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Abstract—Efficient energy management of Distributed Re-
newable Energy Resources (DRER) enables a more sustainable
and efficient energy ecosystem. Therefore, we propose a holistic
Energy Management System (EMS), utilising the computational
and energy storage capabilities of nearby Electric Vehicles (EVs),
providing a low-latency and efficient management platform for
DRER. Through leveraging the inherent, immutable features of
Distributed Ledger Technology (DLT) and smart contracts, we
create a secure management environment, facilitating interactions
between multiple EVs and energy resources. Using a privacy-
preserving load forecasting method powered by Vehicular Fog
Computing (VFC), we integrate the computational resources
of the EVs. Using DLT and our forecasting framework, we
accommodate efficient management algorithms in a secure and
low-latency manner enabling greater utilisation of the energy
storage resources. Finally, we assess our proposed EMS in
terms of monetary and energy utility metrics, establishing the
increased benefits of multiple interacting EVs and load fore-
casting. Through the proposed system, we have established the
potential of our framework to create a more sustainable and
efficient energy ecosystem whilst providing measurable benefits
to participating agents.

Index Terms—Blockchain, CPS, DLT, IOTA, energy trading,
VFC, V2G, federated learning, smart contracts, Tangle, EV.

I. INTRODUCTION

The growing adoption of Distributed Renewable Energy
Resources (DRERs) in the energy industry facilitates the de-
centralisation of current energy markets, enabling consumers
to become Prosumers [1]. Additionally, if DRER are built
on suitable frameworks, they reduce single points of failure
weaknesses increasing energy reliability [2]. However, the
most abundant and accessible DRER such as solar and wind
power are difficult to manage. They are intermittent and
dependant on uncontrollable factors such as weather, requiring
flexible and low-latency Energy Management Systems (EMS)
to accommodate their variable generation [3].

Electric Vehicles (EVs) remain an underutilised resource,
spending approximately 96% of their time idle, leaving their
computational and ample energy storage resources to remain
unused [4]. This has led to research paradigms such as
Vehicular Fog Computing (VFC) and Vehicle-to-Grid (V2G),
to utilise the computational and energy storage resources of
these idle EVs [5], [6].

The integration of EVs as energy management resources
through their computational and energy storage capabilities
offers a promising solution for effectively managing and
maximising the potential of DRER. However, managing the

interactions between EVs and DRER through IoT devices
presents security, privacy, and resource allocation challenges
[7], [8]. Inefficient management of these challenges can lead
to wasted resources and privacy breaches, making the system
unfeasible.

In summary, with the right system in place, we can realise
the full potential of EVs as energy management resources
utilising their computational and energy storage resources,
creating a more sustainable and efficient energy ecosystem.
Nevertheless, in order for this to be effective, the EMS
needs to provide a secure platform, low-latency response, and
economically feasible incentives to be viable. To fill these
gaps, the main contributions of this work are as follows:

• We present a cohesive EMS that integrates the computa-
tional and energy storage capabilities of EVs in conjunc-
tion, enabling effective management of distributed and
renewable energy resources.

• We develop an energy trading system that exploits the key
benefits of IOTA Tangle and IOTA smart contract protocol
(ISCP) framework. The proposed system underpins the
security aspects of our system, allowing multiple EVs
and Prosumers to interact securely.

• We utilise a privacy-preserving federated learning method
for load forecasting, enabling EVs to seamlessly join
and exit our trading system. Additionally, by forecasting
energy production, we enable efficient matching algo-
rithms to maximise the potential of our EV energy storage
resources.

• We provide simulations-based results to assess the pro-
posed system in various trading scenarios using empirical
data. Our results focus on the effect of our system in
terms of monetary benefit and energy utility.

The rest of this paper is organized as follows. Section II
covers related work and preliminaries on the subject matter.
Section III discusses background and Section IV describes our
proposed EMS. We discuss experimental setup in Section V
and results in VI. The paper is concluded in section VII with
some directions for future work.

