
HierSFL: Local Differential Privacy-aided Split
Federated Learning in Mobile Edge Computing

Minh K. Quan∗, Dinh C. Nguyen†, Van-Dinh Nguyen‡,
Mayuri Wijayasundara∗, Sujeeva Setunge§, Pubudu N. Pathirana∗

∗School of Engineering, Deakin University, Australia
†Department of Electrical and Computer Engineering, University of Alabama in Huntsville, USA

‡College of Engineering and Computer Science, VinUniversity, Vinhomes Ocean Park, Hanoi 100000, Vietnam
§School of Engineering, Royal Melbourne Institute of Technology University, Melbourne, VIC 3000, Australia

Abstract—Federated Learning is a promising approach for
learning from user data while preserving data privacy. How-
ever, the high requirements of the model training process make
it difficult for clients with limited memory or bandwidth to
participate. To tackle this problem, Split Federated Learning
is utilized, where clients upload their intermediate model
training outcomes to a cloud server for collaborative server-
client model training. This methodology facilitates resource-
constrained clients’ participation in model training but also
increases the training time and communication overhead. To
overcome these limitations, we propose a novel algorithm,
called Hierarchical Split Federated Learning (HierSFL), that
amalgamates models at the edge and cloud phases, presenting
qualitative directives for determining the best aggregation time-
frames to reduce computation and communication expenses.
By implementing local differential privacy at the client and
edge server levels, we enhance privacy during local model
parameter updates. Our experiments using CIFAR-10 and
MNIST datasets show that HierSFL outperforms standard
FL approaches with better training accuracy, training time,
and communication-computing trade-offs. HierSFL offers a
promising solution to mobile edge computing’s challenges,
ultimately leading to faster content delivery and improved
mobile service quality.

I. INTRODUCTION

The burgeoning prevalence of interconnected devices has
given rise to a considerable upswing in the generation of
disparate data, encompassing not only smart phones but
also smart watches and fitness monitors [1]. The intricacies
entailed in acquiring knowledge related to data privacy
preservation, in addition to the prohibitive costs of trans-
mitting all data to a remote cloud [2], have facilitated the
emergence of a potential solution, mobile edge computing
(MEC). The adoption of MEC technology offers several
prospective benefits, including heightened energy efficiency
and decreased latency. Notwithstanding, this approach also
raises several privacy-related apprehensions, such as inad-
vertent disclosure of sensitive user information, interception
of trained models, and an inadequate regulatory frameworks
[3]. Consequently, a robust and holistic approach to privacy
preservation and governance is imperative for the sustainable
proliferation of MEC technology.

To address these MEC-related privacy issues [4], federated
learning (FL) is commonly regarded as an effective frame-

work. This is attributed to its capacity to facilitate learning
procedures using local data, while also preserving sensitive
information. The conventional FL framework enables users
to train their learning models on local data after which
they send only the necessary trained weights to a central
server for aggregation. Once the local models are aggregated,
the updated global model is broadcast back to the users
for further refinement. While FL provides protection for
users’ privacy, it demands significant resources for both
communication and model training, which could be quite
challenging for low-cost devices. The process of transmitting
model updates iteratively to the central cloud server creates a
substantial communication load that can be quite challenging
to manage [5]. Moreover, training of complex deep neural
networks (DNN) imposes a significant demand on memory
and computational resources [6]. These obstacles can impede
the widespread incorporation of FL, particularly for limited-
resource mobile clients.

To cope with clients’ resource limitation issues in FL,
the concept of split FL (SFL) has been proposed. [7]. The
key benefit of SFL is that it allows elaborating models
to be learned on mobile devices without overburdening
them. The SFL methodology involves partitioning of the
machine learning (ML) model into several segments, with
one of these segments being designated to support remote
server training. The clients participate in the propagation of
their models, while concurrently transmitting intermediate
outcomes to a remote server to facilitate the completion
of model training. The incorporation of parallel processing
and network splitting in SFL’s training strategy results in
reduced memory and processing requirements for clients
when compared to FL, though certain limitations must
still be addressed. Unlike the challenges faced in FL, the
frequent transfer of partial results to the remote server poses
a significant impediment, as it amplifies communication
resource usage and transmission time, and calls for measures
to guarantee the confidentiality of intermediate results during
transmission.

A. Motivation and Key Contributions
Since its introduction in [7], SFL has undergone con-

tinuous enhancements and has been integrated into various

ar
X

iv
:2

40
1.

