
Attribute Compression of 3D Point Clouds Using

Laplacian Sparsity Optimized Graph Transform

Yiting Shao1, Zhaobin Zhang2, Zhu Li3, Kui Fan4, Ge Li5

School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School
1ytshao@pku.edu.cn, 4kuifan@pku.edu.cn, 5gli@pkusz.edu.cn

Computer Science & Electrical Engineering Department, University of Missouri – Kansas City,
2zzktb@mail.umkc.edu, 3zhu.li@ieee.org

Abstract— 3D sensing and content capture have made

significant progress in recent years and the MPEG

standardization organization is launching a new project on

immersive media with point cloud compression (PCC) as one key

corner stone. In this work, we introduce a new binary tree based

point cloud content partition and explore the graph signal

processing tools, especially the graph transform with optimized

Laplacian sparsity, to achieve better energy compaction and

compression efficiency. The resulting rate-distortion operating

points are convex-hull optimized over the existing Lagrangian

solutions. Simulation results with the latest high quality point

cloud content captured from the MPEG PCC demonstrated the

transform efficiency and rate-distortion (R-D) optimal potential of

the proposed solutions.

Index Terms— Point cloud compression, Graph transform,

Binary tree, Laplacian sparsity, Lagrangian optimization

I. INTRODUCTION

With the rapid development of 3D data acquisition

technologies, point clouds are becoming an effective way to

express the surfaces of 3D objects and scenes [1]. Compared

with traditional 2D images and videos, point clouds are usually

unorganized distributed in 3D space without structured grids,

and different point cloud frames may have different number of

points. Considering the huge amount of data and band-limited

networks, point cloud compression has been becoming a

critical and challenging research topic.

There have been some work on point cloud compression.

Motivated by 3D mesh coding in [2], [3] applied octree

structure for point cloud compression. Later, [4] presented a

generic scheme with octree for progressive point cloud coding.

[1] extended octree for dynamic point cloud compression.

Octree partition is an effective way for point cloud geometry

coding, however, for attribute compression, it cannot exploit

the correlation among points well [5].

To solve this problem, Zhang et al. in [6] constructed graphs

at a certain level of octree and use graph transform to encode

point cloud attributes. The transform scheme had better

performance over traditional DCT that reported significant

improvement in point cloud compression. The way to construct

the graph would create many isolated sub-graphs when point

cloud is sparse. To tackle the problem, [7] used K-nearest-

neighbor (KNN) method to connect more distant points in a

graph. However, the KNN graph is not guaranteed to construct

all points of a block in one graph, thus it maybe not an efficient

way to reduce sub-graphs. Ricardo et al. proposed the region-

adaptive hierarchical transform (RAHT) for attribute

compression, but graph transform outperforms RAHT in many

tests from results in [8]. Rufael et al. mapped the color

attributes to a JPEG grid and used the existing JPEG codec for

color compression [5]. It would be more computationally

efficient than graph transform, but may not be better on

compression performance. Graph transform is current the state-

of-the art on compression performance for attribute coding, but

it still exists some issues, such as the sub-graphs.

In this paper, we propose an optimized scheme of graph

transform on point cloud attribute compression. It is assumed

that point clouds have been geometry compressed based on

octree. K-dimension (k-d) tree partition is applied to split all

points evenly into transform blocks. We connect all points to

form a graph in each transform block and the edge weights are

optimized by two trained parameters, which influence the

Laplacian sparsity on the adjacency matrix for graph transform.

A Lagrangian rate-distortion optimization (RDO) is utilized to

specify the quantization mode. Experimental results

demonstrate that our method has better transform efficiency

and R-D performance than traditional DCT based method.

The rest of this paper is organized as follows. The details of

the proposed method are explained in Section II. In Section III,

we present some experimental results to evaluate the proposed

scheme. Finally, we conclude in Section IV.

II. PROPOSED METHOD

The reference software solution of the MPEG PCC adhoc

group [9] is based on octree for geometry compression and the

coordinates of points can be reconstructed at the decoder.

Inspired by this scheme, we assume the geometry is coded via

separate pipeline and we code attributes as graph signals on the

reconstructed geometry. The optimization mechanism is

mainly embodied in the partition of transform blocks,

Laplacian sparsity optimization for graph transform and the

selection of quantizing mode.