II. RELATED WORK

This section covers the related work surrounding using
EVs for the energy management of DRER. Given that there
are two primary EV resources of computation and energy
storage, research into IoT-EV integration often explores these
factors separately. However, by considering these capabilities

ar
X

iv
:2

31
2.

00
58

7v
1 

 [
cs

.N
I]

  1
 D

ec
 2

02
3



in conjunction, we aim to provide a holistic EV energy
management solution.

1) V2G: Integrating EV energy storage resources and the
grid is an extensive area of research relevant to our study,
encompassing both Vehicle to Home (V2H) and Vehicle to
Grid (V2G) [9]. This research area highlights the potential of
using EV batteries as energy storage resources as a promising
management solution for DRER. In [6], the authors present
the potential of V2H, suggesting an EV acting as a backup
should participate in energy management for a home, provid-
ing monetary benefits to the residents. The proposed system
defines clear modes of operation based on power levels in
the system, only considering energy forecasting as a future
research direction that would allow more adaptive protocols.
In addition, [8] discusses the potential of an EV for local
utilisation as an energy storage unit for the home, or to help
congestion within the grid. The authors suggest that a Virtual
Power Plant takes the role of aggregating the data from the
grid and using it to forecast energy management; however,
this introduces a layer of trust reducing the privacy of the
system. Though V2H literature provides promising solutions
for integrating EVs, they do not consider larger-scale numbers
of EVs, and the effect of efficient algorithms utilising forecasts
to benefit participating agents.

V2G literature scales the system to multiple EVs and Pro-
sumers. In [10], the authors discuss the potential of multiple
EVs as movable energy storage to manage a microgrid. They
establish monetary benefit as a key metric for performance
and do not explore the potential benefit of forecasted algo-
rithms. The authors instead focus on a real-time management
algorithm to reduce security risks as no data needs to be
stored. Alternatively, [11] suggests a matching algorithm to
be used after load forecasting and before vehicle integration.
The authors suggest a priority mechanism that increases the
grid’s quick-response capability but do not address the security
concerns of the surrounding multiple interacting IoT devices
and assume load forecasting has been implemented.

2) VFC: Vehicular Fog Computing (VFC) extends the Fog
Computing (FC) paradigm to use available computational re-
sources (in this case EVs) near IoT devices to perform relevant
computational tasks. FC provides an edge computing solution
with faster execution than alternatives, such as cloud comput-
ing. This is at the expense of higher energy consumption and
limited scalability, as our resources are limited to those close
to our IoT devices [12]. This type of infrastructure works best
for real-time applications needing low-latency computation to
ensure faster response times, such as energy management.

Jaiswal et al. [13] highlight the potential of Fog resources,
exploring the efficacy of FC energy prediction in smart grids.
They explore Long Short Term Memory (LSTM) neural net-
works for energy forecasting over alternatives such as Recur-
rent Neural Networks, due to their resistance to vanishing
and exploding gradients. However, they do not consider the
privacy aspects surrounding sharing sensitive data needed for
energy forecasting. Similarly, Zhang et al. [14] extend this
step, presenting LSTM load prediction in a federated learning

context. The privacy advantages of federated learning are
discussed, as raw data does not need to be shared amongst
all participants. However, they do not consider if nodes are
unable to carry out LSTM learning due to constrained devices.
Therefore, we propose that EVs implement federated load
prediction using an LSTM, implementing protocols to handle
moving EVs.

III. BACKGROUND AND PRELIMINARIES

A. Physical Infrastructure

The authors of [15], [16] discuss the relevant infrastructure
needed for VFC. The authors define critical scenarios for VFC-
specific FC implementation, identifying a reliable communi-
cation network as the backbone of a VFC network. Wireless
communication mediums called Road-Side-Units (RSU) are
discussed as a potential solution, enabling reliable and fast-
acting communication and protocols.

