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Abstract. Convolutional neural networks(CNN) have been shown to perform 

better than the conventional stereo algorithms for stereo estimation. Numerous 

efforts focus on the pixel-wise matching cost computation, which is the important 

building block for many start-of-the-art algorithms. However, those architectures 

are limited to small and single scale receptive fields and use traditional methods 

for cost aggregation or even ignore cost aggregation. Differently we take them 

both into consideration. Firstly, we propose a new multi-scale matching cost 

computation sub-network, in which two different sizes of receptive fields are im-

plemented parallelly. In this way, the network can make the best use of both var-

iants and balance the trade-off between the increase of receptive field and the loss 

of detail. Furthermore, we show that our multi-dimension aggregation sub-net-

work which containing 2D convolution and 3D convolution operations can pro-

vide rich context and semantic information for estimating an accurate initial dis-

parity. Finally, experiments on challenging stereo benchmark KITTI demonstrate 

that the proposed method can achieve competitive results even without any addi-

tional post-processing.   

Keywords: stereo matching, matching cost, multi-scale, multi-dimension. 

1 Introduction 

Reconstructing or understanding a 3D scene is crucial in many applications, for in-

stance, autonomous cars, unmanned aerial vehicles and robotics navigation. Although 

3D sensors, such as structured light and Lidar, can be employed to capture depth data, 

utilizing cameras is a more cost-effective solution. Add a constraint that the two input 

images are a rectified stereo pair of a same scene, then disparity for each pixel in the 

left image can be computed by matching corresponding pixels on the two images along 

the horizontal direction [1,2]. However, despite the search space is reduced to 1D, ob-

taining accurate stereo correspondences is still full of huge challenges for the inherently 

ill-posed regions, such as textureless, repetitive patterns, occlusions and large saturated 

areas.  

The traditional stereo matching pipeline is divided into four steps: matching cost 

computation, cost/support aggregation, disparity computation and disparity refinement 

[3].  
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Matching cost computation, as a fundamental step in stereo matching algorithms, 

measures the similarity between two pixels of the two input images. Many conventional 

stereo algorithms used color intensity, gradient or the distance between pixels as simi-

larity metrics [4,5,6]. Apparently they do not contain enough information, because it is 

hard to know which features most help measure similarity. In contrast, convolutional 

neural networks are capable of extracting robust and powerful deep representations di-

rectly from the raw data, which have been successful in learning how to match in stereo 

estimation [7,8,9,10]. Zbontar and LeCun [7] first employed CNN to learn similarity 

measurement and then used it to initialize the matching cost. Following that, many 

methods dedicated effort to improving the computation efficiency [11,12] or matching 

accuracy [13,14]. However these solutions still suffered from several limitations: (i) 

Limited receptive field. (ii) Single receptive field. (iii) Complex network structure. To 

break these limitations, we propose a new multi-scale matching cost computation sub-

network, in which two different sizes of receptive fields are implemented in parallel. 

Firstly, since we use pooling and deconvolution operations in the multi-scale sub-net-

work, the model can extract features with a wider receptive field around the target pix-

els. This allows the model to incorporate more context so that more accurate predictions 

can be produced in textureless region. On the other hand, the network can make the best 

use of both variants and balance the trade-off between the increase of receptive field 

and the loss of detail. 

Cost aggregation, dedicating to dealing with mismatching values of the cost volume, 

is indispensable in traditional local stereo algorithms. Traditionally, it is performed lo-

cally by summing/averaging matching cost over windows with constant disparity 

[15,16,17]. The performances of these methods were limited by the shallow, hand-

crafted scheme. To tackle this problem, we propose a learning-based multi-dimension 

cost aggregation sub-network which containing 2D convolution and 3D convolution 

operations together. Firstly, we use a 3D convolutional network to effectively incorpo-

rate context and geometry information, which is able to operate computation from the 

height, weight and disparity dimensions [18,19]. After that, we use a 2D convolution 

network to further improve cost aggregation performance, which provides more seman-

tic information for estimating an accurate initial disparity.  

