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Abstract—Images having either the same or different modal-
ities can be aligned using the systematic process of image
registration. Inherent image characteristics including intensity
non-uniformities in magnetic resonance images and large homo-
geneous non-vascular regions in retinal and other generic image
types however, pose a significant challenge to their registration.
This paper presents an adaptive expectation maximisation for prin-
cipal component analysis with mutual information (aEMPCA-MI)
similarity measure for image registration. It introduces a novel
iterative process to adaptively select the most significant principal
components using Kaiser rule and applies 4-pixel connectivity
for feature extraction together with Wichard’s bin size selection
in calculating the MI. Both quantitative and qualitative results
on a diverse range of image datasets, conclusively demonstrate
the superior image registration performance of aEMPCA-MI
compared with existing MI-based similarity measures.

Index Terms—Principal component analysis.

I. INTRODUCTION

Registration of mono and multimodal images is a fun-
damental processing task for many computer vision and
imaging based applications [1], such as in registering human
brain and retinal images to assist in disease diagnosis and
treatment planning. Brain and retinal image registration (IR)
is particularly demanding due to the presence of inherent
artefacts such as intensity non-uniformities (INU) in magnetic
resonance images (MRI) [2] or the latent large homogeneous
non-vascular regions [3] in retinal images. These collectively
make the process of physically aligning a reference and
sensed (source) image to maximise some predefined similarity
measure (SM) [1] very challenging.

Various SM for IR have been proposed [1] which can be
broadly categorized according to whether they are based on
cross correlation, Fourier techniques and mutual information
(MI) [4]. MI exploits the statistical relationship between the
sensed and reference images and has been proven to be
computationally efficient and well-established in the medical
imaging domain [4]. It is however, very sensitive to interpo-
lation artefacts in the presence of INU and can be seriously
compromised when overlapping areas are small. In contrast,
regional MI (RMI) [5] uses neighbourhood region features
for MI by segmenting an image into several regions for

feature extraction, so reducing the influence of INU upon IR
quality. Its drawback however, is that it employs a covariance
matrix for entropy approximation and as region expands, so
commensurately does the computational complexity [5].

Recently, the expectation maximisation for principal com-
ponent analysis with MI (EMPCA-MI) algorithm [6] has been
shown to considerably lower the computational cost without
loss of IR performance for dissimilar imaging modalities of
the human anatomy [7]. It achieves dimensionality reduction
by iteratively computing the first principal component instead
of solving the complete covariance matrix as in conventional
principal component analysis (PCA) [8]. It has subsequently
been refined as modified EMPCA-MI (mEMPCA-MI) [9]
which uses 8-pixel and 4-pixel connectivity for rearranging
the neighbourhood data values to preserve both the spatial and
intensity information, thus leading to superior IR performance.
This gave the impetus to formalise the EMPCA-MI SM such
that, it is able to adaptively determine the most appropriate
number of principal components to represent prominent fea-
tures in a particular dataset.

Various approaches to selecting the best subset of significant
principal components have been proposed including Scree
Graph, Broken-stick and their variants [8], which choose
the subset by computing the cumulative variance of all
components. In contrast, the Kaiser Rule [8] retains only those
principal components whose eigenvalues are greater than one.
It considers the variables in the image data to be independent
and so their principal components are the same as variables,
having unity variance in the case of the correlation matrix. This
important attribute of the Kaiser Rule is image dependent [8],
so it can automatically determine the number of significant
principal components required to represent image features
for a prescribed accuracy. Furthermore, it is well suited
to EMPCA-MI since it iteratively determines the principal
components in descending order of eigenvalues. These two
distinct characteristics provided the motivation to incorporate
the Kaiser Rule into the EMPCA-MI framework.

This paper presents an adaptive EMPCA-MI (aEMPCA-
MI) SM which employs 4-pixel connectivity neighbourhood
region for pre-processing in combination with a Kaiser Rule
based, EMPCA computation of significant principal com-
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Fig. 1. (a) Registration Framework for the aEMPCA-MI algorithm. (b) Illustration of the pre-processing Step I with 4-pixel region connectivity for an image
pair size of 10 × 10 pixels.

ponents for both the reference and sensed images. These
respective components are then used to calculate the MI.
aEMPCA-MI enables better representation of image features
compared to the conventional EMPCA-MI [6] which only
used the first dominant principal component. Numerical and
qualitative results confirm aEMPCA-MI provides lower IR
errors in comparison with both EMPCA-MI and other SM
for a variety of test image datasets.