Low latency communication is also prevalent in V2G lit-
erature. Different existing works, e.g., [8] explore V2G as
a real-time system that needs real-time monitoring and low-
latency response to deal with the intermittency of RERs and
EVs’ battery State of Health (SoH). Therefore, similar to
VFC, a robust communication structure is required that is
able to handle the real-time transfer of data, such as traveling
conditions, e.g. weather and battery SoH.

Not only communication needs, but there are also grid re-
quirements. Both DRER, and EVs pose challenges to the cur-
rent centralised power network with its unidirectional power
flows, needing stable energy production methods to function
efficiently [17]. A promising solution in literature is the
concept of a smart grid which has increased in adoption around
the world with projects such as GridWise [18], and the Gotland
smart grid [19]. Smart grids are distributed energy networks
that can effectively manage distributed energy resources. They
achieve this through two-way communication features, sophis-
ticated computing systems, and sustained power flows between
intelligent components [20].

Fig. 1: Infrastructure layer.

Therefore, we propose an infrastructure represented in Fig.
1, providing bi-directional energy capabilities and a distributed
framework allowing EVs to be integrated as energy manage-
ment resources.

In our smart grid scenario, we assume that the bi-directional
chargers can accommodate all available energy exchange be-
tween the system’s entities, leading to more optimal use of
resources. The aforementioned RSU’s, act as a communication
medium to connect the cyberstructural and physical infrastruc-
ture allowing the interacting agents to utilise the functionaility
on the cyberstructural layer.



B. Cyberstructure

DLT is a well-known technology for enabling trustless
interactions between entities in energy markets [21]. DLT
provides a decentralised trading platform whilst also providing
benefits in terms of privacy, cost, and security [22]. The
potential of DLT as a secure management solution is agreed
upon in VFC and V2G literature [23], [24]. A blockchain-
based resource management scheme for VFC is explored in
[23]. Here, DLT is proposed as a solution to the security and
privacy risks of FC networks due to inherent beneficial features
of decentralisation and trustless exchange. The use of smart
contracts to mediate agreements between fog nodes and IoT
devices is also explored as a potential access management and
authorisation solution. Moreover, V2G DLT implementation is
explored in [24], which uses DLT blockchain technology as a
security management framework for an energy trading model.
It underscores the potential of smart contracts in trustless
environment.

Not all DLTs are suited for all tasks; [25] comprehensively
reviews various DLTs in an IoT-Centric use case, detailing
the advantages and disadvantages of specific architectures
and consensus protocols. The authors identified the Tangle
as a suitable Directed Acyclic Graph (DAG) based DLT
for IoT environments. The Tangle is a DLT built by the
IOTA foundation aimed at an IoT environment [26]. It has
a decentralised, secure infrastructure without needing high
computational power to function efficiently. At the same time,
it has high scalability, high throughput, and low-latency [27].

The benefits of IOTA have been identified in past literature,
e.g., [28] suggests that using the IOTA Tangle is a promising
solution for trustless exchange in V2G networks. However,
they do not consider ISCP since it was not available at the
time. On the other hand, [2] explores IOTA, implementing
ISCP for P2P energy trading between microgrids, highlighting
the potential of the sharded ISCP architecture with privacy
and scalability advantages over alternative DLT options whilst
maintaining security. ISCP aims for a completely decentralised
IOTA ecosystem, but currently still utilises a centralised entity
known as a coordinator, a security weakness to the network.
Despite this, the potential of ISCP and planned decentralisation
in IOTA 2.0 make it a promising option for our research.

To utilise sharded ISCP architecture, each smart grid want-
ing to integrate EVs as energy management resources runs its
own “Wasp chain”. These chains use RSU’s as peer nodes and
have the relevant energy management smart contracts deployed
upon them as shown in Fig. 2. Using the consortium nature of
our Wasp chains allows us to take advantage of a public-private
DLT split increasing security and privacy as we can control
who has access to the Wasp chain. This can be achieved
with an appropriate DLT-based authentication scheme on our
sharded blockchains, such as presented in [29], underpinning
CA authentication with DLT. This enables secure and private
interactions between multiple EVs and Prosumers leveraging,
the scalable ISCP architecture to its full advantage.

