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Abstract—In interactive multi-view streaming, neighboring
cameras acquire frames which are generally correlated. This
results in large amounts of highly redundant data, that makes
essential to handle properly the correlation during encoding
and transmission of the multi-view data. In this work, we
study coding and transmission strategies in multicamera sets,
where correlated sources need to be set to central server, to
be then delivered to interactive clients. We propose a dynamic
correlation-aware scheduling optimization of encoded packets
from correlated sources under delay and bandwidth constraints,
in order to enable effective navigation of the scene. A novel trellis-
based solution is proposed, providing us with a formal decoupling
of dependent from independent frames, thereby significantly
reducing the computation complexity. Simulation results show
the gain of the proposed algorithm when coding and scheduling
policy are dynamically optimized based on knowledge of network
and correlation model, compared to agnostic scheduling policies.

I. INTRODUCTION

Advances in interactive services and 3D television have

paved the road to the development of multi-camera capture

systems, in which multiple sources acquire, encode and trans-

mit correlated video information. To provide high quality nav-

igation to interactive clients, however, large storage/bandwidth

requirements are needed. Opportunistic resource allocation

strategies are essential in order to provide effective video

quality in resources constrained environments.

Resource allocation has obviously been addressed in single

view systems [1] or multi-view systems with joint encoders,

e.g., [2], but only a few works have studied the packet schedul-

ing problem in multi-camera systems. In [3], a spatial corre-

lation model has been proposed for static camera selection in

wireless sensor networks, while in [4], an adaptive correlation-

aware packet scheduling algorithm has been proposed, for a

simplistic independent view coding framework. In this work,

we overcome the main limitations of previous works and we

dynamically optimize the selection and scheduling of encoded

packets from correlated sources under delay and bandwidth

constraints, to enable effective reconstruction of scene from

any view that can be potentially requested by interactive users.

We are interested in a live-acquisition scenario in which

multiple cameras acquire frames from the same scene but from

different perspectives. Each camera acquires successive frames

of the scene and stores them in its short buffer in three different

encoded versions: intra-coded (or key frame), P frame (i.e.,

predictively encoded in time), and Wyner-Ziv (WZ) frame.

We assume that no content information is exchanged among

cameras due to the system settings or resource limitations,

which prevents the use of multiview video coding [5] to

encode the video information. The frames are then sent from

cameras to a central server through a bottleneck channel. Each

view can be sent to the server only before its deadline, which

is imposed either by camera buffer limitations or decoding

deadlines in the streaming application. A server gathers the

camera frames and eventually serves the clients requests. The

objective is obviously to maximize the amount of information

at the server. When the channel constraints do not permit to

send all captured views, it becomes important to optimize

the scheduling policy in such a way that the quality in the

reconstruction of the multi-camera data is maximized and both

bandwidth and time constraints are met.

We propose, a correlation-aware packet scheduling algo-

rithm for encoded packets for multi-camera streaming in

bandwidth-limited networks. We consider a correlation-based

rate distortion (RD) model that is specific to multi-camera

systems and we formulate a packet scheduling optimization

problem, aimed at minimizing the quality of the data available

at the server. Rather than being known a priori, the coding

structure is dynamically selected as result of the packet

scheduling optimization. In this way, we constantly adapt

the set of coded packets stored in the server to the channel

conditions as well as to the content information. To solve

the optimization problem, we propose a novel solving method

able to reduce the computational complexity by decoupling

dependent from independent encoded frames. This allows to

reduce the computational complexity, still reaching optimal-

ity of the solving method. Simulation results demonstrate

that the proposed dynamic scheduling algorithm outperforms

scheduling policies with static coding strategy and agnostic

transmission schemesd.

II. FRAMEWORK

We consider M cameras that acquire images and depth

information of a 3D scene from different viewpoints. At the

encoder side, each frame can be encoded as a key-frame

(i.e., as intra-coded frame) or predictive frames: P-frames

are predictively encoded from the same view but previously

acquired in time, while Wyner-Ziv (WZ) frames are coded with

distributed source coding (DSC) techniques using key-frames

of the same view as side information (SI).

At the receiver side, we target to have an almost constant

quality of the scene across space and time, in such a way that

a smooth interactive system can be offered to the user in ideal

conditions. Since we assume that the characteristics of each

frame are similar, we set an equal encoding rate RK for every

key frame which leads to a constant decoded quality d(RK).
Targeting the same distortion d(RK), the encoding rate of the



P and WZ frames depends on the level of correlation, ρ, they

have with the reference frames.