The remainder of the paper is as follows: Section II de-
scribes the principles of IR and introduces the new aEMPCA-
MI algorithm. Section III describes the experimental setup and
test image datasets used together with a critical results analy-
sis. Finally, Section IV provides some concluding comments.

II. ADAPTIVE EMPCA-MI BASED IMAGE REGISTRATION

A. IR Principles

IR is a multistage process which seeks to align a sensed
image IS with a reference image IR [1] and generally involves
the following key steps: i) transforming the coordinates of IS
with known transformation parameters in a given reference
space; ii) generating a new interpolated source image I?S in
the reference space; iii) comparing I?S with IR using a SM;
and iv) optimising the transformation parameters sequentially,
to attain the best possible alignment, where the SM value is
a maximum between the two images. The IR process for the
proposed aEMPCA-MI is visualised in Fig.1(a) and is detailed
in the following section.

B. aEMPCA-MI Similarity Measure

The new SM comprises three constituent steps (see
Fig.1(a)). It first pre-processes the neighbourhood information
for both IS and IR, before adaptively computing the principal
components, and finally calculating the MI.

1) Step I — Pre-processing: This derives a second-order
representation of the image grayscale values by using 4-
pixel connectivity neighbourbood as in [9]. This process
helps to retain the local spatial neighbourhood relationship
rather than pixel values as in [6], which leads to distinctive
repetitive patterns. To illustrate this, consider the example of
IR in Fig.1(b), for a sliding window of radius r with c-pixel
connectivity in neighbourhood B (with r=1 and c=4). The
resulting ith element, where 1 ≤ i ≤ c+1 of single dimension
vector B∗ of length c+1, can be expressed as:

B∗i =

{
Bi −B c

2+1 if i ≤ c
2 + 1 and i > c

2 + 1
Bi if i = c

2 + 1
(1)

Each column vector B∗ now represents the differential value
of c connected pixels with respect to the centre pixel B c

2+1.
These vectors are concatenated as QR with dimensions d × N
where d represents the dimensional space i.e., d=c+1 in the
example in Fig.1(b) and N is the number of pixels scanned
(excluding the boundary pixels). Similar preprocessing step
are performed on I?S to generate QS .

2) Step II — Compute aEMPCA: This dimensionality
reduction step for QR and QS uses Kaiser Rule [8] to
adaptively find the significant principal components using EM-
PCA [6]. The flowchart in Fig.1(a) shows how the aEMPCA
algorithm adaptively computes and retains the first p principal
components from QR having eigenvalue λp > 1 (similarly
compute p’ components for QS). These components are
then concatenated as XR and XS respectively. The order of
computational complexity for aEMPCA is O(Npr2) which
given that N � p, r is the same as that incurred by EMPCA
i.e. O(N), though due to the iterative nature of the algorithm its
overall time overhead will tend to be slightly higher. Note that
when p=1, EMPCA [6] becomes a special case of aEMPCA.

3) Step III — Compute MI: This final step determines
the MI [4] between the highest number of common principal
components in both XR and XS of the reference and sensed



TABLE I
DATASET PARAMETERS

Dataset Resolution (pixels) INU Noise(β)
MRI T1 (T1) [181 × 217 × 181] α20=20% INU Gaussian
MRI T2 (T2) [181 × 217 × 181] α40=40% INU (µ=0.01,

Lena (L) [256 × 256]
Z(x,y)=

1

3.2
(x+ y)

and
Baboon (Bb) [256 × 256] σ2=0.01)
Fundus (F) [3888 × 2592]

- -
SLO (SLO) [768 × 768]

images. The Wichard approach [10] has been used to select
the best bin size in computing the individual and joint
probabilities, since it exploits the kurtosis measure of the data
distribution rather than applying the traditional fixed bin-size
approach for accurate MI computation [11].