Fig. 2: Sharded blockchains connecting to the Tangle.

Fig. 3: System overview.

IV. EV ENERGY TRADING FRAMEWORK

By taking into account the physical infrastructure needs and
the cyberstructural needs we have developed a Cyber-Physical
System architecture displayed in Fig. 3.

The smart grid represents the infrastructure layer and the
interacting agents in the network. At the infrastructure layer,
all required information is provided between matched entities
including energy needs, battery capacity, matching ID, CA
tokens, etc. The Wasp chain layer is layer-2 of the Tangle upon
which the smart contracts communicate and reach consensus.
The matching contract handles energy bids from the agents.
The real-time management contract logs energy exchange for
matchings. Then, the LSTM contract handles the aggregation
and distribution of the LSTM parameters in federated learning.
Finally, the Tangle DLT anchores the state of these smart
contracts in the form of a hash value to maintain immutability.
This occurs when the smart contracts experience a change
of state. The changes in state only have to be verified by
participating agents in the consortium Wasp chain. This,
in conjunction with an authentication scheme, as described,
allows us to control what information is stored on the Tangle
to maintain security whilst keeping privacy of the agents.

A. Load Forecasting

In traditional federated learning, each agent in the system
uses their data to train an LSTM before passing the LSTM



parameters to a cloud node. This cloud node then collates the
parameters of various models and creates an updated version
of the model itself. Each agent then uses this new model to
continue training their data [14].

To implement load forecasting through federated learning
and VFC, we assume that a Prosumer participating in energy
trading has an EV implementing our proposed load forecasting
behaviour and the forecasts are used in the trading simulation.
An overview of the implemented federated-LSTM is shown
in Fig. 4. Each Prosumer uses an EV acting as a fog node
to train a local model of our system. This maintains privacy
concerns of the Prosumers as they only need to share the real-
time energy production and consumption metrics with the EV
node training their LSTM.

Fig. 4: Federated overview.

Considering the constraints of the federated paradigm, we
assume that each smart grid has its own “Global” LSTM
parameters from which EV fog nodes pull and train their
local LSTMs. This provides another benefit as when an EV
enters the network to train and predict, they are able to use
the “Global” LSTM model as a starting point. As such, we do
not use a traditional federated aggregation method and instead
aggregate the LSTM models periodically. This allows new EVs
entering the system to have a relatively updated LSTM model
from which to make predictions.

B. Matching Algorithms

Before energy trading occurs, participating agents place en-
ergy bids. Prosumers place net energy production/consumption
bids and the EVs place available energy and battery capacity
bids. This allows us to use matching theory, a common job
allocation method in VFC and V2G literature [11], [30].

In order to enhance security while facilitating interactions
between multiple EVs and multiple Prosumers, we employ
a strategy that restricts each agent to a single matching per
period and model our EVs as passive chargers. This limitation
effectively minimizes the risk of exposure to malicious entities,
thereby bolstering security, and resembles the Linear Sum
Assignment Problem (LSAP). LSAP aims to find the optimal
solution for matching multiple resources (EV resources) to
multiple tasks (DRER energy management) based on specific
constraints.

To show the benefit of load forecasting in the proposed
solution, we display two options. We initially explore a
“Greedy” implementation for the matching strategy, using a
First-In-First-Out (FIFO) matching algorithm to match re-
source providers with requests. This approach offers fast
response times and operates in O(n) time complexity, making
it a low-latency matching option that does not need load
forecasting. However, there is a risk the algorithm matches
the first available resource with the first requester, without
considering whether a better match may be available later.
Therefore, we consider the Hungarian algorithm, which is a
long standing approach in literature [31].

The Hungarian algorithm creates a cost or benefit matrix
associated with assigning the requested resources (e.g. energy
or capacity) to buyers and sellers and uses the matrix to find
the matching with minimum cost. In the proposed algorithm,
this cost for producers is the amount of energy not able to
be stored in the matched EV, and for net consumers, this
was calculated as the unfulfilled energy demand. While the
Hungarian algorithm provides an optimal solution for the
assignment problem in terms of minimising the total cost, its
time complexity of O(n3) may lead to significant overhead
and computation in the system, and therefore is only viable
considering the load forecasting behaviours of our system.

