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Abstract—We take advantage of the popularity of deep con-
volutional neural networks (CNNs) and have developed a very
simple image quality assessment method that rivals state of the
art. We show that convolutional layer outputs (deep features) of a
CNN compute the local structural information of spatial regions
of different sizes in the input image. The learned convolutional
kernels contain a much richer set of weights thus capturing much
more local structural information than hand crafted ones. As the
deep features learned from large datasets already contain very
rich multi-resolutional structural image information, they can be
directly used to calculate visual distortion of an image and it
is not necessary to introduce further complicated computational
process. We will present experimental results to demonstrate that
this is indeed the case, and that simple cosine distance of the deep
features is as good as state the art methods for full reference
image quality assessment.

Index Terms—CNN, deep features, image quality assessment

I. INTRODUCTION

Deep convolutional neural networks have been demon-
strated to be able to achieve state of the art performance in
many computer vision tasks and learn remarkably powerful
(deep) features for representing visual information. Although
still very difficult to interpret, the deep features are able to
generalize surprisingly well from one task to another under the
framework of transfer learning. In addition to high level visual
recognition problems, deep features have been also success-
fully used to solve different image transformation tasks like
style transfer and super-resolution [1] and image generation
[2]. In particular, perceptual loss functions defined in the deep
feature space have been successfully used to measure high-
level image similarities.

In this paper, we demonstrate another potentially very
useful image processing application of the deep features and
through which we attempt to gain a better understanding of
the nature of deep features. We show that the convolutional
layers’ outputs actually can capture multi-resolution structrual
information of a local spatial region of different sizes in the

input image. As the learned convolutional kernels contain a
much richer set of weights thus capturing more local structural
information than hand-crafted features such as those used in
SSIM [3], it is expected that using the deep features will
outperform hand crafted features. Also, as the deep features
have already contained a rich set of multi-resolutional struc-
tural image information, they can be directly used to calculate
the visual distortion of an image and it is not necessary to
introduce more complicated computational process.

II. RELATED WORK

The simplest objective image quality metric is Peak Signal
to Noise Ratio (PSNR), which represents the ratio between
the maximum possible power of a signal and the power of
distortion noise, which is based on per-pixel mean squared
error (MSE) between the original image and the distorted
image. In general, a higher PSNR value usually indicates better
image quality, however in some cases it could not generalize
well to perceived visual quality [4], [5], [6], [7]. In particular,
for image reconstruction or generation tasks the output images
tend to be very blurry when compared to natural images.

Another widely used is SSIM index [3], which is a more
perceptual-based approach by comparing the structures of the
reference and the distorted signals instead of absolute point-
wise error. SSIM is based on the assumption that the human
visual system is highly adapted to extract structural informa-
tion from visual information and considers image degradations
as perceived changes in structural information variation.

Additionally complex wavelet structural similarity (CW-
SSIM) index [8] is proposed as an extension of the SSIM to the
complex wavelet domain as a general purpose image similarity
metric. The key idea is that certain image distortions can lead
to consistent phase change in the local wavelet coefficients,
and the structural content of the image doesn’t change with a
consistent phase shift of the coefficients.

The image quality assessment indexes mentioned above are
purely based on human-crafted features, and the key insight
is to design better method by incorporating the structural
information to measure the inconsistency (or similarity) of a



Fig. 1. 64 convolutional kernels of size 3 × 3 × 3 learned by the first
convolutional layer of pretrained VGGNet [13].

given pair of images. In recent years, there have been a number
of authors attempted to develop deep learning based image
quality assessment methods [9], [10], [11], [12]. Whilst these
deep learning based methods use the deep neural network in
some sophisticated manner, we argue that the convolutional
layer outputs of the deep neural network can be directly used
to measure image quality.

III. DIRECT DEEP FEATURE BASED IMAGE QUALITY
ASSESSMENT

A. Rationale

The success of SSIM and CW-SSIM is mainly through
incorporating structural information of an image either in pixel
or complex wavelet domain. In parallel, the fact that natural
image signals are highly structured has been exploited by the
deep CNNs to build state of the art object recognition models.
In particular, CNNs use a set of filters or kernels like 3×3×3
(i.e. 3 pixel width and height, and 3 channel depth) to spatially
convolve across the width and height of the input volume to
compute dot products between the entries of each filter and
the corresponding pixels of the input image. Thus, each output
of a convolutional layer is a weighted combination of the
pixels in a local region. Conceptually these kind of convolution
operations are able to capture the structural information due to
the local connectivity. Exactly what it is capturing depends on
the weights of the filters. Previous works on image recognition
tasks have shown that deep convolutional neural networks
can learn interpretable filters based on a large-scale dataset.
Fig. 1 shows the 64 convolutional kernels of size 3 × 3 × 3
learned by the first convolutional layer of VGGNet [13] trained
on ImageNet [14]. We can see that there are a variety of
meaningful frequency and orientation-selective kernels.