In summary, the contributions of this paper are 

 We propose a multi-scale matching cost computation sub-network, in which 

two different sizes of receptive fields are implemented parallelly. This architec-

ture can balance the trade-off between the increase of receptive field and the 

loss of detail. 

 We present a multi-dimension cost aggregation sub-network which contains 2D 

convolution and 3D convolution operations together. This model can provide 

rich context and semantic information for estimating an accurate initial dispar-

ity. To the best of our knowledge, this work is the first to joint multi-dimension 

convolution operations for cost aggregation. 

 Experiments show that our architecture can achieve accurate results even with-

out any additional post-processing. 

The rest of our paper is organized as follows. Section 2 reviews related work. In 

section 3, we introduce our model and detail the components. Finally, the experimental 

results are given in section 4. 
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2 Related work 

There are a lot of studies on stereo matching. Here we only review the work that 

focused on matching cost computation and cost aggregation, which most relevant to 

our work. 

Matching cost computation. In traditional stereo algorithms, the absolute gradient dif-

ferences [20] and absolute intensity differences [21] are the most common pixel-based 

matching costs. These hand-crafted matching cost metrics lack of sufficient information 

and robustness. In the contrary, deep learning models can learn more robust and dis-

criminative features that help improve matching cost. Zbontar et al. [7] first employed 

CNN to learn similarity measurement between two image patches and used it to initial-

ize the matching cost. Luo et al. [11] improved the computation efficiency by learning 

a probability distribution over all disparity levels under consideration. Chen et al. [12] 

presented a multi-scale ensemble framework for good local matching scores. Shaked et 

al. [13] used a highway network with multilevel weighted residual shortcuts for match-

ing cost computation. Patrick et al. [14] proposed a siamese network with pooling and 

deconvolution operations for similarity computation with a wider receptive field. Our 

multi-scale matching cost computation sub-network is most similar to that developed 

by Patrick et al. [14]. The biggest difference is that two different sizes of receptive 

fields are implemented parallelly in our network. This enables the model to make the 

best use of both variants and balance the trade-off between the increase of receptive 

field and the loss of detail. Besides, different from [14] directly upsampling, we con-

catenate deconvolution features with corresponding feature maps from the encoder part, 

which enables the model to preserve both the high-level coarser information and low-

level fine information. 

Matching cost aggregation. In general, it is performed locally by summing/averaging 

matching cost over windows with constant disparity [15,16,17,22]. Yoon et al. [15] 

used a fixed window filter with adaptive support-weight of each pixel. Zhang et al. [22] 

used an adaptive window to guarantee the neighbors of each pixel are only from same 

object. All of these methods based on hand-designed functions and were unable to cap-

ture useful context and semantic information, which leaded to their limited perfor-

mance. Jeong et al. [23] used CNN to learn the convolution kernel for cost aggregation. 

However, this method need to combine with edge detection task and global energy 

minimization to achieve a better result. Besides, the aggregation network can’t be 

trained with cost computation network together. In this paper, we propose a multi-di-

mension aggregation sub-network containing 2D convolution and 3D convolution op-

erations. On the basis of using a 3D convolution network to incorporate rich context 

and geometry information, a 2D convolution network is used to capture more semantic 

information to further improve cost aggregation performance.  

Our multi-scale matching cost computation sub-network and multi-dimension ag-

gregation sub-network can be trained together. Even without using any post-processing 

and regularization, the proposed method can estimate an accurate initial disparity. 
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Fig. 1. Our network architecture. Stem A and Stem B with different sizes of receptive fields make 

up the multi-scale matching cost computation sub-network. The aggregation sub-network con-

tains 3D convolution and 2D convolution operations together. The matching cost computation 

sub-network outputs two cost volumes, which are concatenated as input to the aggregation sub-

network. The initial disparity is obtained from the cost aggregation result by a winner-take-all 

strategy. 

3 Proposed method 

Our network architecture is described in Figure 1, which consists of two sub-networks. 

