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Abstract—Intra prediction is an essential component in the
image coding. This paper gives an intra prediction framework
completely based on neural network modes (NM). Each NM can
be regarded as a regression from the neighboring reference blocks
to the current coding block. (1) For variable block size, we utilize
different network structures. For small blocks 4×4 and 8×8,
fully connected networks are used, while for large blocks 16×16
and 32×32, convolutional neural networks are exploited. (2) For
each prediction mode, we develop a specific pre-trained network
to boost the regression accuracy. When integrating into HEVC
test model, we can save 3.55%, 3.03% and 3.27% BD-rate for Y,
U, V components compared with the anchor. As far as we know,
this is the first work to explore a fully NM based framework for
intra prediction, and we reach a better coding gain with a lower
complexity compared with the previous work.

Index Terms—Intra prediction, image compression, deep learn-
ing, fully connected layer, convolutional neural network

I. INTRODUCTION

Intra prediction is used to remove the spatial redundancy in
the image/video coding. For each block, the predicted pixels
are the linearly interpolated results based on the neighboring
pixels. To enhance the prediction accuracy, more prediction
modes and block sizes have been developed in the past
standards. For the modes, the amount has been extended from
9 in H.264 [1] to 35 in HEVC [2]. For the block size, the
largest block has been enlarged from 16×16 in H.264 to
64×64 in HEVC. Though providing more prediction modes
and blocks can improve the coding gain, there is a limitation
especially for the blocks without explicit directional texture.

So far, all the standards utilized a single reference line
composed of upper and left pixels. To further extract the
correlation between adjacent pixels, multiple reference lines
are used. As reported in [3], using more reference pixels
could reach up to 4.3% coding gain. In addition, to obtain the
non-linearity and a high-level relationship between reference
blocks and current block, deep learning has been used for intra
prediction in several literature. Li et al. [4] exploited fully
connected (FC) networks for various block sizes from 4×4
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to 32×32. Dumas et al. [5] stated that using convolutional
neural network (CNN) performs better than FC for blocks
larger than 8×8. Hu et al. [6] presented a new structure based
on recurrent neural network (RNN). Sun et al. [7] studied
different combination schemes of traditional modes (TM) and
neural network modes (NM) for the fixed block 8×8. Zhu et
al. [8] regarded intra prediction as an inpainting problem and
provided 35 NMs for 64×64.

Though the previous works have achieved significant coding
gain, there are still some remaining problems. First is that TM
still remains in the coding framework. In [4], [5] and [6], one
or two NMs were provided. In [7], at most seven NMs were
exploited. As a result, the hybrid mode handling of TM and
NM might lead to biased selection to one of them. Second is
that the complexity is extremely high for some networks such
as [8] which is more than 5000x decoding complexity.

In this paper, different from the hybrid mode handling in
previous works, we explore a fully NM based intra coding
framework. The contributions are listed in the follows.

• For all the 35 modes of variable block sizes from 4×4
to 32×32, we propose a corresponding network model.

• For the small blocks 4×4 and 8×8, FC networks are
presented. For the large blocks 16×16 and 32×32, CNN
are used.

• We select the optimized model by exploring the coding
gain and complexity, and analyze the probability of the
best NM for the mode signaling.

II. TRADITIONAL AND LEARNED INTRA PREDICTION

A. HEVC Intra Prediction

HEVC provides 35 TMs, which can be categorized to non-
directional and directional. Non-directional TMs are composed
of Planar and DC. For the 33 directional TMs, the prediction is
performed according to the predictive angles. About the mode
signaling of 35 TMs, first, one bin is consumed to represent
whether the mode is among the most probable mode (MPM)
set or not. If so, one or two bins are used to indicate the
MPM index. Otherwise, five bins are cost to represent the
mode among the remaining 32 TMs as shown in Table I.978-1-7281-8068-7/20/$31.00 ©2020 IEEE
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TABLE I: Mode signaling for 35 TMs
Mode MPM0 MPM1 MPM2 Non-MPM

Codeword 10 110 111 0{5bins}

Fig. 1: Network for block 4×4 and 8×8. N is the block size.

B. Learned Intra Prediction with Appending and Substitution
Scheme

When introducing NMs, there are two schemes to integrate
NMs with TMs as described in [7]. One is appending scheme
that is to append NMs to all the 35 TMs. In this case,
additional flags are required to signal the new modes. The
other is substituting TMs by NMs. In this case, since the
overall number of modes is the same as origin, the signaling
scheme follows Table I. As reported in [5] and [7], the
coding gain by appending scheme is obviously larger than
the substitution scheme. However, the substitution scheme is
only limited to at most three modes in [7]. In this work, we
extend the number from 3 to 35 to create a fully NM-based
framework.