08
72

3v
1

 [
cs

.C
R

]
 1

6
Ja

n
20

24

Accepted at IEEE Virtual Conference on Communications 2023

research endeavours. The study [8] examined two learning
architectures that merge FL and split learning (SL) to lessen
client computational demands and parallelize SL. In contrast,
[9] implemented SFL in unmanned aerial vehicle (UAV)
networks to address data transfer and privacy concerns.
The authors [10] also highlighted an SFL application in
U-shaped medical image networks. However, SFL faces
several challenges, including central cloud server strain,
communication delays, and privacy concerns. SFL relies on a
central server to aggregate updates from all clients. This can
lead to bottlenecks and performance degradation, especially
with many clients. Additionally, all clients must commu-
nicate with the central server at each iteration, which can
cause communication delays, especially for remote clients
or congested networks. Finally, SFL requires clients to send
their local model updates to the central server frequently
without privacy-protecting techniques, which raises privacy
concerns, as attacks can occur during communication be-
tween the server and clients.

To address these challenges, we propose HierSFL, a
novel framework that utilizes mobile edge servers (MESs)
as training assistants and model aggregators. In HierSFL,
clients are divided into groups and assigned to MESs. Clients
in each group do not need to send their data to the central
server; instead, they use local differential privacy (LDP) to
add noise to their data before sending it to their assigned
MES. MESs then aggregate the updates from their assigned
clients and send the aggregated updates to the central server.
The central server updates the global model and sends it back
to the MESs, which distribute it to their assigned clients.
This approach significantly reduces the load on the central
server and improves communication delays, as clients only
need to communicate with their assigned MES, which is
typically located closer to them. Our contributions can be
summed up as follows:

• We propose a hierarchical SFL framework with model
aggregation at both the MES and cloud levels, where
qualitative guidelines are developed to determine op-
timal aggregation intervals at each level. This helps
balance computation and communication costs.

• We implement LDP at both the client-level model to
enhance confidentiality during the synchronization of
local model parameters.

• We conduct experiments using the CIFAR-10 and
MNIST datasets, which demonstrate the superiority of
HierSFL scheme over conventional FL approaches with
better communication-computing trade-offs.

B. Paper Organization

The following sections of this study are organized as such.
In details, Section II explicates the learning problem and
elucidates the HierSFL framework. Section III is dedicated
to presenting the results of the simulations conducted for
HierSFL, which serve the dual purpose of validating the
convergence analysis and showcasing the benefits of the

HierSFL approach. In the final section of the paper, Section
IV, a summary of the main findings and contributions is
presented.

II. SYSTEM DESIGN

In this section, the primary learning problems in FL and
SFL are discussed, and HierSFL, a three-tier FL system, is
presented as a solution to enable SFL in a hierarchical MEC
network followed by an introduction of the LDP mechanism
for enhancing privacy in HierSFL.

A. Learning Problem Overview

1) Federated Learning (FL): In the context of FL learn-
ing approach for training ML models, each client has its
own dataset represented by Sk = (xk,i, yk,i)

|Sk|
i=1 , where xk,i

represents the i-th input feature vector and yk,i represents
its corresponding target value. The model is characterized by
a real vector w, while the overall dataset S is constructed
by merging the individual datasets Sk for k = 1, 2, . . . ,K,
resulting in a total of |S| samples. The prediction error for
the i-th sample is given by the loss function ℓ(xk,i, yk,i,w)
or ℓk,i(w). The objective of FL is to minimize the empirical
risk function:

L(w) =

∑K
k=1

∑
i∈Sk

ℓk,i(w)

|S|
, (1)

which is based on non-IID (Non-Independent and Identically
Distributed) datasets of different clients [11]. The function
L(w) specified in equation (1) serves as the global loss
function.

Theoretically, the convexity of L(w) depends on whether
the individual loss functions ℓi(w) and their aggregation are
convex. However, in practice, FL optimization problems are
often non-convex, posing a challenge for Gradient descent
and its variants that rely on convexity to find the global
optimum. To address this, stochastic gradient descent (SGD)
and its variations have been employed for optimizing L(w)
by randomly selecting a mini-batch Bt of samples B from
the training data at each iteration t. The gradient descent
algorithm involves updating the parameter vector w by mov-
ing in the direction opposite to the gradient. To efficiently
compute the loss function’s gradient with the parameter
vector w, it is possible to adopt the following equation:

wt+1 = wt − ηt

∑
(x,y)∈Bt

∇ℓ(x, y,w)

|Bt|
. (2)

The SGD algorithm samples a data point (x, y) randomly
from the dataset S and updates the parameter vector w using
the learning rate ηt and gradient ∇ℓ(x, y,w) of the loss
function at iteration t pertaining to w. The algorithm con-
tinues to iterate until reaching a desired level of convergence
or a maximum number of iterations.