The matching cost computation sub-network has two stems with different scales of re-

ceptive fields, as shown in Stem A and Stem B. The following sub-network containing 

2D convolution and 3D convolution operations together carries out cost aggregation. 

The more detailed implementations of them are introduced in Table 1 and Table2, re-

spectively. 

3.1 Multi-scale matching cost computation sub-network 

Matching cost computation measures the similarity between two pixels of the two input 

images. It is designed to construct a cost volume, which represents how well a pixel in 

the reference image matches the same pixel in the target image shifted by each disparity 

level under consideration. To compute the matching cost, we first learn deep unary 

features, and then use them to form a cost volume. 

Unary Features. Intuitively, the bigger the receptive field is, the more context the 

model gets. Commonly, pooling, convolution and dilation convolution are the most 

popular methods to enlarge receptive field. It has been turned out to be that the details 

lost in pooling operations can be compensated with deconvolution operations as long 

as these are carried out before computing correlation [14]. Song et al. [24] also argued 

that the pooling operations perform the best in their context pyramids architecture. 

Therefore, we also follow this in our work. We use a new multi-scale sub-network to 
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extract the deep representation of each pixel in the reference image and the target im-

age. This sub-network consists of two stems, in which each stem uses pooling and de-

convolution operations to get wider receptive field, as shown in Figure 1. Since the 

structure of the two stems is the same, stem A is taken as an example for detailed de-

scription here. 

Stem A is an siamese network, which consists of two shared-weight sub-networks 

to handle the two input images simultaneously. Each sub-network of the siamese net-

work is an encoder-decoder network, as described in Table 1. The encoder part consists 

of seven 3×3 convolution layers in series, where each followed by a batch normalized 

layer and a rectified linear unit except the last one. In addition to the last three layers, 

there is a max pooling layer between every two convolution layers. Then, the decoder 

part implements the same number of 3×3 deconvolution layers as the max pooling lay-

ers. Different from [14] directly upsampling, we concatenate deconvolution features 

with corresponding feature maps from the encoder part, which enables the model to 

preserve both the high-level coarse information and low-level fine information. The 

structure of stem B is the same as that of stem A. The only difference is that stem B has 

a deeper structure with more max pooling layers. In this case, stem B has a wider re-

ceptive field, but loses more detail. 

In order to balance the trade-off between the increase of receptive field and the loss 

of detail, our model implements the two stems in parallel to obtain different scales of 

receptive fields. In this way, the network could make the best use of them. 

Cost volume. After getting deep unary features, the next step is to compute the stereo 

matching cost. We use the unary features from the two stems to construct a cost volume. 

Firstly, we concatenate the features from the left branch of stem A with the features 

from the left branch of stem B and use a 1×1 convolution layer to obtain the final left 

unary features. Similarly, the features from the right branch of stem A and the features 

from right branch of stem B are also concatenated to get the final right unary features 

by using a 1×1 convolution layer. After that, as the way [18] proposed, each unary 

feature from the left unary features is concatenated with the corresponding unary fea-

ture from the right unary features across every disparity level under consideration. Fi-

nally, we get a 4D cost volume with size of (max disparity+1) × height × width × 

feature channel by packing the concatenating results.  

3.2 Multi-dimension Cost aggregation sub-network 

Even if the deep unary features are used, mismatching still exists in the cost volume. 

Hence, cost aggregation is indispensable in refining these representations. We firstly 

use a 3D convolution network to take into account the rich context and geometry infor-

mation in the cost volume, and then incorporate deep semantic information by a 2D 

convolution network to further improve cost aggregation performance. 