From the decoded key frame, the other frames might be

estimated at the receiver using depth-image based rendering

(DIBR) or motion compensation techniques. Typically, these

algorithms use depth or motion information in order to es-

timate by projection the position of pixels of the reference

frame in the estimated one. The projected pixels are generally

of good precision (depending on the accuracy of the depth

map and motion vector field) but do not cover the whole

estimated image, due to visual occlusions. We thus denote

by ρ(Ft,m|Fτ,l) the portion of the image Ft,m (m-th camera

at time t acquires the frame) that can be recovered (i.e.,

not occluded) by the key version of Fτ,l, which can be

neighboring in either the temporal or the spatial dimension.

For any acquired frame Ft,m, we define the set of possible SI

in spatial and temporal domain respectively as

NS(Ft,m) = {Ft,l s.t. ρ(Ft,m|Ft,l) ≥ βS , with l ∈ [1,M ]}

NT (Ft,m) = {Fτ,m s.t. ρ(Ft,m|Fτ,m) ≥ βT , with τ ≤ t}

where ρ(Ft,m|Fτ,l) is the level of correlation between Ft,m

and Fτ,l. In short, we consider as possible SI any frame

which have a level of correlation with Ft,m greater than a

threshold value β. We assume that WZ and P versions of Ft,m

predictively encoded from Fτ,l would have an encoding rate

of R(Ft,m|Ft,l) = [1− ρ(Ft,m|Ft,l)]R
K , where RK is the

encoding rate of every key frame. Thus, in our work in which

the worst case SI is considered, we have that each WZ and P

frame is encoded at a rate of

RWZ
t,m = max

Ft,l∈NS(Ft,m)

{
[1− ρ(Ft,m|Ft,l)]R

K
t,l

}
(1)

RP
t,m = max

Fτ,m∈NT (Ft,m)

{
[1− ρ(Ft,m|Fτ,m)]RK

τ,m

}
.

These rates allows every predictive frame to be decoded at a

distortion of d(RK) when both predictive frame and at least

one SI is available at the decoder.

Theoretically all views should be sent to a central server,

but network limitations might impose to send only a portion of

them. Missing images can be however reconstructed from de-

coded key frame available at the decoder, denoted by χχχ, using

DIBR warping of neighboring views or motion compensation

of past frames. 1 In that case, the distortion is equal to

Dt,m = ρ(Ft,m|χχχ) · d
(
RK

)
+ (1− ρ(Ft,m|χχχ)) · dmax (2)

where dmax is the maximum distortion at which occluded

areas are reconstructed (e.g., impainting distortion). The dis-

tortion model proposed above is used in our packet scheduling

optimization able to select the best set of DUs to be sent to a

central server, such that the expected distortion is minimized,

and the network constraints are met. We consider that each

encoded image at a given time instant from a particular camera

is packetized into multiple data units (DUs) (one per encoded

version and encoding rate), and stored in the camera buffer.

1The decoding process can be physically performed either at the central
server or at the clients. Our problem formulation can consider both cases.

We also assume lossless channels, such that scheduled packets

are available at the decoder, while missing frames are the not

scheduled ones. DUs representing the key versions contain

texture and depth information about the 3D scene, while WZ

or P versions DUs only send the encoded texture information,

since they will not be used to reconstruct missing views.

III. PACKET SCHEDULING OPTIMIZATION

At each transmission opportunity τ , the scheduler decides

the best set of DUs to schedule. Let Fl be a generic view,

acquired at TA,l and expiring at TTS,l.
2 The interactivity offered

to clients is captured by the camera popularity Pl, the portion

of clients that can request the frame Fl. We then define the set

of candidates for being sent at τ as L = {Fl s.t. TA,l ≤ τ ≤
TTS,l}. The encoded versions of views in L are candidate for

being scheduled, however we impose the following scheduling

constraints: i) only one version among WZ, P, and key of

the same view can be scheduled; ii) a predictive frame is

scheduled only if some SI frame is already available at the

decoder. Note that both channel conditions and content models

may vary over time, leading to different scheduling policy

at different transmission opportunities. Thus, the scheduling

policy is refined at each transmission opportunity.

For the sake of clarity, we now provide the problem formu-

lation for the case of three encoded frames per view. However,

the optimization holds also for more than three coded versions.

We define the scheduling policy as πππ = [πππ1,πππ2, . . . ,πππ|L|]
T

where πππl = [πl,1, πl,2, πl,3], with πl,1, πl,2, πl,3 being the

scheduling policy of respectively the key, WZ, and the P DU of

Fl. We can then express our optimization problem as follows

min
πππ

Dπππ =
∑

l:TA,l≤τ≤TD

PlDl(Fl|πππ) (3a)

s.t.
∑

i

πl,i ≤ 1, ∀l (3b)

∑

l

πl,1R
(K)
l + πl,2R

(WZ)
l + πl,rR

(P )
l ≤ C (3c)

πT
l,2 ≤

∑

Fl∈NS(Fl)

πl,1 (3d)

πT
l,3 ≤

∑

Fl∈NT (Fl)

πl,1 (3e)

where Eq. (3b) imposes that only one encoded version of

the same view is scheduled; Eq. (3c) imposes the bandwidth

constraint, and Eq. (3d) and Eq. (3e) force a predictive frame to

be scheduled only if at least one SI is available at the decoder.