Accepted at IEEE Virtual Conference on Communications 2023

2) Split Federated Learning (SFL): In the SFL frame-
work, St comprises a group of K clients at time t. Each
client performs parallel forward propagation for their models
with a noise layer. They then send compressed data Dk,t

and labels Yk to the central server. pk is the sample size for
client k, p is the total sample size. During training, client k
interacts with both ρ1 and ρ2 servers. Specifically, at server
ρ1, the subsequent steps are executed:

1) The forward propagation procedure on the global on
the server model ws

t with Dk,t.
2) Computation of predicted labels Ŷk.
3) Loss calculation with Yk and Ŷk based on the follow-

ing equation:

L(ws
t ;Ds,t) =

K∑
k=1

pk
p
ℓ(Yk, Ŷk), (3)

where n is the total sample size, and nk is the sample
size of client k.

4) Separate parallel processing of compressed data from
each client during back-propagation on the server-
side model. Respective clients receive the gradients of
compressed data ∇ℓk(ws

t ;Ds,t) for use in their back-
propagation process.

5) The server’s model is updated via FedAvg, which
involves taking a weighted average of the gradients
computed during back-propagation on each client’s
compressed data:

ws
t+1 = ws

t − ηt
1

p

K∑
k=1

pk
p
∇ℓk(ws

t ;Ds,t). (4)

After receiving the gradients of its compressed data
∇ℓk(ws

t ;Ds,t), each client utilizes them to conduct back-
propagation on their local model and derive its gradients
∇ℓk(wc

k,t). The gradients are secured via a LDP mechanism
before being sent to the server ρ2, which performs a FedAvg
of client-side local updates and disseminates the results to
all participating clients for privacy:

wc
t+1 =

1

p

K∑
k=1

pk
p
wc

k,t. (5)

B. HierSFL Framework

As discussed in the previous section, SFL is a novel
approach to ML that reaps the benefits of FL and SL.
While model aggregation on the cloud parameter server
can accommodate a large number of customers, it incurs
substantial communication expenses. In contrast, a small
number of clients participating in model aggregation at the
MEC parameter server leads to a drastic reduction in com-
munication expenses. Consequently, a HierSFL framework
is proposed to reap advantages of both approaches. The
framework that we propose comprises a cloud server andM
MESs, each identified by the index m. MESs serve separate
client sets, which are labeled as {Cm}Mm=1. Furthermore,
there are K clients, indexed by both k and m, each possess

Fig. 1. The workflow of HierSFL framework.

distributed datasets {Dm
k }

K
k=1. The dataset collected under

each MES is represented as Dm. It is the responsibility of
each MES to facilitate collaborative training and aggregation
of models from the clients that it serves.

The working flow of our proposed HierSFL scheme is
presented in Fig. 1. Specifically, from Step 1 to 3, the
central cloud server uses client information to assign clients
to MESs. Before the collaborative training steps including
5 and 6, clients undertake local model training in Step
4. Afterwards, in Steps 5 and 6, clients work together
on parallel model training, keeping the MES updated with
intermediate results and receiving edge-side assistance and
gradients for further advancement. This cycle occurs for E
iterations. In Step 7, MES m aggregates model parameters
using the FedAvg algorithm after every p1 local update for
each client in the Cm set. The edge aggregation procedure
concludes after p2 rounds, and model parameters are for-
warded from the MESs to the cloud server (Step 8). The
cloud server employs the FedAvg algorithm to combine
the model parameters and dispatch them to MESs, which
update the edge model and then broadcast it to clients. The
HierSFL algorithm supports collaborative machine learning
while preserving data privacy and minimizing communica-
tion overhead. A thorough description of this workflow is
available in Algorithm 1.

