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Abstract— 3D sensing and content capture have made 

significant progress in recent years and the MPEG 

standardization organization is launching a new project on 

immersive media with point cloud compression (PCC) as one key 

corner stone. In this work, we introduce a new binary tree based 

point cloud content partition and explore the graph signal 

processing tools, especially the graph transform with optimized 

Laplacian sparsity, to achieve better energy compaction and 

compression efficiency. The resulting rate-distortion operating 

points are convex-hull optimized over the existing Lagrangian 

solutions. Simulation results with the latest high quality point 

cloud content captured from the MPEG PCC demonstrated the 

transform efficiency and rate-distortion (R-D) optimal potential of 

the proposed solutions. 

 

Index Terms— Point cloud compression, Graph transform, 

Binary tree, Laplacian sparsity, Lagrangian optimization 

I. INTRODUCTION 

With the rapid development of 3D data acquisition 

technologies, point clouds are becoming an effective way to 

express the surfaces of 3D objects and scenes [1]. Compared 

with traditional 2D images and videos, point clouds are usually 

unorganized distributed in 3D space without structured grids, 

and different point cloud frames may have different number of 

points. Considering the huge amount of data and band-limited 

networks, point cloud compression has been becoming a 

critical and challenging research topic. 

There have been some work on point cloud compression. 

Motivated by 3D mesh coding in [2], [3] applied octree 

structure for point cloud compression. Later, [4] presented a 

generic scheme with octree for progressive point cloud coding. 

[1] extended octree for dynamic point cloud compression. 

Octree partition is an effective way for point cloud geometry 

coding, however, for attribute compression, it cannot exploit 

the correlation among points well [5].  

To solve this problem, Zhang et al. in [6] constructed graphs 

at a certain level of octree and use graph transform to encode 

point cloud attributes. The transform scheme had better 

performance over traditional DCT that reported significant 

improvement in point cloud compression. The way to construct 

the graph would create many isolated sub-graphs when point 

cloud is sparse. To tackle the problem, [7] used K-nearest-

neighbor (KNN) method to connect more distant points in a 

graph. However, the KNN graph is not guaranteed to construct 

all points of a block in one graph, thus it maybe not an efficient 

way to reduce sub-graphs. Ricardo et al. proposed the region-

adaptive hierarchical transform (RAHT) for attribute 

compression, but graph transform outperforms RAHT in many 

tests from results in [8]. Rufael et al. mapped the color 

attributes to a JPEG grid and used the existing JPEG codec for 

color compression [5]. It would be more computationally 

efficient than graph transform, but may not be better on 

compression performance. Graph transform is current the state-

of-the art on compression performance for attribute coding, but 

it still exists some issues, such as the sub-graphs. 

In this paper, we propose an optimized scheme of graph 

transform on point cloud attribute compression. It is assumed 

that point clouds have been geometry compressed based on 

octree. K-dimension (k-d) tree partition is applied to split all 

points evenly into transform blocks. We connect all points to 

form a graph in each transform block and the edge weights are 

optimized by two trained parameters, which influence the 

Laplacian sparsity on the adjacency matrix for graph transform. 

A Lagrangian rate-distortion optimization (RDO) is utilized to 

specify the quantization mode. Experimental results 

demonstrate that our method has better transform efficiency 

and R-D performance than traditional DCT based method. 

The rest of this paper is organized as follows. The details of 

the proposed method are explained in Section II. In Section III, 

we present some experimental results to evaluate the proposed 

scheme. Finally, we conclude in Section  IV. 

II. PROPOSED METHOD 

The reference software solution of the MPEG PCC adhoc 

group [9] is based on octree for geometry compression and the 

coordinates of points can be reconstructed at the decoder. 

Inspired by this scheme, we assume the geometry is coded via 

separate pipeline and we code attributes as graph signals on the 

reconstructed geometry. The optimization mechanism is 

mainly embodied in the partition of transform blocks, 

Laplacian sparsity optimization for graph transform and the 

selection of quantizing mode. 

A. Point Cloud Partition via K-d Tree 

K-d tree is a binary data-partitioning tree for organizing 

points in a k-dimensional space [10]. It represents a hierarchical 

subdivision of space using splitting hyperplanes that are 

perpendicular to the corresponding axes. While building the  



                
(a)                            (b)                                 (c) 

Fig. 1: (a) Example of a sparse point cloud. (b) Octree 

partition. (c) K-d tree partition. 

 

k-d tree, choice of the dimensions to split and the splitting 

points are two major factors affecting the data structure [11].  

For the choice of dimensions, one method chooses the 

dimension in a round-robin fashion and another chooses the 

widest spread dimension. About the selection of points as 

splitting nodes, one method uses the midpoint of the dimension 

width as the splitting point and another chooses the median 

point. The former divides the dimension into two parts with 

equal width while the latter makes the number of points almost 

equal in two parts. 