Note that Dl is derived from Eq. (2) if Fl is not decodable,

and d(RK) otherwise.

What makes the scheduling optimization above challenging,

in terms of solving method, is the inter-dependency and the

redundancy that subsist among candidate DUs. The coding-

dependence is imposed by the coding structure and it is such

2We have dropped the subscript (t, m) in favor of a general subscript l.



Figure 1. Trellis-Based Solution.

that a predictive frame can be decoded only if all key frames on

which it depends can also be decoded. The reward-dependence

is rather coming from the correlation among neighboring key

frames. Since a key frame can help in the reconstruction of

missing ones, if correlated, the reward of scheduling a DU is

not known a priori, but it depends on the scheduling policy of

the correlated DUs.

Because of coding- and reward-dependence, the greedy

optimization in (3) cannot be solved by conventional opti-

mization frameworks. Solutions proposed in [1], [6] could be

adopted to optimize scheduling problem in the case of coding-

dependence, but they do not address the reward-dependence.

Although a formal scheduling optimization has been posed for

redundant DUs in [7], computational complexity remains an

open issue. A viable solution for reward-dependent DUs is

the trellis-based algorithm in [4], where a pruning-branches

technique for reducing the complexity is proposed. The prun-

ing is performed in such a way that only the most innovative

DUs (i.e., least correlated to the already scheduled frames) are

left as survivors. However, when DUs are not homogeneous

(i.e., not all key frames) the level of innovation can be not

comparable between key and predictive frames.

Thus, the solving method to optimize the scheduling policy

in multi-view systems is still a challenging problem. Here, we

propose a trellis-based solution which allows to reach optimal-

ity reducing at the same time the computational complexity.

The heterogeneity of the DUs enables us to express scheduling

rules in the trellis constructions. These rules provide us with

an elegant structure to decouple reward-dependent DUs (key

frames) from the reward-independent ones (predictive frames),

thereby significantly reducing the computation complexity.

IV. PROPOSED SOLVING METHOD

We start from an initial state S0, characterized by a set of

candidate DUs. We then construct a trellis, as depicted in Fig.

1, where each branch is an action (i.e., a DU scheduled). Let

A(Si,k) be the set of feasible actions that can be taken from the

node Si,k (i.e., set of possible DUs to schedule at Si,k), which

is the k-th among the nodes in the i-th column (corresponding

to i DUs scheduled). Each action has a cost (size of the

scheduled DU) and a reward in terms of distortion gain δ(ai),

Algorithm 1 OPT-p optimization

Init: Let Ap be the set of candidate predictive DUs. Let cl
and δ(al) be the transmission cost and reward, respec-

tively, of DU l ∈ Ap. Let Cp be the the available BW.

Solve:

Vopt : max
T ⊆Ap

∑

l∈T

δ(al) (5)

s.t.
∑

l∈T

cl ≤ Cp (6)

derived as difference of the distortion Dπππ with and without the

scheduling action ai. An action ai ∈ A(Si,k) taken from state

Si,k leads to a successor state Si+1,j and we denote this by

(Si+1,j |Si,k, ai). Each node Si,k is characterized by A(Si,k),
the value function Vi,k , and the remaining channel bandwidth

C(Si+1,j), evaluated as C minus the transmission cost of the

decisions taken along the path from S0 to Si,k. If the remaining

channel bandwidth is zero, the state is a final state. Moreover

A(Si,k) = Ap(Si,k)∪Ak(Si,k), where Ap(Si,k) and Ak(Si,k)
are the set of predictive and key candidate DUs, respectively.

The full-path (going from S0 to a final state) which leads

to the maximum distortion gain is the best set of DUs to be

scheduled. From the Bellman’s equations, the optimal solution

can be found by backward induction as follows

Vi,k = max
ai∈A(Si,k)

{δ(al) + V (Si+1,j(Si,k, ai))} . (4)

The problem is NP-hard and suffer of large computational

complexity. We then imposes the following rules

Rule 1: If ai is the scheduling of a predictive frame, then key

frames cannot be scheduled in any successor state.

This rule avoids to construct redundant branches that would be

pruned anyway, so optimality is still guaranteed. This is true

since the order of the actions does not matter since selected

DUs will be scheduled in the same transmission opportunity.