Accepted at IEEE Virtual Conference on Communications 2023

C. Local Differential Privacy (LDP) in HierSFL

To preserve the privacy of client data in HierSFL, where
the deep neural network is trained collaboratively by the
cloud, MESs, and clients, LDP [12] can be implemented.
From a mathematical standpoint, let x denote the output
of a layer in the client local model, and σ(x) represent the
function that adds calibrated noise to x. The output y = σ(x)
is said to satisfy ε-LDP if the following inequality holds for
all neighboring input pairs x and x′, as well as for all sets
of outputs M :

Pr[σ(x) ∈ S] ≤ eε · Pr[σ(x′) ∈ S]. (6)

To preserve privacy in the context of LDP, the local client
model weights can be perturbed by introducing calibrated
noise. Let w represent the original weight vector, and w′

denote the perturbed weight vector that satisfies ε-LDP.
The perturbed weight vector can be obtained by adding
noise drawn from a Laplace distribution [13] to the original
weights:

w′ = w + δ, (7)

where δ is a noise vector drawn from a Laplace distribution
with scale parameter c. The scale parameter c is determined
based on the sensitivity of the weights and the desired
privacy parameter ε:

c =
Θw

ε
. (8)

The sensitivity of the weights, denoted as Θw, captures the
maximum possible change in the weight vector when any
single individual’s data is modified. It can be defined as:

Θw = max
w,w′

∥w −w′∥1, (9)

where ∥ · ∥1 represents the L1 norm. Incorporating Laplace
noise into the L1 norm adds random changes, enhancing
individual contribution privacy. The noise level is determined
by the privacy budget ε, with lower ε values offering stronger
privacy protection but potentially reducing accuracy.

III. SIMULATIONS AND EVALUATION

A. Simulation Settings

We conducted experiments on a server equipped with
a 10-core CPU, 8-core GPU, and 16 GB of RAM. Our
system was built using PyTorch 1.10.0, and we simu-
lated server-client transmission delays using the Python
time.sleep() function. To evaluate the system, we
considered different combinations of client sets (k ∈
20, 40, 60, 80) and MES sets (m ∈ 4, 8, 12, 16). Each MES
authorized an equal number of clients with the same volume
of training data. In scenarios involving data distribution,
each client was assigned two distinct sample labels, each
containing 400 samples, ensuring a non-IID data distribution.

In our assessment of the HierSFL framework, we con-
duct image classification tasks employing the commonly
used CIFAR-10 and MNIST datasets, ensuring an optimal

Algorithm 1: Proposed HierSFL Framework
Input: Total aggregation rounds: P . Local updates

and edge model aggregations per client: p1, p2.
Local training epoch: E. Clients served by MES
m,∀m ∈M: Cm.

Initilaization: Initialize the global client model wℓ
0,

the MES model wm
0 . Send the models to clients

and MESs.

for aggregation round p← 1 to P do
for each MES m ∈M, client k ∈ Cm parallel
do

for epoch e← 1 to E do
/* Client forward propagation */
Calculate θkp , Yk in wℓ

k(p);

/* MES forward propagation and back
propagation */

Calculate ∇fk(wm(p)) based on Yk and
Ŷk;

/* Client back propagation */
Update wℓ

k(p) using ∇fk(wm(p));
Perturb weights wℓ

k(p) as:
wℓ

k(p)← wℓ
k(p) + δ;

if p mod p1 = 0 then
for each MES m parallel do

/* MES aggregation */
wm ← 1

|Dm|
∑

k∈Cm
|Dm

k |wℓ
k(p)k∈Cm

;
if p mod p1.p2 ̸= 0 then

Update MES clients: wm
k (p)← wm(p);

if p mod p1.p2 = 0 then
/* Cloud aggregation */
w(p) ← 1

|D|
∑

m∈M |Dm|wm(p)m∈M;
Update all clients: wm

k (p)← w(p);
Output: The final global model w(p) after P

aggregation rounds

selection for the evaluation. For CIFAR-10, we employ a
CNN model with 5,852,170 parameters, including an output
layer and 3× 3 convolution layers, trained using 50,000
samples of 32× 32 pixel images. Similarly, for MNIST, we
use a CNN model with 21,840 parameters [14], trained with
60,000 samples of 10-class handwritten images measuring
28× 28 pixels. Both datasets undergo local computation
with an initial learning rate of η = 0.01, an exponential
learning rate decay of φ = 0.995 per epoch, Stochastic
Gradient Descent momentum τ = 0.5, two different privacy
budgets ε1 = 0.5 (MNIST) and ε2 = 5 (CIFAR-10), and
a batch size of b = 32, providing a robust evaluation of
the HierSFL framework. Furthermore, we consider the three
existing baselines, including conventional FL [15], SFL [7],
and Hierarchical FL (HFL) [16], respectively.