V. EXPERIMENTAL SETUP

A. Agents

In this study, the loads are simulated based on the data
set presented in [32]. The data set includes five PhotoVoltaic
(PV) generation agents, providing their power production and
consumption measurements every 10 seconds over a week
period. This data has high temporal resolution, and has been
used in past literature to model DRER [2], [32]. The net
production of energy for each Prosumer for the testing period
is represented in Fig. 5, demonstrating the general trends
throughout the testing period.

Fig. 5: Load profile of each agent over our 24 hour testing period.

The EVs are modeled from an open source python tool
“emobpy” which generates time series data for our EVs [33].
This data allows us to model the time series data of the cars in



both location, energy consumption, and charging behaviours
along with the relevant SoC information at 15-minute intervals.
Using this open source tool, we generated time series data for
a Tesla Model 3 Long Range AWD, as it is one of the most
popular EV models. We use the long-range model, which has
a greater battery capacity (79.5kWh = CT ). We limited the
operable battery Co to minimise battery degradation [34], and
reserved a further weeks worth of energy consumption for
the EV Er to account for the passiveness of the EVs when
charging. This is represented by Equation 1.

Rangecap = (0.2 ∗ CT ) + Er ≤ Co ≤ 0.8 ∗ CT (1)

B. Pricing

1) Pricing: Considering the buying and selling of energy
between EVs and Prosumers, we limit our pricing mechanism
by the buying and selling prices to and from the main grid.
This ensures that participants in our system will achieve no
worse than if they had traded energy with the main grid. The
price of buying energy from the main grid Pgb is determined
to be 29.49p/kWh [35], and the selling price of energy to the
main grid Pgs is determined as 6.4p/kWh [36] respectively.

When a Prosumer wants to sell excess energy to an EV, the
selling price is determined to be the split difference between
the buying and selling price to the grid and is shown in
Equation 2. An EV can only sell energy to a Prosumer if
the EV has been participating in the network, which can be
verified in the DLT. Once the participation has been verified,
the price of energy in the EV is determined and sold with a
fixed tariff of 10% once again limited by the main grid prices.
This ensures that even if EVs do not keep the energy, they still
achieve a 10% profit on every Wh of energy stored in their
batteries.

Psplit =
Pgb + Pgs

2
(2)

C. Solo Testing Environment

Solo is a testing framework that allows us to validate and
interact with the smart contracts and inter-chain protocols
without requiring their deployment to the Tangle. As such the
solo testing environment was used to evaluate the functionality
of smart contracts on the Wasp chain, with each entity being
able to interact and place bids to smart contracts through Solo
Contexts. A full explanation of the solo testing environment
can be found on IOTA wiki [37]. When an energy exchange is
successfully achieved, we print all relevant information of the
trade to an “exchange.csv” file: time step, energy exchanged,
available energy, battery capacity, matching id, Prosumer and
EV, from which we are able to derive our results.

D. Federated-LSTM Setup

The LSTM setup is implemented using the Python PyTorch
library and neural network modules [38]. Since the imple-
mented LSTM is primarily a proof of concept to demonstrate
the potential of using EV computational resources, we did

not prioritise a thorough analysis of optimizing the model
performance. Rather, our goal was to show that the LSTM
could produce meaningful results for the chosen EMS using
a reasonably straightforward configuration.

Each LSTM was configured with two layers, each consist-
ing of 32 neurons. The inputs to the model included time,
consumption, and production data for the preceding three
matching periods, while the outputs included consumption and
production predictions for the upcoming matching period. This
sliding window approach reduces our system’s reliance on
storing large amounts of data related to energy production and
consumption, which could pose a potential vulnerability. The
model was trained using Mean Squared Error (MSE) as the
loss function and optimised using the Adam optimiser. Each
matching period was 60 seconds whilst the actual trading of
energy was at the granularity of the load data set.