At each hidden layer, a deep feature covers a different size
of an input receptive field as illustrated in Fig. 2. Equivalently,
a deep feature in convolutional layer 1 computes the local
structure of a 3x3 spatial block. Inspecting the convolutional
weights in Fig. 1, it is not difficult to see that some filters
will compute the local luminance or weighted average (when
all weights have the same signs), some will compute local
contrasts along different directions (when the weights have
both positive and negative values). For higher layers, each
hidden unit covers a (larger and larger) local block in the
input image and it can be regarded as a multi-resolutional
image information.

Fig. 2. Deep features at different hidden layers and their corresponding
equivalent receptive field size. In essence, each hidden layer unit (deep feature)
computes the local pixel structure of its corresponding receptive field region.

From above reasoning, it is very clear that the hidden unit
outputs of a CNN computes various visually meaningful local
features such as the local luminance values and contrasts
of various types depending on the weight values. As a pre-
trained CNN (such as the VGGNet) will have a variety of
filtering kernels, it is very clear that the deep features of a
CNN are in fact computing the local structural information
of the image. Based on previous successful image quality
measurements based on hand-crafted features for computing
the local structural information of an image such as the well-
known SSIM [3] method, deep features learned from large
dataset will contain richer local structure information and can
be directly apply to measure image quality and be expected
to outperform hand-crafted features. We will demonstrate this
is indeed the case.

B. Deep Feature Based Image Quality Assessment

Based on the above rationale, we directly use the deep
features of a pre-trained CNN to develop the deep feature
based image quality assessment (DFB-IQA). Our DFB-IQA
index tries to provide a good approximation to perceived image
distortion by incorporating image pixel spatial correlation and
object structure information, which are implicitly captured
by the learned filters through a large-scale image dataset
training instead of human engineering. In other words, the
proposed DFB-IQA index measures the structural similarity of
two images in the learned feature space. The final DFB-IQA
index is defined as the cosine distance of feature representation
(flattened as a vector) of a reference image x and the distorted
image x̃ as follows:

DFB IQA(x, x̃) =
Φi(x) ·Φi(x̃)

‖Φi(x)‖2 ‖Φi(x̃)‖2
(1)

where Φi(x) and Φi(x̃) are the ith hidden activations
when feeding the input image x and distorted image to
pretrained VGGNet work Φ.

IV. EXPERIMENTS

A. Testing dataset

In this work, we evaluate the proposed DFB-IQA index
on Release 2 version of LIVE Image Quality Assessment
Database [15], [3], [16], which is a large dataset including
30 reference images and 779 distorted versions with JPEG
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Fig. 3. Scatter plots of mean opinion scores (MOS) versus PSNR, SSIM,
CW-SSIM and DFB-IQA. DFB-IQA-Mean is the average result of different
image quality indexes based on 5 different convolutional layer.

compression, JPEG2000 compression, gaussian blur, white
noise and fast fading rayleigh. The difference mean opinion
score (DMOS) (1 to 100) value for each distorted image is
provided according to human rating. In our experiments, we
convert difference mean opinion score (subtracted by 100) to
mean opinion score (MOS) for comparison.

B. Results

We conduct experiments to compare the performance
of the proposed DFB-IQA index with PSNR, CW-
SSIM[8], MSSIM[3], FSIMc[17], BIFS[18], IGM[19] and
DeepSim[10]. On the other hand, due to the hierarchical
architecture of deep convolutional neural network we also
investigate the effect of different level features on the per-
formance of DFB-IQA.

In order to get a more comprehensive comparison of
different image quality assessment algorithms, we show the
correlation map of MOS versus different model predictions
with different types of distortions. The DFB-IQA-Mean index
is based on the average of the 5 convolutional layers. From
Fig. 3, we can see that the proposed DFB-IQA performs
quite well in this test and behaves consistently with MOS.
Though SSIM performs well for a single type of distortion,
it cannot generalize well for cross-distortion testing. On the
contrary, the scatter plot of DFB-IQA index is more compact,
demonstrating that it provides remarkably good prediction of
the mean opinion scores.