A. Point Cloud Partition via K-d Tree

K-d tree is a binary data-partitioning tree for organizing

points in a k-dimensional space [10]. It represents a hierarchical

subdivision of space using splitting hyperplanes that are

perpendicular to the corresponding axes. While building the

(a) (b) (c)

Fig. 1: (a) Example of a sparse point cloud. (b) Octree

partition. (c) K-d tree partition.

k-d tree, choice of the dimensions to split and the splitting

points are two major factors affecting the data structure [11].

For the choice of dimensions, one method chooses the

dimension in a round-robin fashion and another chooses the

widest spread dimension. About the selection of points as

splitting nodes, one method uses the midpoint of the dimension

width as the splitting point and another chooses the median

point. The former divides the dimension into two parts with

equal width while the latter makes the number of points almost

equal in two parts.

Octree is another common space decomposition tree in point

clouds. For attributes compression, some previous work

applied octree to get transform blocks and construct a graph for

each block [6] [7]. The number of points in each block is almost

different, even to be zero. It would result in too many isolated

sub-graphs if the point cloud is sparse. Therefore, we develop

the median-based k-d tree to divide points along the widest

spread dimensions for blocks partition. The widest spread

dimension represents that points in this dimension are of

weaker correlation and the median-based partition makes the

number of points in each k-d tree nodes almost the same.

Comparison of octree and k-d tree partition for a sparse point

cloud is shown in Fig. 1.

The main advantage of the k-d tree scheme over octree is that

it can represents a hierarchical block structure with

approximate the same number of points that lends itself to the

subsequent transform coding pipeline. Once the k-d tree depth

d is determined, the number of points in transform blocks are

determined. K-d tree avoids creating empty blocks and sub-

graphs, which is significate for further graph transform.

B. Laplacian Sparsity Optimization for Graph Transform

Graphs are natural representations of 3D irregular point clouds.

Comparing with the JPEG grid in [5], graphs preserve more

underlying information about the real 3D structure and the

correlations among points. Compared with DCT, graph

transform is a more data-adaptive method for reducing the

spatial redundancy of attribute information.

After k-d tree partition in the point cloud, we form a graph

by connecting all points with edges for each transform block.

A simple graph is formed as in Fig. 2 (a). Define the graph as

G = (v ={ n1, n2, n3, n4, n5 }, ε), ni represents the node in the

(a) (b)

Fig. 2: (a) Example of a graph in a transform block. (b) An

adjacency matrix for the graph.

graph G and ε represents the sets of edges. The edge weight

between two nodes ni and nj is:

𝜔𝑖,𝑗 = {𝑒
−
||𝑛𝑖−𝑛𝑗||2

2

𝜎2 , 𝑖𝑓 || 𝑖 − 𝑗||
 ≤ 𝜏;

0 , 𝑒𝑙𝑠𝑒,
 (1)

where 𝜎 denotes the variance of graph nodes and 𝜏 is the

Euclidean distance threshold between two nodes. The

adjacency matrix 𝑊 describing the node edge weights for the

graph is represented in Fig. 2(b). This pair of parameters (𝜎,𝜏)

affects the Laplacian sparsity on the matrix𝑊 . The degree

matrix reflecting the correlation density around points is

defined as a diagonal matrix 𝑆 = 𝑑𝑖𝑎𝑔(𝑠 ,…, 𝑠) , whose

element 𝑠𝑖 is the sum of elements in 𝑖th row of 𝑊.

We choose the graph Laplacian matrix 𝐿 as the graph shift

operator and get the eigen-decomposition of L:

𝐿 = 𝑆 −𝑊, (2)

𝐿 = 𝐴 Λ 𝐴− , (3)

where 𝐴 is the eigenvector matrix used as the transform matrix

and 𝛬 is a diagonal matrix including eigenvalues of L. The

performance of graph transform is closely relevant with the

Laplacian matrix 𝐿, which is associated with the parameters 𝜎

and 𝜏 in Equation (1). However, current work usually adopt

fixed values to set (𝜎,𝜏) [7] [12].

To get better performance, we proposed two methods based

on online training and offline training respectively to optimize

𝜎 and 𝜏. For the better training efficiency, we limit the value

range of parameter to (0, 1). We set the following variable 𝑓

and 𝑡 to represent 𝜎 and 𝜏:

𝑓 = 𝑒
−
𝑑(𝑛𝑖,𝑛𝑗)

𝜎2 , (4)

𝑡 = 𝑒
−
𝑑(𝑛𝑖𝑛𝑗)

𝜎2 , (5)

where 𝑑(𝑖 , 𝑗) means average distance between two points in

the block and 𝑑(𝑖 𝑗) means the distance between 𝑖 and 𝑗.