VI. RESULTS AND DISCUSSION

Fig. 5 displays the load profiles of each Prosumer in our
study. As expected for PV Prosumers, all load profiles exhibit
peak net energy production during midday (interval 4320)
and lowest net energy production at the tail ends of the 24-
hour period. Prosumer Z0 demonstrated the highest energy
production among all participants, producing approximately
three times more energy than the next closest Prosumer R2
during peak production. On the other hand, Prosumer L2 had
the highest consumption and did not generate any energy
within the 24-hour testing period.

Processing the information available from the “ex-
change.csv” file we can evaluate the effectiveness of our
system. Table I establishes a baseline of systems common in
V2H literature where a single trusted EV is used to smooth
a renewable energy Prosumer in an isolated trading format
[6]. There is a significant benefit to all agents involved as
they are able to use the energy they have stored in periods of
high production and use them in periods of high consumption,
experiencing benefits between 8.35-200.42 kWh. Prosumer L2
experiences very little benefit as it produced 0kWh throughout
the 24-hour window as shown in Fig. 5 and therefore was
only able to use the energy available in the EV, 8.35kWh. On
the other hand, Z0 experienced the most significant benefit of
200.42 kWh as it was able to store the most energy in the EV
for later use, an expected outcome considering its profile as
the largest energy producer.

TABLE I: Table showing the benefit of each agent trading with a single EV
for a 24-hour window, measured in terms of reduced energy exchange with
the main grid.

Agent Original Grid
Exchange

(kWh)

Isolated Grid
Exchange

(kWh)

Absolute
benefit (kWh)

L1 4884.36 4825.60 58.76
L2 8672.30 8663.95 8.35
L3 2967.63 2874.31 93.32
R2 1039.07 944.96 94.11
Z0 6558.82 6358.40 200.42

Fig. 6 demonstrates the advantages of enabling EVs to
interact with multiple Prosumers through a secure trading



platform, as implemented in this research. Using the “Isolated
Grid Exchange” trading scenario from Table I and represented
by “Isolated” in Fig. 6, we establish a reference point for
evaluating the benefits of allowing multiple connections and
interactions between trading EVs and Prosumers. Once again
this benefit is measured as the amount of energy in kWh agents
were able to trade within the system instead of having to trade
this energy with the main grid.

The benefits of allowing multiple EVs to interact with
multiple Prosumers are immediately apparent, with one EV
trading with five Prosumers (the “1 EV” trading scenario)
performing comparably to the “Isolated” benchmark scenario.
Across all agents, an aggregate 497.78% decrease in energy
exchange with the main grid was experienced in the “1 EV”
trading scenario. This benefit of decreased energy exchange
with the main grid is skewed towards Agents “L1” and “Z0”
which are the only agents to experience a net benefit in
the “1 EV” over the “isolated” scenario. As we only accept
one matching per per period, the energy previously stored
for agents “L1”, “L3”, and “R2” gets used by other agents,
mainly “L2” which is consuming energy during their energy
production. As we increase the participating EVs in the grid,
the benefit starts to become available to all agents. This occurs
in the “2 EV” trading scenario, all agents experience beneficial
energy exchange, though this is minimal for “L3” and “R2”
with an increase of 4.6% and 9.9% respectively.

We also observed roughly consistent increasing returns as
the number of EVs increases. For example, if we take the
aggregate % increase of all agents from Fig. 6, as we increase
the number of EVs from 1-2EVs, we get an increase in return
of 657%, and when we increase from 4-5EVs, we get an
increase in return of 665%.

Fig. 6: Energy traded within our EMS for each agent in each trading scenario,
using our Greedy matching algorithm.

