
Channel Attention and Multi-level Features Fusion
for Single Image Super-Resolution

1st Yue Lu
Beijing University of

Posts and Telecommunications
Beijing, China

lu yue@bupt.edu.cn

2nd Yun Zhou
Academy of Broadcasting Science

Beijing, China
zhouyung@abs.ac.cn

3rd Zhuqing Jiang
Beijing University of

Posts and Telecommunications
Beijing, China

jiangzhuqing@bupt.edu.cn

4th Xiaoqiang Guo
Academy of Broadcasting Science

Beijing, China
guoxiaoqiang@abs.ac.cn

5th Zixuan Yang
Beijing University of

Posts and Telecommunications
Beijing, China
hsuanr@qq.com

Abstract—Convolutional neural networks (CNNs) have demon-
strated superior performance in super-resolution (SR). However,
most CNN-based SR methods neglect the different importance
among feature channels or fail to take full advantage of the
hierarchical features. To address these issues, this paper presents
a novel recursive unit. Firstly, at the beginning of each unit,
we adopt a compact channel attention mechanism to adaptively
recalibrate the channel importance of input features. Then, the
multi-level features, rather than only deep-level features, are
extracted and fused. Additionally, we find that it will force our
model to learn more details by using the learnable upsampling
method (i.e., transposed convolution) only on residual branch
(instead of using it both on residual branch and identity branch)
while using the bicubic interpolation on the other branch.
Analytic experiments show that our method achieves competitive
results compared with the state-of-the-art methods and maintains
faster speed as well.

Index Terms—Super-Resolution, Convolutional Neural Net-
works, Recursive Unit, Channel Attention, Multi-level Features
Fusion

I. INTRODUCTION

The aim of Single Image Super-Resolution (SISR) [1] is to
recover a high resolution (HR) image from its corresponding
low resolution (LR) input image. SISR is widely used in
computer vision applications such as security and surveillance
imaging, satellite imaging and medical imaging.

Since deep learning has fundamentally changed how com-
puters learn features, the field of SISR makes impressive im-
provements by using Convolutional Neural Networks in recent
years. Dong et al. [2] firstly proposed a fully convolutional
neural network, termed SRCNN, which applies SR after the
bicubic interpolation operation. To improve the representa-
tional power of SR network, Kim et al. [3] successfully trained
a 20 layers model (VDSR) to learn the global residual instead
of the actual whole image, achieving vast improvements over
SRCNN. Kim et al. [4] further proposed a deeply-recursive
convolutional network (DRCN) to efficiently reuse weight
parameters while exploiting a large image context. Lai et al.

[5] proposed LapSRN to progressively predict residual image
in a coarse-to-fine manner with Charbonnier loss, striking a
balance between reconstruction accuracy and execution time.
In DRRN, Tai et al. [6] built a very deep network (up to 52
layers) with deep recursions for SR.

While these methods have significantly improved the per-
formance of SISR, there remain three issues to be noticed:

First, a convolutional feature channel often corresponds to
a specific functionality like texture extraction or intensity de-
tection. Therefore, in certain recursion some feature channels
are more significant than others [7]. However, most of existing
CNN-based SR methods treat the channel relationship equally
without considering different importance or utilizing channel
attention to flexibly adjust features.

Second, when features flow in a network, they can be
roughly divided into original, shallow-level and deep-level
features. These hierarchical features rely on different receptive
fields and therefore carry diverse information. Most of exist-
ing methods, however, do not fully exploit the hierarchical
features or simply combine these features in a element-wise
summation manner. Despite some methods [4]–[6] adopt local
skip connections, their basic recursion is still a plain network
(i.e., cascade of convolutional layers). The same shortage is
also observed in many other computer vision tasks [8], [9].

Third, LapSRN [5] claims that using interpolation to up-
scale input images to the desired spatial resolution increases
unnecessary computational cost and often results in visible
reconstruction artifacts. Therefore, it employs transposed con-
volution both on the residual branch and identity branch,
making two branches become learnable. However, we experi-
mentally find that this strategy not only fails to explicitly learn
sophisticated high-frequency residuals which contain more
image details, but also fluctuates the training process.

To address these issues, we introduce a novel recursive unit
into our model as shown in Fig. 1. Our main contribution is
threefold:
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Fig. 1. The architecture of our proposed network (for 2× SR), recursive unit and channel attention. The symbol ‖ indicates concatenation and GP denotes
the global average pooling operation. Each convolution layer has a LReLU activation before it, and for concision, we omit it.

• Channel Attention: At the beginning of the recursive unit,
we utilize a channel attention mechanism to adaptively
recalibrate the channel importance of input features.

• Multi-level Features Fusion: We extract the deep-level
features and aggregate multi-level features simultane-
ously. Moreover, the LR feature map, extracted from first
Conv layer, is added at the end of each recursive unit.

• Focusing more on details learning: We use transposed
convolution to upscale the residual branch and bicubic
interpolation to upscale the identity branch. Experiments
show that using a fixed method on one branch and modify
the other branch is better than mutual adjustment.