The two training methods are one-pass processing. For

online training, we select randomly several transform blocks

from the point cloud and traverse the value range to find

optimum fo and to, which make the performance of graph

transform reach the best. Afterward, fo and to are adopted for

the following transform blocks. In offline training processing,

some typical point clouds except the one to be processed are

chosen to be training datasets. We get empirical values fo and to

on those datasets and adopt them to process current point cloud.

Online training may get better compression performance

than offline training, however, it is impractical to apply it in

real-time applications, since it needs to pass all parameters to

the decoder and has longer time delay. Instead, offline training

has comparable performance without overhead for passing

parameters. Therefore, we choose offline training method.

C. Rate-Distortion Optimization with Lagrangian Method

Laplacian optimized graph transform gives us the signal

adaptive energy compaction transform that presents residual

coefficients for the quantization and entropy coding. We use

different quantization mode by preserving different dimensions

and zeroing out the others in the residual matrix, thus result in

different R-D performance. To solve the trade-off problem

between bitrate and distortion, to obtain the convex-hull

optimal quantization mode, we apply the standard Lagrangian

method, which is widely accepted in video coding RDO.

For example, a point cloud contains M transform blocks and

each transform blocks includes N points, that is, each graph in

a block has N nodes and the size of graph transform matrix 𝐴

is 𝑁 × 𝑁. We define Y component for the point cloud as the

matrix Y with 𝑀 ×𝑁 dimensions. The residual matrix 𝐶 after

graph transform is:

𝐶𝑀×𝑁 = 𝑌𝑀×𝑁 ∗ 𝐴𝑁×𝑁 . (6)

Most coefficients in the residual matrix are small, especially

on the high dimensions. For lossy point cloud compression,

neglecting a part of high-frequency coefficients is a reasonable

and efficient strategy. Keeping the first x dimensions in residual

matrix C and zeroing out the other dimensions, we can get

quantized residual matrix𝐵(𝑥), defined as:

𝑏𝑖,𝑗 = {
𝑐𝑖,𝑗 , 𝑖𝑓 𝑗 ≤ 𝑥;

0, 𝑒𝑙𝑠𝑒.
 (7)

Different choice of x means different quantization modes,

which may lead to different bitrate 𝑅(𝑥) and distortion 𝐷(𝑥).
Our goal is finding a suitable dimension 𝑥𝑠 to get better R-D

performance, which is expressed as:

𝑥𝑠 = arg 𝑚𝑖 𝐷(𝑥), 𝑠. 𝑡. 𝑅(𝑥) ≤ 𝑅𝑚𝑎𝑥, (8)

where 𝑅(𝑥) is the bitrate after the quantization and 𝐷(𝑥) is the

sum of absolute difference (SAD) or the sum of square

difference (SSD).

A Lagrangian multiplier 𝜆 is introduced to relax the

constraints in Equation (8) and then obtain the following

Lagrangian function[13]:

𝐿(𝑥) = 𝐷(𝑥) + 𝜆 × 𝑅(𝑥). (9)

The goal is finding optimum 𝑥𝑜 to make the value of 𝐿(𝑥)
minimum. Refer to the RDO schemes in traditional video

coding [13], the Lagrangian multiplier 𝜆 has the following

relation with the quantization parameter (QP):

𝜆 = 𝑚 × 2𝑄𝑃/6 , (10)

TABLE I

COMPARISION OF R-D PERFORMANCE ON FOUR DATASETS

Testing Datasets

Proposed Method PCC(DCT-based)

Y-PSNR

(dB)

Bitrate

(bpp)

Y-PSNR

(dB)

Bitrate

(bpp)

1. longdress_vox10_1051 33.65 0.89 32.56 2.76

2. loot_vox10_1000 35.18 0.29 37.81 1.41

3. redandblack_vox10_1451 34.38 0.55 36.1 1.54

4. soldier_vox10_0537 36.02 0.46 35.71 1.99

(a) (b)

Fig. 3 (a) Comparison of transform residual variance between

proposed method and DCT on testing 1. It implies the entropy

compaction comparison after the transform. (b) Comparison of

transform efficiency between proposed method and DCT with

20 dimensions kept in 50 transform blocks of testing 1.

where m is a constant need to be trained by experiments. The

Lagrangian multiplier 𝜆 is only affected by QP, that is, once QP

is determined, the optimal quantization mode with the lowest 𝐿

would be selected.