III. EXPERIMENTAL EVALUATION

A. Experimental Setup and Datasets
A series of IR experiments were undertaken to analyse the

comparative performance of the aEMPCA-MI on a range of
diverse image datasets. Multimodal MRI T1 and T2 datasets
from the BrainWeb database [12] were chosen due to their
challenging INU and noise artefacts with the corresponding
parameter details being defined in Table I. To reflect the
broad range of IR applications and evaluate the robustness
of aEMPCA-MI, the well-known Lena (L) and Baboon (Bb)
images were used in combination with an INU function [6],
and additive Gaussian noise. In addition, a clinical monomodal
retinal colour Fundus (F) IR was performed followed by
multimodal F and Scanning Laser Ophthalmoscope (SLO)
IR. These retinal images are inherently characterised by non-
uniform illumination and large homogeneous non-vascular
regions which render them especially challenging for IR,
though neither INU nor noise was added to the retinal datasets
because they are not prominent in the acquisition process
[3]. Various IR experiments using the aforementioned datasets
were conducted and classified into six Scenarios as shown in
Table II. The transformation model consisted of (X, Y, θ, S),
where X and Y are the respective translations along the x and
y axis, θ is the rotational motion and S is a scaling factor.

In Scenarios 1 — 4, S=1 so ∆S=0, while in Scenarios 5
and 6, since these involve retinal images, the magnification
changes can result from using different equipment or the
motion in the direction of the optical axis which can vary
the value of S. To establish the requisite ground truth, all
images were mis-registered by a known transformation, with
the original images then being considered as IS . The (X, Y,
θ, S) settings where the aEMPCA-MI is a maximum are then
considered the best image alignment.

To critically analyse the IR performance, the percentage
registration error (RE) [1] between the initial and final value
for each parameter was determined. In order to equitably
reflect the computational time incurred for each SM, the
corresponding average run time (ART) was calculated for
every IR iteration. The RE performance of aEMPCA-MI was
evaluated against four existing MI-based SM for six Scenarios,
with the results displayed in Table II, where all parameter
settings are kept constant for each SM, except the adaptive
number of principal components in aEMPCA-MI. The IR
process used partial volume interpolation along with Powell’s
optimization method [1]. All experiments were performed on
Ubuntu 10.04 with 2.93 GHz Intel Core and 3GB RAM, and
the assorted algorithms were all implemented in MATLAB.

B. Result Discussion

To clarify the nomenclature adopted in Table II; T1+α20

for example, represents a MRI T1 image slice with 20%
INU, while Bb+Z+β is the Baboon image with INU and
Gaussian noise artefacts. For aEMPCA-MI, the corresponding
p value is displayed alongside the IR errors and signifies
the number of adaptively determined principal components.
Fig.2(a) displays the ART for three Scenario groups and while
the ART is resource dependent, it is still an insightful time
cost metric. The RE results confirm that the new aEMPCA-MI
algorithm provides superior IR in all six Scenarios, including
the challenging Scenario 6. For example, a significantly lower
RE is observed for aEMPCA-MI in Scenario 2 for T1+α40+β
with T2 with a percentage RE of (8.72, 2.95, 0.51, 0.00)
contrasting with both EMPCA-MI [6] (9.70, 4.30, 0.62, 0.00)

TABLE II
REGISTRATION ERROR FOR SIX SCENARIOS, WHERE ∆S=0 FOR SCENARIOS 1 - 4.

Scen.
IR IS

MI [4] RMI [5] EMPCA-MI [6] mEMPCA-MI [9] aEMPCA-MI
No. (r=1) (r=1) (4-pixel, r=1) (r=1)

∆X, ∆Y, ∆θ, ∆S ∆X, ∆Y, ∆θ, ∆S ∆X, ∆Y, ∆θ, ∆S ∆X, ∆Y, ∆θ, ∆S p ∆X, ∆Y, ∆θ, ∆S

1

T1+α20

T1

9, 6.0, 0.5, 0.00 5.20, 4.00, 0.44, 0.00 2.00, 1.30, 0.36, 0.00 1.12, 0.93, 0.21, 0.00 2 1.02, 0.90, 0.18, 0.00
T1+α40 10, 8.3, 0.7, 0.00 6.20, 5.30, 0.50, 0.00 4.50, 4.00, 0.42, 0.00 2.96, 3.04, 0.32, 0.00 3 2.25, 2.89, 0.27, 0.00

T1+α40 + β 13, 16, 0.9, 0.00 10.5, 13.3, 0.60, 0.00 8.00, 10.0, 0.58, 0.00 7.45, 9.28, 0.46, 0.00 3 7.19, 9.21, 0.42, 0.00

2

T1+α20

T2

11, 8.3, 0.5, 0.00 7.00, 7.00, 0.48, 0.00 2.60, 2.60, 0.42, 0.00 1.93, 1.71, 0.32, 0.00 2 1.80, 1.51, 0.29, 0.00
T1+α40 12, 9.6, 0.7, 0.00 8.00, 9.00, 0.57, 0.00 4.80, 4.60, 0.62, 0.00 3.98, 4.10, 0.43, 0.00 2 3.62, 3.92, 0.41, 0.00