3D convolution network for context learning. 3D convolutional network is able to 

operate computation from the height, weight and disparity dimensions, which has great  
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Table 1. The detailed implementation of multi-scale matching cost computation sub-network 

Layer  K      S   Ch(I/O) OutRes Input 

Stem A 

conv_a1 

conv_a2 

pool_a1 

conv_a3 
conv_a4 

pool_a2 

conv_a5 

conv_a6 

conv_a7 

upconv_a1 

upconv_a2 

3×3     1       3/32 

3×3     1      32/32 

2×2     2      32/32 

3×3     1      32/32 
3×3     1      32/32 

2×2     2      32/32 

3×3     1      32/32 

3×3     1      32/32 

3×3     1      32/32 

3×3     2      32/32 

3×3     2      32/32 

H×W 

H×W 

1/2H×1/2W 

1/2H×1/2W 
1/2H×1/2W 

1/4H×1/4W 

1/4H×1/4W 

1/4H×1/4W 

1/4H×1/4W 

1/2H×1/2W 

H×W 

imageL, imageR 

conv_a1 

conv_a2 

pool_a1 
conv_a3 

conv_a4 

pool_a2 

conv_a5 

conv_a6 

conv_a7 

upconv_a1, conv_a4 

Stem B 

conv_b1 

conv_b2 

pool_b1 

conv_b3 
conv_b4 

pool_b2 

conv_b5 

conv_b6 

pool_b3 

conv_b7 

conv_b8 

conv_b9 
upconv_b1 

upconv_b2 

upconv_b3 

3×3     1       3/32 

3×3     1      32/32 

2×2     2      32/32 

3×3     1      32/32 
3×3     1      32/32 

2×2     2      32/32 

3×3     1      32/32 

3×3     1      32/32 

2×2     2      32/32 

3×3     1      32/32 

3×3     1      32/32 

3×3     1      32/32 
3×3     2      32/32 

3×3     2      32/32 

3×3     2      32/32 

H×W 

H×W 

1/2H×1/2W 

1/2H×1/2W 
1/2H×1/2W 

1/4H×1/4W 

1/4H×1/4W 

1/4H×1/4W 

1/8H×1/8W 

1/8H×1/8W 

1/8H×1/8W 

1/8H×1/8W 
1/4H×1/4W 

1/2H×1/2W 

H×W 

imageL, imageR 

conv_b1 

conv_b2 

pool_b1 
conv_b3 

conv_b4 

pool_b2 

conv_b5 

conv_b6 

pool_b3 

conv_b7 

conv_b8 
conv_b9 

upconv_b1, conv_b6 

upconv_b2, conv_b4 

Cost volume 

conv_1 
conv_2 

cost-volume 

1×1     1      64/32 
1×1     1      64/32 

-         -        -/64 

H×W 
H×W 

D×H×W 

featureL_a, featureL_b 
featureR_a, featureR_b 

conv_1, conv_2 

potential to capture context and geometry information [18,19]. But the biggest problem 

is that 3D convolutions bring computation and memory burden. An effective solution 

is to use an encoder-decoder structure, which also enables the model to take advantage 

of more context with a wider receptive field. 

As described in Table 2, the cost volume is first handled by eight 3×3×3 3D convo-

lution layers in series, where each followed by a batch normalized layer and a rectified 

linear unit. There is a 3D convolution layers with stride 2 between every two 3D con-

volution layers with stride 1. We sub-sample the cost volume twice by a factor of 4 in 

the encoder part. Similarly, for the decoder part, we up-sample the cost volume twice 

and add the corresponding same resolution feature maps from the encoder part before 

up-sampling. The additional convolution layer in the decoder part can produce 

smoother disparity [9].  At the end of the 3D convolution network, we get a regularized 

cost volume with size of (max disparity+1) × height × width×1.  

2D convolution network for semantic information learning. On the basis of using a 
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Table 2. The detailed implementation of multi-dimension cost aggregation sub-network. Unless 

otherwise specified, the convolution stride for each dimension is the same. 