III. EXPERIMENTAL RESULTS

We have conducted many tests using frames extracted from

8i dynamic point cloud datasets [14]. We used frames

“longdress_vox10_1300.ply”, “redandblack_vox10_1550.ply”

“loot_vox10_1200.ply”, and “soldier_vox10_0690.ply” as the

training datasets, for which the number of points is 857966,

757691, 805285 and 1089091, and the k-d tree depth d is 13,

12, 12 and 13, respectively. We used four testing frames shown

in Table 1. We converted the RGB attributes to YCbCr color

space and used the luminance Y as the attribute to be coded.

The number of points in each transform block was limited to

the empirical range (100, 200), considering the compression

performance and the computation complexity. We acquired the

optimum parameters fo = 0.3 and to = 0.6 through the offline

training. To select a better quantization mode, we tried m in

Equation (10) with some values commonly used in traditional

video coding [15] and finally get the trained m=0.85 for

Lagrangian optimization. Then we used a simple arithmetic

encoder by assuming the residual coefficients with a zero-mean

Laplacian probability distribution [6]. After the training, we

adopted these trained parameters for testing.

The testing R-D performance comparison with Rufael’s PCC

software [5] based on DCT is shown in Table 1. For all tests,

our proposed scheme outperforms DCT. For example, for a

luminance peak signal-to-noise ratio (PSNR) on testing 4

around 36dB, DCT based method need around 1.99 bits per

point (bpp), while our encoder requires less than 0.46 bpp. That

is, the coded bitstream by DCT based encoder is more than 4

times larger than that coded by the proposed encoder.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Information Compaction Efficiency Comparison Between GT and DCT

E
nt

ro
py

 k
ep

t
ra

tio

Dimension index

DCT

GT

0 5 10 15 20 25 30 35 40 45 50
0.4

0.5

0.6

0.7

0.8

0.9

1
Transform Efficiency Comparison Between GFT and DCT

T
ra

n
s
fo

rm
 c

o
m

p
a
c
ti
o
n
 r

a
ti
o

transform block index

DCT

GT

Fig. 4 Compression performance (in dB) vs. bitrate (in bpp) on

testing 1, using the proposed encoder and DCT based encoder

with five quantization mode at QP=8, 16, 32, 48, 64, 80, 96.

For testing 1 with 765821 points, we set d=12. There are

4096 transform blocks and each block has 186 or 187 points.

Comparison of entropy compaction and transform efficiency

between optimized graph transform and DCT is shown in Fig.

3. As we know, the differential entropy for a Laplacian

probability distribution variable is directly associated with the

Laplacian scale parameter ∆ . In video coding, ∆ has an

underlying relationship with the variance of transform residuals.

Based on this, Fig. 3(a) represents the comparison of entropy

compaction efficiency. It tells us that, as keeping same

dimensions for graph transform and DCT, the former preserves

more information entropy than DCT. When the transform

residuals are ranked in a decreasing order of their absolute

values [15], calculating the ratio of the sum of several the

largest coefficients in the sum of all coefficients is another

method to evaluate transform efficiency. We kept the first 20

dimensions in 50 transform blocks and the results are shown in

Fig. 3(b). It presents that the optimized graph transform has

better transform efficiency over DCT in the blocks.

R-D performance for testing 1 is shown in Fig. 4. Five

different quantization modes (x=4,8,16,32,64) with seven QP

for uniform quantization are applied. From the results, we can

see that optimized graph transform significantly outperforms

DCT at all quantization modes and the PSNR difference can be

up to 1-3 dB at the same bitrate. The Lagrangian optimization

at QP=8 is presented in Fig. 5. It illustrates the processing of

operating points convex-hull optimization when the maximum

bitrate is given. The quantization mode x=32 is determined as

the best mode, which is consistent with the results in Fig. 4.