T1+α40 + β 14, 19, 1.8, 0.00 14.0, 19.3, 0.58, 0.00 9.70, 4.30, 0.62, 0.00 8.99, 3.11, 0.56, 0.00 4 8.72, 2.95, 0.51, 0.00

3
L+ Z

L
0.4, 0.5, 0.2, 0.00 0.20, 0.38, 0.21, 0.00 0.20, 0.32, 0.21, 0.00 0.16, 0.24, 0.17, 0.00 3 0.15, 0.23, 0.13, 0.00

L+ Z + β 14, 19, 0.4, 0.00 9.00, 13.6, 0.24, 0.00 2.00, 5.33, 0.21, 0.00 1.93, 5.26, 0.19 , 0.00 4 1.91, 5.23, 0.18, 0.00

4
Bb+ Z

Bb
12, 3.5, 0.2, 0.00 0.60, 1.06, 0.21, 0.00 0.45, 0.70, 0.21, 0.00 0.30, 0.60, 0.16, 0.00 3 0.28, 0.59, 0.14, 0.00

Bb+ Z + β 13, 17, 0.3, 0.00 2.00, 2.60, 0.20, 0.00 1.40, 1.50, 0.23, 0.00 1.20, 1.22, 0.20, 0.00 4 1.15, 1.22, 0.19, 0.00
5 F F 1.2, 1.8, 0.6, 0.2 0.12, 0.16, 0.32, 0.21 0.11, 0.13, 0.17, 0.14 0.10, 0.12, 0.16, 0.13 2 0.10, 0.10, 0.13, 0.10
6 F SLO 2.1, 1.9, 0.8, 0.5 0.32, 0.41, 0.49, 0.42 0.29, 0.37, 0.41, 0.39 0.25, 0.34, 0.38, 0.37 2 0.22, 0.31, 0.36, 0.34
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and mEMPCA-MI [9] (8.99, 3.11, 0.56, 0.00). This is due to
aEMPCA-MI using 4-pixel neighbourhood and p=4.

Conversely, both EMPCA-MI and mEMPCA-MI use just
a single principal component, which can in certain circum-
stances limit the IR accuracy. This performance improvement
for aEMPCA-MI however, is counterbalanced by a slower
ART of 174ms due to its iterative nature as compared with
152ms and 95ms for EMPCA-MI and mEMPCA-MI respec-
tively. Similar RE trends are evident in the Lena, Baboon and
retinal datasets with aEMPCA-MI again consistently outper-
forming the comparators, due to more principal components
being used in the MI computation, which ultimately leads to
enhanced IR.

Particularly noteworthy is the IR performance of aEMPCA-
MI in the challenging Scenarios 5 and 6 where p=2 is
adaptively chosen due to the large homogeneous non-vascular
regions in the Fundus and SLO images, providing the lowest
RE in both Scenarios. Despite reducing the data dimension-
ality by using 4-pixel connectivity the performance offset for
this improved IR is the higher ART of 320ms because of the
high resolution of the Fundus images. A similar observation
on the computational cost is apparent in other Scenarios, as
an inevitable outcome of the adaptive process inherent in the
new aEMPCA-MI.

Fig.2(b) displays qualitative IR results using the checker-
board overlaying [1] technique for Fundus and Lena images.
The perceptual IR results for the F with SLO IR in Scenario
6 can be evaluated by checking the continuity of vessel
structures (colour enhanced for higher visibility) and similarly
with the positioning of the eyes for IR between L+Z+β with
L in Scenario 3 (with the ground truth in red) . These results
palpably validate that the new aEMPCA-MI consistently
provides superior IR and lower RE, while recognizing the
computational cost trade-off required to achieve the improved
IR robustness to INU, noise and large homogeneous features.

IV. CONCLUSION

This paper has presented an adaptive dimension to the
existing Expectation Maximisation for Principal Component
Analysis with MI (EMPCA-MI) similarity measure. Enhanced
IR performance for clinical and generic images exhibiting
a range of challenging features including INU, Gaussian
noise and large homogeneous regions confirms the efficacy
of the aEMPCA-MI algorithm. This is achieved by adaptively
incorporating more significant principal components with a
corresponding trade-off in terms of computational overheads.
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