Octree is another common space decomposition tree in point 

clouds. For attributes compression, some previous work 

applied octree to get transform blocks and construct a graph for 

each block [6] [7]. The number of points in each block is almost 

different, even to be zero. It would result in too many isolated 

sub-graphs if the point cloud is sparse. Therefore, we develop 

the median-based k-d tree to divide points along the widest 

spread dimensions for blocks partition. The widest spread 

dimension represents that points in this dimension are of 

weaker correlation and the median-based partition makes the 

number of points in each k-d tree nodes almost the same. 

Comparison of octree and k-d tree partition for a sparse point 

cloud is shown in Fig. 1. 

The main advantage of the k-d tree scheme over octree is that 

it can represents a hierarchical block structure with 

approximate the same number of points that lends itself to the 

subsequent transform coding pipeline. Once the k-d tree depth 

d is determined, the number of points in transform blocks are 

determined. K-d tree avoids creating empty blocks and sub-

graphs, which is significate for further graph transform. 

B. Laplacian Sparsity Optimization for Graph Transform 

Graphs are natural representations of 3D irregular point clouds. 

Comparing with the JPEG grid in [5], graphs preserve more 

underlying information about the real 3D structure and the 

correlations among points. Compared with DCT, graph 

transform is a more data-adaptive method for reducing the 

spatial redundancy of attribute information.  

After k-d tree partition in the point cloud, we form a graph 

by connecting all points with edges for each transform block. 

A simple graph is formed as in Fig. 2 (a). Define the graph as 

G = (v ={ n1, n2, n3, n4, n5 }, ε), ni represents the node in the  

 

  

  

  

  

  

 
(a)                                         (b) 

Fig. 2: (a) Example of a graph in a transform block. (b) An 

adjacency matrix for the graph. 

 

graph G and ε represents the sets of edges. The edge weight 

between two nodes ni and nj is: 

𝜔𝑖,𝑗 = {𝑒
−
||𝑛𝑖−𝑛𝑗||2

2

𝜎2 ,            𝑖𝑓 || 𝑖 −  𝑗|| 
 ≤ 𝜏;

0       ,            𝑒𝑙𝑠𝑒,                 
          (1) 

where 𝜎  denotes the variance of graph nodes and 𝜏  is the 

Euclidean distance threshold between two nodes. The 

adjacency matrix 𝑊 describing the node edge weights for the 

graph is represented in Fig. 2(b). This pair of parameters (𝜎,𝜏) 

affects the Laplacian sparsity on the matrix𝑊 . The degree 

matrix reflecting the correlation density around points is 

defined as a diagonal matrix 𝑆 = 𝑑𝑖𝑎𝑔(𝑠 ,…,  𝑠 ) , whose 

element  𝑠𝑖 is the sum of elements in 𝑖th row of 𝑊. 

We choose the graph Laplacian matrix 𝐿 as the graph shift 

operator and get the eigen-decomposition of L: 

𝐿 = 𝑆 −𝑊,                                       (2) 

𝐿 =  𝐴 Λ 𝐴− ,                                     (3) 

where 𝐴 is the eigenvector matrix used as the transform matrix 

and 𝛬  is a diagonal matrix including eigenvalues of L. The 

performance of graph transform is closely relevant with the 

Laplacian matrix 𝐿, which is associated with the parameters 𝜎 

and 𝜏 in Equation (1). However, current work usually adopt 

fixed values to set (𝜎,𝜏 ) [7] [12]. 

To get better performance, we proposed two methods based 

on online training and offline training respectively to optimize 

𝜎 and 𝜏. For the better training efficiency, we limit the value 

range of parameter to (0, 1). We set the following variable 𝑓 

and 𝑡 to represent 𝜎 and 𝜏: 

𝑓 = 𝑒
−
𝑑(𝑛𝑖,𝑛𝑗)

𝜎2  ,                                   (4) 

𝑡 = 𝑒
−
𝑑(𝑛𝑖𝑛𝑗)

𝜎2  ,                                    (5) 

where 𝑑( 𝑖 ,  𝑗) means average distance between two points in 

the block and 𝑑( 𝑖 𝑗) means the distance between  𝑖 and  𝑗. 

The two training methods are one-pass processing. For 

online training, we select randomly several transform blocks 

from the point cloud and traverse the value range to find 

optimum fo and to, which make the performance of graph 

transform reach the best. Afterward, fo and to are adopted for 



the following transform blocks. In offline training processing, 

some typical point clouds except the one to be processed are 

chosen to be training datasets. We get empirical values fo and to 

on those datasets and adopt them to process current point cloud. 

Online training may get better compression performance 

than offline training, however, it is impractical to apply it in 

real-time applications, since it needs to pass all parameters to 

the decoder and has longer time delay. Instead, offline training 

has comparable performance without overhead for passing 

parameters. Therefore, we choose offline training method. 