IV. CONCLUSIONS

In this paper, we presented an optimized graph transform

based scheme for point cloud attribute compression. We

optimize the partition for transform blocks to avoid sub-graphs

with k-d tree, optimize the Laplacian sparsity for graph

transform performance using offline training and optimize the

quantization mode selection by Lagrangian RDO. The

experimental resultsshowed a significate improvement on

transform efficiency and R-D performance. In future work, we

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-3

Bits per point

N
o

rm
a

liz
e

d
 M

S
E

x=4 GT

x=8 GT

x=16 GT

x=32 GT

x=64 GT

Fig. 5 Lagrangian optimization at QP=8 on testing 1 when

𝑅𝑚𝑎𝑥 is given as 0.7 bpp.

plan to do attribute intra and inter prediction based on k-d tree

and use our approach for dynamic 3D point cloud sequences.

REFERENCES

[1] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli, M. Beetz, and E.

Steinbach, “Real-time compression of point cloud streams,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2012, pp. 778–785.

[2] J. Peng, Chang-Su Kim, and C. C. Jay Kuo, “Technologies for 3d mesh

compression: A survey,” Journal of Vis. Comun. and Image Represent.,
vol. 16, no. 6, pp. 688–733, December 2005.

[3] R. Schnabel and R. Klein, “Octree-based point-cloud compression,” in

Symposium on Point-Based Graphics, July 2006.
[4] Y. Huang, J. Peng, C.-C. J. Kuo, and M. Gopi, “A generic scheme for

progressive point cloud coding,” IEEE Trans. Vis. Comput. Graphics,

vol. 14, no. 2, pp. 440–453, Mar. Apri. 2008.
[5] R. N. Mekuria, K. Blom, and P. Cesar, “Design, Implementation and

Evaluation of a Point Cloud Codec for Tele-Immersive Video,” IEEE

Trans. CSVT, vol. PP, no. 99, pp. 1–1, 2016.
[6] C. Zhang, D. Florêncio, and C. Loops, “Point cloud attribute

compression with graph transform”,” in Proc. IEEE Int. Conference on

Image Processing, Paris, France, Sept 2014.

[7] R. A. Cohen, D. Tian, and A. Vetro, “Attribute compression for sparse

point clouds using graph transforms,” in 2016 IEEE International

Conference on Image Processing (ICIP), Sept 2016, pp. 1374–1378.
[8] R. L. de Queiroz and P. A. Chou, “Compression of 3d point clouds using

a region-adaptive hierarchical transform,” IEEE Transactions on Image
Processing, vol. 25, no. 8, pp. 3947–3956, Aug 2016.

[9] R.Mekuria, P. Cesar, “MP3DG-PCC, Open Source Software Framework

for Implementation and Evaluation of Point Cloud Compression,”
document MPEG 2016/m36527, ISO/IECJTC1/SC29/WG11 Geneva,

June 2016.

[10] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, 18(9):509–517, Sept 1975.

[11] K. Alsabti, S. Ranka, and V. Singh, “An efficient k-means clustering

algorithm,” In 11th Intl. Parallel Processing Symposium, Mar.1998.

[12] S. Chen, D. Tian, C. Feng, A. Vetro and J. Kovačević, “Fast Resampling

of 3D Point Clouds via Graphs,” arXiv preprint arXiv:1702.06397v1.
[13] T. Wiegand, H. Schwarz, A. Joch, F. Kossentini, and G. J. Sullivan,

“Rate-constrained coder control and comparison of video coding

standards,” IEEE Trans. CSVT, vol. 13, pp. 688–703, July 2003.

[14] E. d’Eon, B. Harrison, T. Myers, P. A. Chou, “8i Voxelized Full Bodies,

version 2–A Voxelized Point Cloud Dataset,” document MPEG

2017/m74006, ISO/IECJTC1/SC29/WG11 Geneva, January 2017.

[15] Y. Yuan, I.-K. Kim, X. Zheng, L. Liu, and X. Cao, “Quadtree based non-

square block structure for inter frame coding in HEVC,” IEEE Trans.
CSVT, vol. 22, no. 12, pp.1707–1719, Dec. 2012.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
18

20

22

24

26

28

30

32

34
Rate-distortion for GT and DCT

Bits per point(bpp)

Y
 P

S
N

R
(d

B
)

x=4 DCT

x=4 GT

x=8 DCT

x=8 GT

x=16 DCT

x=16 GT

x=32 DCT

x=32 GT

x=64 DCT

x=64 GT