Accepted at IEEE Virtual Conference on Communications 2023

B. Simulation Results

Fig. 2. Fine-tuning MES and client numbers for optimal CIFAR-10
accuracy.

We compared HierSFL to FL, SFL, and HFL using
ResNet18 on CIFAR-10, varying MESs from 4 to 16 and
clients from 20 to 80. We assessed training accuracy after
a fixed number of iterations, with p1 set to 5 and p2 to
2. In most cases, HierSFL outperformed, achieving 79.8%
accuracy with 16 MESs and 80 clients, surpassing FL
(62.3%), SFL (65.2%), and HFL (75.5%) as shown in Fig.
2. However, as network complexity increased, computational
demands on FL and HFL clients grew. While SFL’s server-
client approach helped, it could strain the cloud server with
a larger number of clients. Thus, HierSFL’s hierarchical
design optimizes network topology and improves learning
in such cases. However, in the 4-edge-server and 20-client
setting, HFL achieved higher accuracy (64.2%) than HierSFL
(60.6%) after 80 iterations, underscoring the role of network
topology, dataset properties, and algorithm design in learning
outcomes. Additionally, the performance of FL and SFL
varied in different network configurations. For instance, with
8-edge-servers and 40 clients, SFL achieved 63.1% accuracy
after 100 iterations with ResNet18, while FL only reached
54.9%. With 12 MESs and 60 clients, FL outperformed SFL
with an accuracy of 61.9% compared to SFL’s 57.5%.

Using the same client and MES count as in the CIFAR-10
evaluation, we tested HierSFL with MNIST and ResNet50 in
four scenarios. As shown in Fig. 3, HierSFL outperformed
FL, SFL, and HFL in accuracy across all scenarios, with a
maximum gain of 1.8% and a minimum of 0.8% after 100
iterations. It also showed faster convergence in most cases. In
terms of accuracy, HierSFL achieved 93.2%, 93.4%, 93.5%,
and 93.6%, while HFL came second with accuracies between
91.4% and 92.8%. FL and SFL recorded accuracies below
90% in all scenarios. This highlights that HierSFL and HFL
are the most effective methods for faster convergence. Fig.
4 compares convergence rates. In the 4-edge, 20-client setup
(Subplot A), HierSFL achieved the fastest convergence with
a 0.28 loss after 100 iterations. HFL followed closely with

Fig. 3. Fine-tuning MES and Client Numbers for Optimal MNIST
Accuracy.

a 0.52 loss, while SFL and FL had higher losses. In the
16-edge, 80-client configuration (Subplot B), HierSFL main-
tained its lead, with HFL close behind, further illustrating
their superior convergence rates.

Fig. 4. Loss values comparison of FL, SFL, HFL and HierSFL on MNIST
dataset.

Fig. 5. Impact of privacy budget ε on training accuracy and aggregation
time for HierSFL with 4 MESs and 20 clients.

In Fig. 5, we illustrated a prominent trade-off between
privacy, as quantified by the privacy budget ε, and the train-
ing accuracy of our HierSFL method on both CIFAR-10 and
MNIST datasets. The choice of ε values was deliberate, with
larger values (1, 2, and 5) selected for CIFAR-10 and smaller
values (0.1, 0.2, and 0.5) for MNIST. This distinction is
driven by the datasets’ characteristics; CIFAR-10, featuring

Accepted at IEEE Virtual Conference on Communications 2023

more intricate and sensitive image data, benefits from larger
ε values to enhance model accuracy. In contrast, the simpler
MNIST dataset requires stronger privacy protection, hence
smaller ε values. These ε choices facilitate meaningful com-
parisons within the field, underscoring the adaptability of our
method to diverse privacy needs. Notably, training without
LDP, where ε is not applied, achieves the highest accuracy
but comes at the expense of privacy. Inverting ε values could
lead to increased accuracy for CIFAR-10 at the expense of
privacy, while MNIST may favor privacy over accuracy due
to added noise. This understanding enhances meaningful
comparisons between HierSFL and other methods across
different privacy scenarios.

Performance Comparison with SFL and Hierarchical FL:
Comparing the training times of HierSFL, HFL, and SFL
using CIFAR-10 (Table I) and MNIST (Table II) datasets,
the tables list durations in seconds for 10, 15, 20, and 25
global aggregation rounds.

Table I
CIFAR-10 DATASET TRAINING DURATION (SECONDS).

Framework Global Aggregation Rounds
10 15 20 25

SFL 1735.06 2635.66 3258.83 3868.33
HFL 1724.14 2556.68 3105.96 3690.21

HierSFL 1680.51 2420.24 2924.11 3502.75

Table II
MNIST DATASET TRAINING DURATION (SECONDS).