C. Rate-Distortion Optimization with Lagrangian Method 

Laplacian optimized graph transform gives us the signal 

adaptive energy compaction transform that presents residual 

coefficients for the quantization and entropy coding. We use 

different quantization mode by preserving different dimensions 

and zeroing out the others in the residual matrix, thus result in 

different R-D performance. To solve the trade-off problem 

between bitrate and distortion, to obtain the convex-hull 

optimal quantization mode, we apply the standard Lagrangian 

method, which is widely accepted in video coding RDO. 

For example, a point cloud contains M transform blocks and 

each transform blocks includes N points, that is, each graph in 

a block has N nodes and the size of graph transform matrix 𝐴 

is 𝑁 × 𝑁. We define Y component for the point cloud as the 

matrix Y with 𝑀 ×𝑁 dimensions. The residual matrix 𝐶 after 

graph transform is: 

𝐶𝑀×𝑁 = 𝑌𝑀×𝑁 ∗ 𝐴𝑁×𝑁 .                            (6) 

Most coefficients in the residual matrix are small, especially 

on the high dimensions. For lossy point cloud compression, 

neglecting a part of high-frequency coefficients is a reasonable 

and efficient strategy. Keeping the first x dimensions in residual 

matrix C and zeroing out the other dimensions, we can get 

quantized residual matrix𝐵(𝑥), defined as: 

𝑏𝑖,𝑗 = {
𝑐𝑖,𝑗 ,            𝑖𝑓 𝑗 ≤ 𝑥;

0,                  𝑒𝑙𝑠𝑒.
                             (7) 

Different choice of x means different quantization modes, 

which may lead to different bitrate 𝑅(𝑥) and distortion 𝐷(𝑥). 
Our goal is finding a suitable dimension 𝑥𝑠 to get better R-D 

performance, which is expressed as: 

𝑥𝑠 = arg 𝑚𝑖 𝐷(𝑥), 𝑠. 𝑡.  𝑅(𝑥) ≤ 𝑅𝑚𝑎𝑥,          (8) 

where 𝑅(𝑥) is the bitrate after the quantization and 𝐷(𝑥) is the 

sum of absolute difference (SAD) or the sum of square 

difference (SSD).  

A Lagrangian multiplier 𝜆  is introduced to relax the 

constraints in Equation (8) and then obtain the following 

Lagrangian function[13]: 

𝐿(𝑥) = 𝐷(𝑥) +  𝜆 × 𝑅(𝑥).                        (9) 

The goal is finding optimum 𝑥𝑜 to make the value of 𝐿(𝑥) 
minimum. Refer to the RDO schemes in traditional video 

coding [13], the Lagrangian multiplier 𝜆  has the following 

relation with the quantization parameter (QP): 

𝜆 = 𝑚 × 2𝑄𝑃/6 ,                                 (10) 

TABLE I 

COMPARISION OF R-D PERFORMANCE ON FOUR DATASETS 

 

Testing Datasets 

Proposed Method PCC(DCT-based) 

Y-PSNR 

(dB) 

Bitrate 

(bpp) 

Y-PSNR 

(dB) 

Bitrate 

(bpp) 

1.  longdress_vox10_1051 33.65 0.89 32.56 2.76 

2.  loot_vox10_1000 35.18 0.29 37.81 1.41 

3.  redandblack_vox10_1451 34.38 0.55 36.1 1.54 

4.  soldier_vox10_0537 36.02 0.46 35.71 1.99 
 

     
(a)                                             (b) 

Fig. 3 (a) Comparison of transform residual variance between 

proposed method and DCT on testing 1. It implies the entropy 

compaction comparison after the transform. (b) Comparison of 

transform efficiency between proposed method and DCT with 

20 dimensions kept in 50 transform blocks of testing 1. 

 

where m is a constant need to be trained by experiments. The 

Lagrangian multiplier 𝜆 is only affected by QP, that is, once QP 

is determined, the optimal quantization mode with the lowest 𝐿 

would be selected. 

III. EXPERIMENTAL RESULTS 

We have conducted many tests using frames extracted from 

8i dynamic point cloud datasets [14]. We used frames  

“longdress_vox10_1300.ply”, “redandblack_vox10_1550.ply” 

“loot_vox10_1200.ply”, and “soldier_vox10_0690.ply” as the 

training datasets, for which the number of points is 857966, 

757691, 805285 and 1089091, and the k-d tree depth d is 13, 

12, 12 and 13, respectively. We used four testing frames shown 

in Table 1. We converted the RGB attributes to YCbCr color 

space and used the luminance Y as the attribute to be coded.  

