallel Sets could satisfy all
formulated hypotheses. We did not consider hypotheses comparing
the goodness of a visualization or the effectiveness of filtering as these
could be improved in any existing technique. Also, determining the
goodness of a visualization is difficult [31] and requires a subjective
study. We then conducted a formal user study to compare Parallel Sets
with ICE.

7.1 Initial Comparative Evaluation Using ACH

The Analysis of Competing Hypotheses (ACH) is a technique to choose
the best possible solution to satisfy a set of hypotheses. Fitting our over-
arching application scenario, we only evaluated the existing techniques
(and ICE) in terms of the specific task of analyzing a set of categorical
data with respect to a numerical target variable. It corresponds to the
interaction and technique design stage of the nested model by Munzner
et. al [46, 48]. We derived six hypotheses from the requirements listed
by the system performance experts (see Section 4) as follows:
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Table 1. Competing hypotheses analysis on existing visualization tech-
niques and our ICE tool. A check mark means the hypotheses is satisfied
whereas a cross mark means that the hypotheses is not satisfied by the
given visualization technique. The results at the bottom shows the ac-
cepted visualization techniques (i.e., satisfy all the hypotheses) and the
rejected ones (do not satisfy at least one of the hypotheses).
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H1 X X X X

H2 X X X X X

H3 X X

H4 X X X X

H5 X X X X

H6 X X X X

Result X X

H1: Allow an assessment of the distribution of a numerical vari-
able in terms of a given parameter. The visualization is able to dis-
play the distributions of the dependent numerical variable for each
parameter. The analyst can get an estimate of the nature of this distri-
bution: bi-modal, multi-modal, uniform, normal distributed, etc.

H2: Allow an assessment of the correlation between parameters.
The visualization makes it possible to compare or correlate the parame-
ters in the dataset with respect to their impact on the target numerical
variable. Irrespective of the method of correlation, the analyst should
be able to derive informative conclusions while filtering the parameter
space based on correlation.

H3: Enable quick filtering. Filtering is used to track the best per-
forming configurations for a desired goal. The visualization technique
enables the analyst to add, remove and edit the parameters of the con-
figuration and see updated distribution of the dependent numerical
variable within one second.

H4: Allow an assessment of the statistics alongside the distribu-
tion. The visualization technique displays the statistics (mean, median,
percentiles, max, and min) of the dependent numerical variable for each
parameter.

H5: Allow informed predictions. The visualization provides cues
to the analyst for filtering the parameter space.

H6: Provide insight on aggregate distributions. Similar to re-
quirement R6, the visualization technique provides a summarized dis-
play of the dependent numerical variable values which can be reached
from a given parameter setting.

We left out a hypothesis for the provenance visualization because it
was not supported by any of the existing techniques (only ICE). Table 1
shows the results of the ACH-based evaluation applied to the available
visualization techniques and our ICE. The comparison shows that by
eliminating any visualization technique which does not satisfy one or
more of the hypotheses, only parallel sets and ICE fit all hypotheses.

7.2 User Study Comparing Parallel Sets and ICE
Although the ACH evaluation revealed that both Parallel sets and ICE
could be used to analyze categorical variables in the context of a target
numerical variable, our computer systems experts voted against the use
of Parallel Sets. This was because Parallel sets become too cluttered to
effectively filter the parameter space for larger datasets. Nevertheless,
to make these informal impressions more concrete, we conducted a
user study to compare the effectiveness of ICE and Parallel Sets. The
main objective of the user study was to compare the ICE and Parallel
Sets based on two metrics: Time to filter configurations and Accuracy

of filtering. The participants in the user study were divided into three
categories based on their expertise: System performance experts (SE),
Visualization experts (VE), and Non experts (NE). SEs were researchers
working in the area of system performance, VEs were researchers
working in the area of visual analytics, and NEs were users with no
research experience in either of the two areas.

A question bank for the user study was compiled with the questions
designed by three system researchers (independently), to uniformly
represent the requirements of the systems community. After an initial
usage tutorial, participants were given two unique sets of five randomly
sampled tasks from the question bank to perform on both the tools.
The dataset used in the study was the systems performance dataset as
described in Section 3. The user study was conducted on 21 users: 7
SE’s, 7 VE’s, and 7 NE’s. Among the total participants, the gender
composition was 9 females and 12 males with the overall age range of
the participants being 22 to 34 years.

The results of the user study proved the effectiveness of ICE tool over
Parallel Sets both in terms of accuracy and time to filter the parameter
space. The average time for users to solve a question on ICE tool was
47.6 seconds as compared to Parallel sets which was 73.3 seconds. To
compare the statistical significance of time difference, we performed a
paired t-test on the distributions of average time to answer a question
for each user on both the tools. The p-value of the single tailed t-test
was p = .0074 which is lower than the significant value of .05. Hence,
the mean time to filter the parameter space is lower in ICE as compared
to Parallel Sets with a high probability.