Layer K          S     Ch(I/O) OutRes Input 

Agg_3D 

conv3d_1 

conv3d_2 

conv3d_3 

conv3d_4 

conv3d_5 

conv3d_6 

conv3d_7 
conv3d_8 

upconv3d_1 

conv3d_9 

upconv3d_2 

3×3×3       1        64/16 

3×3×3       1        16/16 

3×3×3       2        16/32 

3×3×3       1        32/32 

3×3×3       1        32/32 

3×3×3       2        32/64 

3×3×3       1        64/64 
3×3×3       1        64/64 

3×3×3       2        64/32 

3×3×3       1        32/32 

3×3×3       2        32/1 

D ×H×W 

D ×H×W 

1/2D×1/2H×1/2W 

1/2D×1/2H×1/2W 

1/2D×1/2H×1/2W 

1/4D×1/4H×1/4W 

1/4D×1/4H×1/4W 
1/4D×1/4H×1/4W 

1/2D×1/2H×1/2W 

1/2D×1/2H×1/2W 

D ×H×W 

cost-volume  

conv3d_1 

conv3d_2 

conv3d_3 

conv3d_4 

conv3d_5 

conv3d_6 
conv3d_7 

conv3d_8 

upconv3d_1+conv3d_5 

conv3d_9 

Agg_2D 

conv2d_1 

transpose 
conv2d_2 

conv2d_3 

conv2d_4 

conv2d_5 

conv2d_6 

conv2d_7 

conv2d_8 

conv2d_9 
upconv2d_1 

conv2d_10 

upconv2d_2 

1×1         1        32/16 

-            -         -/129 
3×3         1      145/16 

3×3         1        16/16 

3×3         2        16/32 

3×3         1        32/32 

3×3         1        32/32 

3×3         2        32/64 

3×3         1        64/64 

3×3         1        64/64 
3×3         2        64/32 

3×3         1        64/32 

3×3         2      32/129 

H×W 

H×W 
H×W 

H×W 

1/2H×1/2W 

1/2H×1/2W 

1/2H×1/2W 

1/4H×1/4W 

1/4H×1/4W 

1/4H×1/4W 
1/2H×1/2W 

1/2H×1/2W 

H×W 

featureL(conv_1)  

upconv3d_2 
conv2d_1, transpose 

conv2d_2 

conv2d_3 

conv2d_4 

conv2d_5 

conv2d_6 

conv2d_7 

conv2d_8 
conv2d_9 

upconv2d_1, conv2d_6 

conv2d_10 

WTA -      -           -/1 H×W upconv2d_2 

3D convolution network to incorporate context and geometry information, we use an-

other 2D convolution network to capture more semantic information to further improve 

cost aggregation performance. Firstly, we transpose the cost volume from the 3D con-

volution network into a new cost volume with size of height × width × (max dispar-

ity+1). Then we concatenate it with the low-level features from the matching cost com-

putation sub-network in order to incorporate low-level structure information. After that, 

we use a 2D convolution network which has the same structure as 3D convolution net-

work to get a final cost volume.  

Finally, the initial disparity D(𝒑) is obtained from the cost aggregation result C(𝒑, d) 

by a winner-take-all(WTA) strategy:  
D(𝒑) =  argmin

𝑑
𝐶(𝒑, 𝑑) 

Where 𝒑 is a pixel of the reference image, d is the disparity level under consideration. 

4 Experimental results 

In this section, we evaluate our model on KITTI 2012 [27] and KITTI 2015 [28] dataset. 

Our architecture is implemented by the Tensorflow [29] with a AdaGrad optimization 

method [30] and a constant learning rate 0.001. Prior to training, each input image is  
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Table 3. Comparisons of the output of the matching network on the KITTI 2012 validation set. 

model 
>2 px >3 px >5 px End-Point 

Non-Occ All Non-Occ All Non-Occ All Non-Occ All 

MC-CNN-acrt 15.02 16.92 12.99 14.93 11.38 13.32 4.39px 5.21px 

MC-CNN-fast 17.72 19.56 15.53 17.41 13.60 15.51 4.77px 5.63px 

Content-CNN(19) 10.87 12.86 8.61 10.64 7.00 9.03 3.31px 4.20px 

Our(P2) 9.11 11.12 7.33 9.38 5.71 7.76 2.16px 3.05px 

Our(P3) 9.30 11.35 7.42 9.51 5.68 7.79 2.23px 3.16px 

Our(final) 8.31 10.32 6.50 8.54 4.81 6.88 1.83px 2.65px 

Table 4. Comparisons of the output of the matching network on the KITTI 2015 validation set. 