II. PROPOSED METHOD

In this section, we will formulate the proposed method,
including the recursive unit and overall structure.

A. Recursive Unit

The recursive unit is built upon the channel attention and
multi-level features fusion. Let Uk−1, Uk ∈ RH×W×C denote
the input and output of k-th recursive unit, where C represents
the number of feature map channels.

Channel Attention: Our goal is to obtain a discrimina-
tive input feature of a certain recursion. Inspired by [10],
a lightweight channel attention mechanism is introduced,
which allows for global information to selectively emphasise
informative features and restrain less useful ones via a one-
dimensional vector βββ = [β1, ..., βi, ...βC ]. Each scalar βi
represents the calibration factor of i-th channel. As illustrated
in Fig. 1, we first adopt a global average pooling across

spatial dimensions H ×W to extract the global information
ααα ∈ R1×1×C from Uk−1. Then, it is followed by a dimension
reduction layer with reduction ratio 4, a LReLu activation, a
dimension increase layer and a sigmoid activation to generate
βββ. The two computable layers are implemented by fully
connected layers (i.e., 1× 1 convolution layers). The final
output of the recalibration (denoted as Ro ∈ RH×W×C) is
acquired by rescaling the input features Uk−1 with βββ:

Ro = βββ � Uk−1, (1)

where � refers to channel-wise multiplication between the
calibration factor βi and the feature channel uk−1,i ∈ RH×W ,
i = 1, 2, ...C.

Multi-level Features Fusion: In order to make full use
of hierarchical features and further improve the information
flow between layers, unlike LapSRN [5] and DRRN [6], we
fuse multi-level features in a recursive unit rather than only
using deep-level features. As shown in Fig. 1, we denote
Rc1 ∈ RH×W×2C , Rc2 ∈ RH×W×4C as the outputs of the
two concatenation operations:

Rc1 = Ro ‖ H1(R
o), (2)

Rc2 = Rc1 ‖ H2(R
c1) = Ro ‖ H1(R

o) ‖ H2(R
c1), (3)

where the symbol ‖ denotes concatenation and H1, H2 rep-
resent the first two and second two convolution operations
respectively. In Eq. (3), Ro, H1(R

o) and H2(R
c1) can be

considered as original, shallow-level and deep-level features
which are concatenated in the channel dimension. Next, we
utilize a 1× 1 convolution layer to compress this dimension



10-210-1100101

Slower Execution time (sec) Faster

24.4

24.6

24.8

25

25.2

25.4

25.6
P

S
N

R
 (

dB
)

SRCNN

VDSR
DRCN

LapSRN

DRRN Ours

Fig. 2. Runtime and performance trade-off. The results are evaluated on
Urban100 [11] with the scale factor 4×.

to C. To solve the gradient vanishing problem, the compressed
feature map is finally added to the LR feature map U0:

Uk = H3(R
c2) +U0, (4)

where H3 refers to the function of 1× 1 convolution layer.

B. Overall Structure

We adopt the pyramid structure to recover HR images,
which is introduced by [5]. Fig. 1 only illustrates the 2× SR
model which consists of the residual branch and the identity
branch. On the residual branch, we use one convolution layer
with LReLU to extract features U0 directly from the LR input.
Then, several recursive units are stacked. Supposing there are
n recursive units, the output Un can be obtained by

Un = Fn(...(F2(F1(U0)))...), (5)

where Fn denotes the function of the n-th recursive unit. To
avoid artifacts, we adopt a transposed convolution layer to up-
sample the global residual image (denoted as IRb). On the
identity branch, the LR input is up-sampled by the bicubic
interpolation instead of a learnable method. In contrast to
LapSRN that performs transposed convolution on the identity
branch, our method stabilizes the training process and focuses
more on image details. The up-sampled image (IIb) is finally
combined with IRb to estimate the HR image (Ihr) via an
element-wise summation, which can be formulated as:

Ihr = Fup1(Un) + Fup2(Ilr) = IRb + IIb, (6)

where Fup1 and Fup2 refer to the upsampling operations on
the residual branch and identity branch respectively.

III. EXPERIMENTS

A. Implementation Details

We train all of the models mentioned later with 291 images,
where 91 images are from Yang et al. (T91) [12] and other 200
images are from Berkeley Segmentation Dataset (BSDS200)

(a)

(b)

(c)

Fig. 3. Reconstruction details for 4× SR. (a) Ground Truth. (b) Ours (using
two learnable branches). (c) Ours (using one learnable branch)

[13]. By following [5], we augment the training dataset via
randomly scaling, rotating and flipping. For testing, we use
three widely used benchmark datasets: Set5 [14], Set14 [15]
and BSDS100 [13]. Our model is evaluated with PSNR and
SSIM. We convert all images into YCbCr color space and only
use the Y-channel to process.