Table II shows the benefit of utilising matching algorithms
enabled by load forecasting by demonstrating a performance
comparison between the Greedy and Hungarian algorithms
for each agent in different trading scenarios. The Hungarian
algorithm outperformed the Greedy algorithm in all scenarios,
increasing energy traded within our system between 5.4-

27.8%. The most significant differences occurred when the
number of Prosumers greatly outnumbered the number of EVs
with “1 EV” and “2 EV” trading scenarios experiencing the
most significant benefit of 19.9% and 27.8% increase in energy
trading within the developed system.

TABLE II: Table showing the improvements of using Hungarian matching
algorithm over the Greedy matching algorithm in terms of decreasing energy
exchange with the main grid.

No.
EVs

L1 L2 L3 R2 Z0 Agg.
% inc.

1 EV 49.2% -6.1% 96.2% 62.0% 18.1% 19.9
2 EV 44.9% 2.5% 94.1% 73.8% 24.5% 27.8
3 EV 29.1% -12.4% 93.2 35.4% 10.7% 12.0
4 EV 75.6% -8.7% 36.5% 17.9% 6.4% 10.3
5 EV -2.9% 13.9% -2.6% 16.1% -1.2% 5.4

Another important factor of the proposed solution is mon-
etary incentives, encouraging participation in the network.
Using the static pricing behaviours, we have calculated the
monetary benefit of trading in our system for each agent in
each scenario shown in Fig. 7.

Fig. 7: Monetary benefit for participating agents using each algorithm,
implementing the suggested pricing behaviours.

The monetary benefit results indicate that all entities within
our system experience a measurable benefit over trading with
the main grid. The monetary benefit for EVs is calculated
as profit and shown as an average per EV. The results show
that each EV made between £3.39 and £12.84 for the 24-
hour trading period in the Hungarian Algorithm. Notably, the
maximum benefit was experienced when trading with 4 EVs
while the minimum benefit was observed in the “Isolated”
Scenario. These findings indicate the potential for proposed
solution to provide significant financial benefits to EV owners.

Furthermore, we also calculated the monetary value for
Prosumers, which was the benefit of trading energy compared
to trading all their energy with the main grid. However, This



benefit was not equally distributed among all agents. In par-
ticular, the most beneficial entities were those that traded the
most energy with the grid, with “L2” and “Z0” experiencing
monetary benefits between £0.28-£48.08 and £19.63-£207.58,
respectively. Moreover, all Prosumers in the proposed solution
experienced maximum benefit in the “5 EV” trading scenario,
while experiencing minimum benefit in the “Isolated” Trading
Scenario. Interestingly, “Z0” experienced the most significant
benefit throughout all scenarios, highlighting the importance of
considering the energy production profile of Prosumers when
evaluating the financial benefits of our system.

Table III shows the performance of the federated imple-
mentation in terms of energy utility, compared to using perfect
energy predictions. These federated energy predictions assume
that all 5 loads had an EV predicting their energy production
and consumption in all trading periods using our federated
LSTM forecasting.

The differences from using the federated learning predic-
tions over the full predictions is minimal. In the case of
“Isolated” trading, the federated predictions perform as well
as the perfect predictions with a 0% change. The federated
learning system performs similarly to a system with perfect
energy predictions, only experiencing between -3.7% and -
1.5e-14% energy traded within the system. However, there is
an outlier in the data where in the case of 3 EVs, the federated
prediction outperforms our perfect prediction model by 1.4%.
TABLE III: Performance comparison of federated predictions against perfect
predictions using the Hungarian algorithm.

Trading Scenario Federated % change in Energy Utility
Isolated 0.0%
1 EV -1.5e-14%
2 EV -3.7%
3 EV 1.40%
4 EV -1.7%
5 EV -1.3%

A. Discussion

The secure management system we have developed enables
the trading of energy between multiple EVs and Prosumers,
leading to significant advantages such as decreased depen-
dence on the main grid and monetary benefits for all par-
ticipants. The analysis of results shows that the benefit to
Prosumers in our simulation heavily depends on their load
profiles. In terms of energy utility and decreased reliance
on the main grid, the two most significant factors were the
total amount of energy exchange and net energy production.
Prosumers with a larger magnitude of energy exchange with
the main grid experienced far greater absolute benefits than
Prosumers with smaller energy exchanges with the main
grid. The other most significant factor came in net energy
production, where net energy producers experienced greater
pricing benefits. The fact that our proposed system offers both
financial and energy utility benefits highlights its feasibility as
a promising option for managing DRER.