Framework Global Aggregation Rounds
10 15 20 25

SFL 1635.21 2302.16 3012.83 3629.15
HFL 1620.74 2249.22 2983.35 3508.61

HierSFL 1510.35 2145.48 2745.51 3334.84

HierSFL consistently outperforms HFL and SFL in train-
ing speed for both CIFAR-10 and MNIST. The advantage
arises from HierSFL effectively balancing client workloads
and minimizing aggregation computations through MESs.
As the number of global aggregation rounds increases, the
differences in training times among HierSFL, HFL, and
SFL become more pronounced. For example, at 25 rounds,
HierSFL finishes training in 3502.75 seconds, while HFL
and SFL require 3690.21 and 3868.33 seconds, respectively.
This trend holds in MNIST as well, confirming that HierSFL
is a more efficient framework for training on these datasets.

IV. CONCLUSION

The paper has introduced a novel HierSFL framework
that has addressed challenges in MES and FL contexts,
assisting clients with limited resources in model training
participation. To achieve the goal of enabling clients with
limited resources to contribute to model training, HierSFL
has utilized multiple MESs for partial model aggregation

while minimizing the training time and energy consumption.
Empirical assessments have also revealed the framework’s
advantage over established two-layer FL architectures in
balancing communication and computing. Notably, LDP
was incorporated to enhance the confidentiality of local
model parameters during the synchronization process. For
the future work, adaptive privacy budgets are expected to be
integrated into HierSFL, reducing computational costs when
adding LDP noise to local client models.

REFERENCES

[1] T. Wang, H. Ke, X. Zheng, K. Wang, A. K. Sangaiah, and A. Liu, “Big
data cleaning based on mobile edge computing in industrial sensor-
cloud,” IEEE Trans. Ind. Informat., vol. 16, no. 2, pp. 1321–1329,
2019.

[2] S. Nath and J. Wu, “Deep reinforcement learning for dynamic com-
putation offloading and resource allocation in cache-assisted mobile
edge computing systems,” Intelligent and Converged Networks, vol. 1,
no. 2, pp. 181–198, 2020.

[3] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM 2018,
2018, pp. 63–71.

[4] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen,
“In-edge ai: Intelligentizing mobile edge computing, caching and
communication by federated learning,” IEEE Netw., vol. 33, no. 5,
pp. 156–165, 2019.

[5] A. Li, J. Sun, P. Li, Y. Pu, H. Li, and Y. Chen, “Hermes: an efficient
federated learning framework for heterogeneous mobile clients,” in
Proceedings of the 27th Annual International Conference on Mobile
Computing and Networking, 2021, pp. 420–437.

[6] Y. Deng, F. Lyu, J. Ren, Y. Zhang, Y. Zhou, Y. Zhang, and Y. Yang,
“Share: Shaping data distribution at edge for communication-efficient
hierarchical federated learning,” in 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), 2021, pp.
24–34.

[7] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp.
8485–8493.

[8] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Combining split and
federated architectures for efficiency and privacy in deep learning,”
in Proceedings of the 16th International Conference on emerging
Networking EXperiments and Technologies, 2020, pp. 562–563.

[9] X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learning: A
new hybrid split and federated learning approach,” IEEE Transactions
on Wireless Communications, 2022.

[10] Z. Yang, Y. Chen, H. Huangfu, M. Ran, H. Wang, X. Li, and
Y. Zhang, “Robust split federated learning for u-shaped medical image
networks,” arXiv preprint arXiv:2212.06378, 2022.

[11] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization
methods from a machine learning perspective,” IEEE Trans. Cybern.,
vol. 50, no. 8, pp. 3668–3681, 2019.

[12] P. C. M. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, and
M. Atiquzzaman, “Local differential privacy for deep learning,” IEEE
Internet Things J., vol. 7, no. 7, pp. 5827–5842, 2019.

[13] N. Wu, C. Peng, and K. Niu, “A privacy-preserving game model for
local differential privacy by using information-theoretic approach,”
IEEE Access, vol. 8, pp. 216 741–216 751, 2020.

[14] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentral-
ized data,” in Artificial intelligence and statistics. PMLR, 2017, pp.
1273–1282.

[15] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the conver-
gence of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189,
2019.

[16] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020-2020 IEEE International
Conference on Communications (ICC), 2020, pp. 1–6.