For example, in Fig. 1, scheduling 1K and then 3WZ leads

to the state S2,2, which is the same that can be reached by

scheduling 3WZ first and 1K after.

The ordered scheduling imposed by Rule 1 reduces redun-

dancy among branches, but more importantly it allows us

to separate reward-dependent DUs from reward-independent

ones. Then,

Rule 2: If ai schedules a predictive frame, then ai and all

successor states/actions are replaced by a single null action

branch, leading to a final state with state value function

Vopt(Si+1). The latter is the results of the OPT-p optimization

depicted in Algorithm 1.

Rule 2 allows to separate paths of predictive frames from the

key ones. Since all DUs in Ap are reward-independent, the

problem OPT-p can be easily solved by DP programming (e.g.

knapsack problem), reducing the computational complexity.



Figure 2. Trellis-Based Solution.

Hint on the proof of optimality: If ai schedules a predictive

frame, all future actions will schedule predictive frames only

(Rule 1), which are all reward-dependent. From state Si,k, the

action ai leads to the Si+1,j state, with a reward

Vopt(Si,k) = max
a
p

i
∈Ap(Si,k)

{δ(ai) + V (Si+1,j(Si,k, a
p
i ))}

= max
ai,ai+1

{δ(ai) + δ(ai+1) + V (Si+2,m(Si,j , ai, ai+1))}

= max
aaa







I∑

s=0

δ(ai+s) + V (Si+I,x(Si,j ,aaa))
︸ ︷︷ ︸

0







where aaa = [ai, ai+1, . . . ai+I ] is the action vector, Si+I,x is

the final state, and V (Si+I,x(Si,j ,aaa)) = 0 since all final states

in the original tree are set to 0. This leads to the optimization

problem in (5), proving the optimality of Rule 2. �

We can then conclude that the trellis solution in Fig. 1 is

equivalent to the one in Fig. 2, where only key frames can

be considered as actions and any final state has a equivalent

value function derived from the OPT −WZ,P algorithm.

V. RESULTS

Results are provided for a synthetic video sequence built

with realistic correlation models both in temporal and spatial

domain. We consider 16 views with a correlation model

substantially varying every 20 frames. This creates a dynamic

scene with a correlation model varying over time. At each

time opportunity, 3 key frames (or the equivalent in predictive

frames) can be scheduled in good channel conditions, while

only 2 in bad conditions. Also 1 frame is acquired and expired

every two transmission opportunities. Results are provided in

terms of mean PSNR, weighted by camera popularity. The

PSNR of the reconstructed scene is evaluated from the rate-

distortion model described in Sec. II. We consider d(R) =
µσ2 2−2R where R is the number of bits per pixels, σ2 is the

spatial variance of the frame and µ is a constant depending

on the source distribution.

Our optimization algorithm is compared with the following

baseline algorithms: i) “BL - Cont=0”: a priori selection of the

coding scheme with no information neither about the channel

nor about the correlation; ii) “BL - Cont=1”: a priori selection

of the coding scheme with no information about the channel

but with information about the correlation; iii) “Toni et al.”,

scheduling optimization of only key frames introduced in [4].

20 40 60 80

23

24

25

Frame nr

P
S

N
R

 

 

proposed
BL−Cont=0
Toni et al.

(a) ρS = 4 and ρT = 0. Static
channel

0 0.5 1 1.5 2
22

23

24

25

ρ
T

P
S

N
R

 

 

proposed
BL−Cont=1
BL−Cont=0
Toni et al.

(b) ρS = 4 for dynamic chan-
nel.

Figure 3. Mean PSNR results for different scenarios.

In Fig. 3(b), the mean PSNR (average over views) vs frame

index is depicted for the case of static channel (always good

channel conditions are experienced) and ρS = 4 and ρT = 0 in

the video sequence. Introduction of obstacles in the synthetic

sequence is experienced every 20 frames. It can be observed

that the proposed method is always able to outperform baseline

algorithms.

In Fig. 3(b), we rather show the mean PSNR (averaged also

over time) for a case of dynamic channel, in which at each

transmission opportunity the channel has a 0.8 probability of

changing state (from good to bad and viceversa). Also in this

case we can see that the proposed solution is the best one.

VI. CONCLUSIONS

We have studied coding and scheduling strategies of re-

dundant correlated sources in a multi-camera system. We

have proposed a dynamic packet scheduling algorithm, which

opportunistically optimizes the transmission policy based on

the channel capacity and source correlation. Because of reward

and coding dependence, conventional solving methods cannot

be adopted in our work. We have then proposed a novel

trellis-based solving method, able to decouple dependent and

independent DUs in the trellis construction, reduces then

the computational complexity but still reaching optimality.

Simulation results have demonstrated the gain of the proposed

method compared to classical resource allocation techniques.
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