However, this evidence can be circumstantial. Regarding
pricing behaviours, we have assumed that our prices Pgb and
Pgs are static. In contrast, energy prices are usually dynamic

and can change throughout even a 24-hour period which could
have some consideration in our results. Additionally, factors
such as distribution losses and limited charging and discharg-
ing rates are not discussed. This could lead to bottlenecks in
the system, reducing the displayed benefits.

Furthermore, the EVs and Prosumers have clearly defined
roles on opposite sides of the market allowing us to use
LSAP. As such we never consider the potential of interactions
between agents on the same side of the market. By allowing
EVs and agents to trade energy with each other, we could
extend our system to allow actively charging EVs to participate
in the network charging from energy stored in EVs, and our
Prosumers could trade without using an EV as a middleman.
This would, however, decrease the benefit to the EVs, the main
resource providers, and decreasing their benefit could reduce
their incentive to participate.

The finding that the percentage increase in benefit from
adding EVs to the network is roughly consistent in Fig. 6
has necessary implications for EV networks’ optimal design
and operation. By only allowing one matching per EV and
Prosumer per period, we could limit the system in terms of
scalability. While our results suggest that there is unutilised
benefit to be gained from further increasing the number of
EVs in the system, the rate of increase in benefits may
eventually slow as energy resources from Prosumers become
more limited. Therefore, the optimal design and operation
of EV networks require a nuanced approach that considers
factors such as the availability of energy resources, charging
infrastructure, and demand patterns.

Furthermore, as the number of EVs and Prosumers ap-
proached equilibrium, the benefit of Hungarian over the
Greedy algorithm in terms of energy utility decreased. When
there are more Prosumers than EVs, Hungarian can exploit
efficient matching allocations to a greater extent.

Finally, our LSTM predictions were shown to be successful
by providing comparable results to our system with perfect
energy prediction. This is because the resource capabilities
of the EVs limit energy management. Therefore EVs can
only partially accommodate all production and consumption
within an energy period, and therefore the potential loss
through inaccurate energy predictions is minimal. The worst-
performing scenario experienced a decrease of 3.7% for energy
trading with a Hungarian algorithm and 3.9% for prediction
with the Greedy algorithm. If we were to scale this smart
grid system to accommodate more EVs, we could see that
the inaccurate federated learning predictions have a more
significant effect on the system and may cause this disparity
to increase.

In the case of 3 EVs, the forecasted predictions outper-
formed the perfect predictions by 1.40%, this is likely due
to the nature of the Hungarian matching algorithm which
maximises energy exchange with matching periods. For exam-
ple, if there is a miss-prediction on energy consumption, the
Hungarian algorithm may prefer a matching that stores energy
over a matching that releases energy. This would increase
the amount of energy able to be released later in periods of



consumption and increase the overall utility of the system.
This raises an interesting direction for future research into
time-dependent matching algorithms. By utilising forecasted
energy predictions over longer periods, we could potentially
implement more efficient and responsive matching algorithms
that maximise energy utility.

VII. CONCLUDING REMARKS

In this paper, a holistic DLT-based EMS is proposed that
utilises EV energy storage capabilities in conjunction with
using their computational abilities for load forecasting. This
EMS allowed for efficient matching algorithms to maximise
energy utility whilst providing measurable monetary ben-
efits to all participating agents. We demonstrated that by
allowing the interactions and trading between multiple EVs
and Prosumers, we can increase both gross and net benefit
to the agents. Finally, we identify some possible areas for
future research, with more powerful load forecasting and time-
dependent matching algorithms, different market mechanisms
allowing homogeneous trading between agents, and more in-
depth analysis of pricing behaviours.
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