All recursive units share same parameters, and we use 64
convolutional filters for the first two layers and 128 filters
for the second two layers. All convolutional filters (except the
1× 1 convolution layer) have the same kernel size (3× 3) and
are initialized by the method of He et al. [16]. The learning
rate is set to 10−5 and decreased by a factor of 2 for every 80
epochs. We set patch size to 128× 128 and batch size to 64.
Our method is implemented with MatConvNet toolbox [17]
and a NVIDIA GTX 1080ti GPU.

B. Comparison with the State-of-the-Art

Taking the trade-off between runtime and performance into
account, we use 6 recursive units in our method. We compare
the proposed method with 6 SR methods: Bicubic, SRCNN
[2], VDSR [3], DRCN [4], LapSRN [5] and DRRN [6].
The quantitative results of exiting methods are quoted from
their papers and shown in Table I. Our method significantly
outperforms the prior methods (except DRRN) in all testing
datasets and scale factors. Compared with DRRN, our method
performs slightly worse on PSNR while better on SSIM
in most instances, noting that SSIM focuses on measuring
structural and detail similarities. Since both LapSRN and our
method do not train 3× SR model exclusively, we achieve
relatively poor performance of 3× SR.

As for execution time, we use the original codes of the com-
pared methods to evaluate the runtime on a same machine with
3.6GHz Intel i7 CPU (32G RAM) and NVIDIA GTX 1080ti
GPU (11G Memory). Fig. 2 shows the trade-off between the
execution time and performance on Urban100 [11] dataset for
4× SR. Our method is 0.04dB lower than DRRN on PSNR,
but approximately 10 times faster.



TABLE I
BENCHMARK RESULTS. AVERAGE PSNR/SSIM FOR SCALE FACTOR ×2, ×3 AND ×4. RED COLOR INDICATES THE BEST PERFORMANCE AND BLUE

COLOR INDICATES THE SECOND BEST PERFORMANCE.

Dataset Scale Bicubic SRCNN [2] VDSR [3] DRCN [4] LapSRN [5] DRRN [6] Ours

Set5
×2 33.66/0.9299 36.66/0.9542 37.53/0.9587 37.63/0.9588 37.52/0.9591 37.74/0.9591 37.69/0.9598
×3 30.39/0.8682 32.75/0.9090 33.66/0.9213 33.82/0.9226 33.82/0.9227 34.03/0.9244 33.94/0.9233
×4 28.42/0.8104 30.48/0.8628 31.35/0.8838 31.53/0.8854 31.54/0.8855 31.68/0.8888 31.67/0.8888

Set14
×2 30.24/0.8688 32.45/0.9067 33.03/0.9124 33.04/0.9118 33.08/0.9130 33.23/0.9136 33.20/0.9139
×3 27.55/0.7742 29.30/0.8215 29.77/0.8314 29.76/0.8311 29.79/0.8320 29.96/0.8349 29.89/0.8340
×4 26.00/0.7027 27.50/0.7513 28.01/0.7674 28.02/0.7670 28.19/0.7720 28.21/0.7720 28.21/0.7726

BSDS100
×2 29.56/0.8431 31.36/0.8879 31.90/0.8960 31.85/0.8942 31.80/0.8950 32.05/0.8973 32.00/0.8971
×3 27.21/0.7385 28.41/0.7863 28.82/0.7976 28.80/0.7963 28.82/0.7973 28.95/0.8004 28.88/0.8000
×4 25.96/0.6675 26.90/0.7101 27.29/0.7251 27.23/0.7233 27.32/0.7280 27.38/0.7284 27.37/0.7294

TABLE II
ABLATION EXPERIMENTS OF OUR MODEL ON SET5 FOR 4× SR.
REMOVING EACH COMPONENT WILL DEGRADE PERFORMANCE.

Fusion Attention Learnable Branch Set5√
One 31.62√
One 31.58√ √
Two 31.66√ √
One 31.67

C. Network Analysis

To demonstrate the effect of each component, we carry
out four ablation experiments of channel attention, multi-level
features fusion and the number of learnable branches (i.e.,
using bicubic interpolation or transposed convolution in the
identity branch). By removing the multi-level features fusion,
our model falls back to a network similar to LapSRN [5] but
with the channel attention. The results confirm that making
full use of multi-level features will significantly improve
performance. One possible reason is that fusing hierarchical
features improves the information flow and eases the difficulty
of training. We can conclude from Table II that the model
with full components achieves the best performance. Fig. 3
shows the different reconstruction details between the two
learnable branches and one learnable branch. Although using
one learnable branch improves only 0.01dB on PSNR, it gets
much better visual effects in image details.

IV. CONCLUSION

In this paper, a novel recursive unit is proposed for boosting
single image super-resolution. The proposed unit first performs
channel recalibration on input features, and then the multi-
level features are extracted and fused. Moreover, we use
transposed convolution on the residual branch and bicubic
interpolation on the identity branch, which reconstructs more
details in terms of visual perception. Experiments show that
our network achieves competitive reconstruction performance
and maintains faster execution speed.
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