In addition, we investigate the effect of different level
features on the performance of DFB-IQA for subjective MOS
prediction. In Fig. 4, we show the scatter plots of MOS
versus DFB-IQA by using layer conv1 1, conv2 1, conv3 1,
conv4 1, conv5 1 and the average results of the 5 layers. We
can observe the trend that DFB-IQA indexes constructed from
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Fig. 4. Scatter plots of mean opinion scores (MOS) versus DFB-IQA indexes
calculated by different convolutional layers. DFB-IQA-Mean is the average
result of different image quality indexes based on 5 different convolutional
layer.

higher layers behave more consistently with mean opinion
scores when applied to distorted images created from different
types of distortions. Specifically, there is an obvious diver-
gence in the scatter plot for white noise distortion in lower
layers (conv1 1 and conv2 1), while it shows a more compact
distribution for all types of distortions by using higher layers
(conv4 1 and conv5 1). This could be explained that higher
layers of the convolutional neural network mainly capture the
high-level content in terms of objects and overall structures
with bigger receptive field size instead of limiting to detailed
pixel information. From Fig. 2, it can be easily understood
because these higher layers cover a larger receptive field in
the input image. Thus, the difference between different types
of distortions will not be quite significant, what matters is the
degradation degree for each type of distortion method.

We further conduct quantitative experiments to measure
the performances of different image quality assessment al-
gorithms, i.e, root mean squared error (RMSE), CW-SSIM
[8], MSSIM [3], FSIMc [17], BIFS [18], IGM [19] DeepSim
[10]. We adopt three widely used criteria for evaluating the
performance of different IQA methods, i.e. the Pearson’s linear
correla- tion coefficient (PLCC), Spearman’s rank-order corre-
lation coefficient (SRCC), and Kendall’s rank-order correlation



TABLE I
PERFORMANCE COMPARISON OF DIFFERENT IMAGE QUALITY

ASSESSMENT INDEXES.

Method PLCC SRCC KRCC
RMSE 0.742 0.677 0.500

CW-SSIM[8] 0.690 0.788 0.592
MSSIM[3] 0.668 0.646 0.463
FSIMc[17] 0.818 0.864 0.673
BIFS[18] 0.884 0.855 0.667
IGM[19] 0.886 0.856 0.668

DeepSim[10] 0.885 0.877 0.683
DFB-IQA1 0.703 0.833 0.636
DFB-IQA2 0.816 0.886 0.701
DFB-IQA3 0.849 0.914 0.740
DFB-IQA4 0.866 0.913 0.737
DFB-IQA5 0.890 0.906 0.727

DFB-IQA-Mean 0.825 0.890 0.708

coefficient (KRCC) between the predicted quality scores and
MOS.

The evaluation results are shown in Table I. All the results
are calculated based on all types of distortions in the Release
2 version of LIVE Image Quality Assessment Database [16].
The DFB-IQA1 to DFB-IQA5 are calculated based on the
features extracted from the conv1 1 to conv5 1 layer and
DFB-IQA-Mean is the average result of image quality indexes
of 5 different convolutional layers. We can see that our
proposed DFB-IQA methods work well in general and achieve
new state of the art on this dataset. It is demonstrated that
DFB-IQA index has a better consistency and more stable
correlation with subjective mean opinion scores in cross-
distortion evaluation. In addition, when compared the perfor-
mance with different convolutional layers, it is clear that the
image quality indexes computed based on middle and high
level features perform better with higher PLCC, SRCC and
SRCC values. We can conclude that the learned representation
from deep convolutional neural network can effectively capture
the perceived changes of image quality degradation. What’s
more, it could give us a few insights for the learned features
from the perspective of image quality assessment that why they
can be used to construct perceptual loss functions for different
image transformation tasks [1], [20], [21], [2]. Finally, it is
interesting to observe that our direct application of layer 5
deep features to compute the image quality performs better
than a recent more elaborated deep learning based method
[10] in this dataset, further demonstrating correctness of the
technical rationale of direct application of deep features for
image quality assessment.

V. CONCLUDING REMARKS

In this paper, we propose the use of learned features to
design image quality assessment metrics under deep learning
framework. The key insight is the capability of pretrained
deep convolutional neural network to incorporate structural
and perceptual image information in its hidden features, which
can be directly used as an alternative to hand crafted features
for the design of image quality measures. Our experiments
demonstrate the effectiveness of the proposed DFB-IQA index

with respect to subjective mean opinion scores prediction
in cross-distortion settings. DFB-IQA can be seen as an
alternative or complementary to traditional approaches like
SSIM, which tries to incorporate structural information by
human engineering while DFB-IQA seeks to extract image
pixel spatial correlation and object structure information from
learned features based on image recognition tasks.
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