The number of points in each transform block was limited to 

the empirical range (100, 200), considering the compression 

performance and the computation complexity. We acquired the 

optimum parameters fo = 0.3 and to = 0.6 through the offline 

training. To select a better quantization mode, we tried m in 

Equation (10) with some values commonly used in traditional 

video coding [15] and finally get the trained m=0.85 for 

Lagrangian optimization. Then we used a simple arithmetic 

encoder by assuming the residual coefficients with a zero-mean 

Laplacian probability distribution [6]. After the training, we 

adopted these trained parameters for testing.  

The testing R-D performance comparison with Rufael’s PCC 

software [5] based on DCT is shown in Table 1. For all tests, 

our proposed scheme outperforms DCT. For example, for a  

luminance peak signal-to-noise ratio (PSNR) on testing 4 

around 36dB, DCT based method need around 1.99 bits per 

point (bpp), while our encoder requires less than 0.46 bpp. That 

is, the coded bitstream by DCT based encoder is more than 4 

times larger than that coded by the proposed encoder. 
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Fig. 4 Compression performance (in dB) vs. bitrate (in bpp) on 

testing 1, using the proposed encoder and DCT based encoder 

with five quantization mode at QP=8, 16, 32, 48, 64, 80, 96. 

 

For testing 1 with 765821 points, we set d=12. There are 

4096 transform blocks and each block has 186 or 187 points. 

Comparison of entropy compaction and transform efficiency 

between optimized graph transform and DCT is shown in Fig. 

3. As we know, the differential entropy for a Laplacian 

probability distribution variable is directly associated with the 

Laplacian scale parameter ∆ . In video coding, ∆  has an 

underlying relationship with the variance of transform residuals. 

Based on this, Fig. 3(a) represents the comparison of entropy 

compaction efficiency. It tells us that, as keeping same 

dimensions for graph transform and DCT, the former preserves 

more information entropy than DCT. When the transform 

residuals are ranked in a decreasing order of their absolute 

values [15], calculating the ratio of the sum of several the 

largest coefficients in the sum of all coefficients is another 

method to evaluate transform efficiency. We kept the first 20 

dimensions in 50 transform blocks and the results are shown in 

Fig. 3(b). It presents that the optimized graph transform has 

better transform efficiency over DCT in the blocks.  

R-D performance for testing 1 is shown in Fig. 4. Five 

different quantization modes (x=4,8,16,32,64) with seven QP 

for uniform quantization are applied. From the results, we can 

see that optimized graph transform significantly outperforms 

DCT at all quantization modes and the PSNR difference can be 

up to 1-3 dB at the same bitrate. The Lagrangian optimization 

at QP=8 is presented in Fig. 5. It illustrates the processing of 

operating points convex-hull optimization when the maximum 

bitrate is given. The quantization mode x=32 is determined as 

the best mode, which is consistent with the results in Fig. 4.  

IV. CONCLUSIONS 

In this paper, we presented an optimized graph transform 

based scheme for point cloud attribute compression. We 

optimize the partition for transform blocks to avoid sub-graphs 

with k-d tree, optimize the Laplacian sparsity for graph 

transform performance using offline training and optimize the  

quantization mode selection by Lagrangian RDO. The 

experimental resultsshowed a significate improvement on 

transform efficiency and R-D performance. In future work, we  
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Fig. 5 Lagrangian optimization at QP=8 on testing 1 when 

𝑅𝑚𝑎𝑥 is given as 0.7 bpp. 

 

plan to do attribute intra and inter prediction based on k-d tree 

and use our approach for dynamic 3D point cloud sequences. 
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of 3D Point Clouds via Graphs,”  arXiv preprint arXiv:1702.06397v1. 
[13] T.  Wiegand, H.  Schwarz, A.  Joch, F.  Kossentini, and G.  J.  Sullivan, 

“Rate-constrained coder control and comparison of video coding 

standards,” IEEE Trans. CSVT, vol. 13, pp. 688–703, July 2003. 

[14] E. d’Eon, B. Harrison, T. Myers, P. A. Chou, “8i Voxelized Full Bodies, 

version 2–A Voxelized Point Cloud Dataset,” document MPEG 

2017/m74006, ISO/IECJTC1/SC29/WG11 Geneva, January 2017. 

[15] Y. Yuan, I.-K. Kim, X. Zheng, L. Liu, and X. Cao, “Quadtree based non-

square block structure for inter frame coding in HEVC,” IEEE Trans. 
CSVT, vol. 22, no. 12, pp.1707–1719, Dec. 2012. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
18

20

22

24

26

28

30

32

34
Rate-distortion for GT and DCT

Bits per point(bpp)

Y
 P

S
N

R
(d

B
)

 

 

x=4 DCT

x=4 GT

x=8 DCT

x=8 GT

x=16 DCT

x=16 GT

x=32 DCT

x=32 GT

x=64 DCT

x=64 GT