model 
>2 px >3 px >5 px End-Point 

Non-Occ All Non-Occ All Non-Occ All Non-Occ All 

MC-CNN-acrt 15.20 16.83 12.45 14.12 10.13 11.80 4.01px 4.66px 

MC-CNN-fast 18.47 20.04 14.96 16.59 12.02 13.67 4.27px 4.93px 

Content-CNN(37) 9.96 11.67 7.23 8.97 5.04 6.78 1.84px 2.56px 

Our(P2) 9.89 10.58 6.32 8.73 4.45 6.09 1.85px 2.50px 

Our(P3) 8.66 10.23 6.01 7.64 4.21 5.82 1.81px 2.46px 

Our(final) 7.65 9.23 5.54 7.12 3.93 5.48 1.50px 2.00px 

normalized to zero mean and standard deviation of one. We adopt a batch size of 8, 

using a H×W randomly located crop from the reference image and a H× (W+ D) crop 

from the target image. We use H=58, W=58, D=128(max disparity) in our experiments. 

We trained the network for about 400k iterations which takes around 2 days on a single 

NVIDIA 1080Ti GPU. 

4.1 Matching cost computation evaluation 

To demonstrate the effectiveness of the multi-scale matching cost computation sub-

network, we compare it to existing matching networks [7,11]. In this experiment, we 

use an inner-product operation to compute the cost volume. Table 3 shows the compar-

isons on KITTI 2012 validation set and Table 4 describes the comparisons on KITTI 

2105 validation set. The results show that our single stem networks(P2, P3) can outper-

form previous matching networks with a large margin, which demonstrates the ad-

vantages of pooling/deconvolution encoder-decoder network. Besides, we can see that 

the multi-scale network(final) works better than the single stem networks. This testifies 

that parallelly implementing two sizes of receptive fields can make the best use of them 

and balance the trade-off between the increase of receptive field and the loss of detail. 

4.2 Matching cost aggregation evaluation  
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Table 5. Non-occluded 3-pixel error on KITTI 2012 validation set with different cost aggregation 

method. 

Unary 
Cost Aggregation 

Our(*)  Content-CNN(+) 
conv3d conv2d CBCA 

*+    6.50 6.61 

*+ *   4.93 - 

*+  *  4.72 - 

*+ * * + 3.69 6.09 

Table 6. Non-occluded 3-pixel error on KITTI 2015 validation set with different cost aggregation 

method. 

Unary 
Cost Aggregation 

Our(*)  Content-CNN(+) 
conv3d conv2d CBCA 

*+    5.54 7.13 

*+ *   3.95 - 

*+  *  3.80 - 

*+ * * + 3.01 6.58 

Experimental results of [23] have proved that the conventional hand-crafted aggrega-

tion method CBCA [4] outperforms the other traditional aggregation methods such as 

BF [3], GF [31] and DT [32]. So we compare the performance of our multi-dimension 

matching cost aggregation network to CBCA in this section. For fair comparisons, we 

compare to the results of [11] with only CBCA. From Table 6, we can see that CBCA 

lowered the KITTI 2015 validation error of Content-CNN(+) from 7.13 to 6.58, which 

just had a slight improvement with 0.55. In contrast, our method(*) reduces the error 

from 5.54 to 3.01 by a large margin of 2.53. It demonstrates that our multi-dimension 

cost aggregation sub-network performs significantly better than the conventional hand-

crafted aggregation methods. Table 5 shows the same results on KITTI 2012 validation 

set. 

On the other hand, we also compare our different model variants. Both Table 5 and 

Table 6 prove that the error can be effectively reduced using only the 3D convolution 

network or the 2D convolution network. When cascading the two networks together, 

we can get even greater improvements.  

4.3 Benchmark results 

We evaluate our final results on KITTI 2012 [27] and KITTI 2015 [28] benchmarks, 

which consist of challenging and complicated road scenes captured by driving. The 

KITTI 2012 dataset contains 194 training and 195 testing images, and the KITTI 2015 

dataset consists of 200 training and 200 testing images. The ground truths were obtained 

from LIDAR data. 