A similar analysis was done to measure the accuracy of each user
on the five questions in the user study. The average accuracy of the
participants using the ICE tool was 4.37 compared to 2.75 for parallel
sets. The p-value obtained on the single tailed t-test for the comparing
accuracy distributions was p < .001, which is significantly lower than
the threshold of .05. Hence, the mean accuracy of the analyst for
parameter filtering via the ICE tool is higher than via the Parallel Sets
with a high probability. Given the results of this user study we conclude
that ICE is better for multidimensional parameter space analysis both
in terms of accuracy and time when compared to Parallel Sets.

We also analyzed the mean accuracy and time based on user exper-
tise. The NEs took the most time for answering the user study questions
and had the lowest accuracy as compared to other expertise categories
with both of the tools. Also, the VEs were the most accurate with their
answers but took a little more time compared to the SEs. However, the
trend of expertise-wise accuracy and time is the same for both ICE and
Parallel sets. All plots for the expertise wise analysis and the user study
tasks along with the dataset are provided in the supplementary material.

7.3 Case Studies

We also evaluated the ICE with case studies derived from two datasets
taken from Kaggle.com [1,2]. One dataset is an HR dataset of a US firm
containing data on the hourly pay of its employees based on various
parameters. The other is a French population characteristics dataset
where the population distribution of a set of cities in France is studied
on the basis of gender, cohabitation type, and age groups. Two domain
experts were consulted to evaluate the effectiveness of our ICE tool
in the study of different parameters in these datasets. Expert A who
evaluated the ICE tool on the HR dataset had management experience
at a private firm, and Expert B who evaluated the ICE tool on the French
population dataset was an expert survey analyst.

7.3.1 Exploring the HR Dataset

This case study uses the ICE for exploring the HR dataset. The dataset
has seven categorical variables: (Marital Status, US Residency Status,
Hispanic status, Race, Department, Employee Status and Performance
Score) and one dependent numerical variable: Hourly Pay Rate. To
start out, Expert A (EA) first familiarized himself with the dataset and
the usage of the ICE tool. Figure 11 has a part of the initial screen he
browsed. It shows three of the seven variables with respect to hourly
pay scale. Some of the more interesting observations he made were:
(1) Married workers had the highest hourly pay and the mean hourly
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Fig. 11. Using the ICE to explore the HR dataset from Kaggle.com.
There are seven variables in the dataset (Figure shortened due to lack
of space); the numerical dependent variable is hourly pay scale.

pay was highest for single workers. (2) The mean hourly pay of non-
residents who are eligible for US citizenship is higher than those of the
residents. (3) White workers have the highest hourly pay among all
races. (4) Considering the departments, the executive department had
the highest hourly pay scale followed by IT services.

After the initial analysis, the other two variables in the dataset that
were of particular interest to EA were Employee Source and Perfor-
mance Score. He wanted to see whether high performing employees
were properly compensated for their valuable efforts. The Parameter
Explorer made this investigation easy and EA quickly confirmed that
exceptional employees were indeed paid more than other employees,
with a mean pay of about $40 per hour, shown in Figure 12.

Another parameter of interest was the hiring source of these excep-
tional employees. EA selected the exceptional performance score in
the Parameter Explorer. This filtering updated the Employment Source
group to only show the sources of exceptional workers with respect to
their hourly pay. Figure 12 shows the result of this filtering and the
caption offers a few interesting observations.

EA suggested that for better equality of all sources of exceptional
workers, their mean hourly pay should be similar. Also, EA suggested
that investment on college fairs and job sessions should be lowered as
they are not a good source of exceptional workers. EA then confirmed
that the use of ICE would help the HR department to better manage the
company’s funding and investments.

7.3.2 Exploring the French Population Dataset

The French population habitation dataset has been collected to show
existing equalities and inequalities in France. It consists of four cat-
egorical variables (City, MOC (Method of Cohabitation), Age group,
and sex). The dependent numerical variable, Population count, is the
number of people in each of the categories defined by permutations of
the independent variables, for example, one category might be adult
females with age 21–40 living in Paris with her children. Expert B (EB)
was a survey analyst and like Expert A he first familiarized himself
with the ICE tool by looking at an overview of the dataset’s variables.
The overview screen of the ICE showing the population distributions
and statistics is provided in the supplementary material. EB’s initial
observations were: (1) The population count for a few categories in
Paris is exceptionally high compared to other categories because the
mean is very low compared to the highest value. This can also be seen
in Figure 13. (2) The mean population of the age range 60–80 is the
highest in all cities; (3) The age group 20 to 40 is the lowest on average

Fig. 12. Using the ICE to explore the employee source of workers with
exceptional performance. (Left panel) Selecting the performance score
as exceptional. (Right panel): The filtered employee source parameter
group where many interesting observations can be made (see text in
Section 7.3.1). For example, it appears that the exceptional employees
hired from vendor referral have the highest mean hourly pay and with a
fairly low range. This probably is because these individuals had to be paid
at competitive rates to make the switch. Conversely, passive advertising
such as billboard ads, monster, and news also yielded many exceptional
employees but at lower pay overhead. Finally, college and information
sessions yielded the lowest number of exceptional employees.

for all cities; and (4) The average number of females is higher than the
average number of males for the overall population.

Following the basic inferences, EB was further interested to study
the habitation methods of females in three major cities of France: Paris,
Marseille, and Lyon. EB selected Paris from the City variable followed
by 2 from the Gender variable. The Parameter Explorer then showed
the distributions of population for all categories of habitation methods,
as shown in Figure 13. EB could see that the most females were
children living with two parents, i.e., category 11 (shown by a single
dot because all of these females have the same age group of below 20
years) followed by females living alone (i.e., category 32). Similar
analyses were done for the cities of Marseille and Lyon. For Marseille,
EB pointed out that almost an equal number of females lived as a single
household and in a family with children. For Lyon, most females were
the children living with two parents followed by females living as a
single household. EB then used the Provenance Terminal to go back
two stages in the filtering process to compare the female habitations
in all cities. EB further pointed out that Paris had exceptionally large
number of children living with single parent as compared to other cities.

After evaluating the use of the ICE on the France population dataset,
EB recommended ICE as an effective tool for the quick filtering and
understanding of survey statistics. EB also found the ICE tool helpful
in understanding biases in the population distributions.

8 CONCLUSIONS

This paper presents the ICE tool, a novel approach for categorical pa-
rameter space analysis in the context of a dependent numerical variable.
ICE overcomes the existing challenges by providing an effective layout
for parameter space visualization. The stacked R-D bars concept used
in ICE along with interaction assists in effective filtering of the param-
eter space. A greater number of parameters could be visualized and
readily correlated, thus increasing the efficiency of filtering. Multiple
configurations can be compared for their impact on the target variable
based on any objective. ICE also supports multi-objective filtering
since it presents full statistics and distribution information to the user
for each parameter level.

Several important lessons were learned while designing the idea of
ICE. In the requirement analysis phase with the systems community
researchers, we realized that by presenting the results gathered from
the dataset with existing visualization techniques helped make the
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Fig. 13. The ICE tool visualizing the French population habitation charac-
teristics for city=Paris and gender type=2 (Female). The figure shows
three variables: City Name, MOC (Method of cohabitation) and the sex
of the population distribution. MOC numbers mean, 11: children living
with two parents, 12: children living with one parent, 21: Adults living in
couple without child, 22: Adults living alone with children, 31: person not
from family, 32: persons living alone. Age is described in groups where
a number 20 means the age from 0 to 20, 40 means age group of 21 to
40 and likewise.

gathering of requirements more effective. Almost from the start, the
system experts were skeptical about the accuracy of most existing
techniques. They wanted a tool that would be able to show the statistical
distributions precisely. It also helps to keep a keen eye on any struggles
the collaborating domain experts may experience. For example, in the
filtering experiments we noticed that they had trouble remembering the
filtering path. This gave rise to the provenance terminal.

Besides the effective design of ICE, there still remain some limita-
tions which can be taken up as the future work. For larger datasets,
techniques to combine multiple parameters [35] can be incorporated to
prevent excessive thinning of the bars. Moreover, some related precom-
puted solutions can be provided to the analyst based on optimization
objectives to start off with the search process. Also, ICE is based on the
assumption that the cost of changing parameters is the same throughout,
which might not be true in some cases. Moreover, these costs might
vary with time [63]. It will be useful to incorporate cost measures into
ICE and provide support for real time cost based filtering. We will
continue working on our ICE tool to incorporate these new features.
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Nonato. Concentric radviz: visual exploration of multi-task classification.
In 2015 28th SIBGRAPI Conference on Graphics, Patterns and Images,
pp. 165–172. IEEE, 2015.

[52] H. Piringer, W. Berger, and J. Krasser. Hypermoval: Interactive visual
validation of regression models for real-time simulation. In Computer
Graphics Forum, vol. 29, pp. 983–992. Wiley Online Library, 2010.

[53] S. Pissanetzky. Sparse Matrix Technology-electronic edition. Academic
Press, 1984.

[54] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323–2326, 2000.

[55] M. Rubio-Sánchez, L. Raya, F. Diaz, and A. Sanchez. A comparative study
between radviz and star coordinates. IEEE transactions on visualization
and computer graphics, 22(1):619–628, 2015.

[56] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller. Visual
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