Table 7 shows the comparisons on the KITTI 2012 benchmark. We mainly compare 

our model to those methods which leveraged deep learning representations to compute 
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Table 7. Comparisons on KITTI 2012 benchmark 

Model 
>2 px >3 px Mean Error 

Runtime(s) 
Non-Occ All Non-Occ All Non-Occ All 

GC-NET [18] 2.71 3.46 1.77 2.30 0.6px 0.7px 0.9 

MC-CNN-acrt [7] 3.90 5.45 2.43 3.63 0.7px 0.9px 67 

Content-CNN [11] 4.98 6.51 3.07 4.29 0.8px 1.0px 0.7 

DispNetC [9] 7.38 8.11 4.11 4.65 0.9px 1.0px 0.06 

Deep Embed [12] 5.05 4.67 3.10 4.24 0.9px 1.1px 3 

SPS-st [26] 4.98 6.28 3.39 4.41 0.9px 1.0px 2 

CAT [33] 8.11 9.44 3.31 4.07 1.1px 1.2px 10 

S+GF [4] 14.72 16.76 5.53 7.79 2.1px 3.4px 140 

Ours 3.91 5.89 2.62 4.50 1.0px 1.6px 1.2 

Table 8. Comparisons on KITTI 2015 benchmark 

Model 
All pixels Non-Occluded pixels 

Runtime(s) 
D1-bg D1-fg D1-all D1-bg D1-fg D1-all 

GC-NET [18] 2.21 6.16 2.87 2.02 5.58 2.61 0.9 

MC-CNN-acrt [7] 2.89 8.88 3.89 2.48 7.64 3.33 67 

Content-CNN [11] 3.73 8.58 4.54 3.32 7.44 4.00 1 

DispNetC [9] 4.32 4.41 4.34 4.11 3.72 4.05 0.06 

3DMST [25] 3.36 13.03 4.97 3.03 12.11 4.53 93 

SPS-st [26] 3.84 12.67 5.31 3.50 11.61 4.84 2 

Ours 4.06 8.67 4.59 3.01 6.59 3.40 1.2 

matching cost only and used several traditional regularization and post-processing steps 

to refine their results, such as MC-CNN [7], Content-CNN [11], Deep Embed [12]. 

Strikingly, our model achieves on-par results even without using any post-processing 

and regularization. For non-occlusion, our results even exceed them. Besides, we also 

compare with other cost aggregation methods including CAT [33] and S+GF [4]. 

Table 8 shows the comparisons on the KITTI 2015 benchmark, which demonstrates 

the same results as KITT 2012 benchmark. 

Qualitative results are depicted in Figure 2. We can observe that our method per-

forms well in the textureless regions, for instance, the road. However, it suffers from 

the occlusion regions where pixels appearing in the reference image are occluded in the 

target image. This is due to we do not use any post-processing and regularization. We 

leave this problem of designing a robust post-processing module for future investiga-

tions. 

5 Conclusions 

We successfully demonstrate a method that can achieve competitive results on KITTI 

2012 and KITTI 2015 benchmarks even without any additional post-processing and 

regularization. Firstly, a new multi-scale sub-network for matching cost computation is 

proposed, in which two different sizes of receptive fields are implemented parallelly to 
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Fig. 2. Qualitative results on KITTI2015 benchmark. From left: left stereo input image, disparity 

prediction, error map. 

balance the trade-off between the increase of receptive field and the loss of detail. Then, 

a multi-dimension aggregation sub-network containing 2D convolution and 3D convo-

lution operations is designed to provide rich context and semantic information for esti-

mating an accurate initial disparity. 

In our present work, we only focus on the matching cost computation and cost ag-

gregation steps in the pipeline for stereo matching without using any additional post- 

processing and regularization. Therefore, our next goal is to design a robust post-pro-

cessing module which will contribute to an accurate disparity. 
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