III. PROPOSED FULLY NEURAL NETWORK MODE BASED
INTRA CODING FRAMEWORK

A. Network Structure Analysis

As described in [5], FC and CNN are suitable for smaller
and larger blocks respectively. Motivated by [5], we also use
FC network for 4×4 and 8×8 as shown in Fig. 1. First, the
neighboring references blocks are flattened to one-dimension
vector with (4×N+8)×8 nodes. By passing through four FC
layers, we reshape the one-dimension vector to two-dimension
N×N block. The number of nodes for each layer is determined
according to the analysis of the coding gain and complexity.
The coding gain is evaluated by PSNR and the complexity
is measured by FLOPs. The results are shown in Table II.
We first train a baseline heavy model with 512 nodes, and
then reduce the number of nodes by half. When reducing the
number of nodes to 256 and 128, the coding loss is small.
However, when further reducing the dimension to 64, there is
an obvious coding loss that is 0.21dB (25.03dB-24.82dB) for
4×4 and 0.34dB (27.08dB-26.74dB) for 8×8. Therefore, we
select the node as 128.

For larger blocks, we utilize a CNN network as shown
in Fig. 2. To keep the spatial information, the above three
blocks and the left two blocks are sent to two separate
convolutional paths. The convolutional path is composed of
several convolutional layers as shown in Table III. For each
path, we conduct the down-sampling to obtain the latent
information, and then flatten to one-dimensional vector. Two
vectors are concatenated and then pass a FC layer. The number
of outputs nodes of the FC layer is 1/5 of the input nodes.
Finally, we reshape to two-dimension and use deconvolutional
layers to up-sample to the original block size N×N. The

TABLE II: Select the number of node/filter based on the trade-off
between coding gain (PSNR) and complexity (FLOPs)

Node/Filter 512 256 128 64
TU 4×4 PSNR (dB) 25.09 25.06 25.03 24.82

FLOPs (K) 1270 373 121 44
Node/Filter 512 256 128 64

TU 8×8 PSNR (dB) 27.26 27.20 27.08 26.74
FLOPs (K) 1450 464 167 67
Node/Filter 64 32 16 8

TU 16×16 PSNR (dB) 28.24 28.25 28.13 27.93
FLOPs (M) 97.5 24.5 6.4 1.7
Node/Filter 64 32 16 8

TU 32×32 PSNR (dB) 29.44 29.37 29.41 29.29
FLOPs (M) 547.2 138.4 35.4 9.2

Fig. 2: Network for block 16×16 and 32×32. N is the block size.

selections of filters and strides are shown in Table III. We
use four and five convolutional layers for 16×16 and 32×32,
respectively. Different from [5], we utilize PReLU as the
activation function. The number of filters F is selected as 16
for 16×16 and 32×32 as a trade-off between coding gain and
complexity as shown in Table II.

Though [5] has concluded that using convolutional layers
could help the prediction of larger block such as 16×16, the
conclusion was drawn when utilizing one NM. To ensure that
this conclusion also works for all the 35 NMs, we adopt a
heavy FC network with 1024 nodes, and the PSNR comparison
between FC and CNN network for 16×16 is shown in Fig. 3.
We can see that even using a powerful FC model with large
nodes, the average performance is still worse than CNN model
in most scenarios. In addition, CNN model is better than the
original TM in almost all the cases.

B. Coding Framework with Fully Neural Network Modes

There are overall 35 NMs, we select the best NM by the
following steps. First, several candidate modes are selected by
sum of absolute transformed differences (SATD) cost. Eight
candidates are picked up for block 4×4 and 8×8, while three
candidates are chosen for the other blocks. In addition to the
candidate modes selected by SATD, MPMs are also appended
in the candidate mode list. After creating the candidate mode
list, the best NM is determined by comparing the R-D cost.

The mode signaling for the 35 TM in Table I was designed
based on probability analysis. Modes with higher probability
to be the best mode will be allocated fewer bins. Given that
we have two following equations

P (M = BM |M ∈MPM) > P (M = BM |M ∈ Non−MPM))
(1)

P (MPM0 = BM) > P (M = BM |M ∈ {MPM1,MPM2}))
(2)

where BM is the best mode, thus MPMs are allocated fewer
bins compared with Non-MPMs. Among MPMs, MPM0 is
allocated one fewer bin than the other two MPMs.



TABLE III: Convolutional layer structures for 16×16 and 32×32
16×16 32×32

Layer
number

Kernel
size

Filter
number

Stride Kernel
size

Filter
number

Stride

1 5×5 F 2 5×5 F 2
2 3×3 F 1 5×5 2F 2
3 5×5 2F 2 5×5 4F 2
4 3×3 2F 1 5×5 8F 2
5 - - - 3×3 8F 1
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Fig. 3: PSNR comparison of FC and CNN network for 35 modes of
16×16.

However, Eq. 1 and Eq. 2 are for TM. To ensure that
this mode signaling is applicable to 35 NM, we analyze the
probability for the sequence RaceHorses at QP32, and the
results are shown in Table IV. We can see that MPM still
owns larger probability than non-MPM in our proposal, which
is 59.9% against 40.1%. Among MPMs, MPM0 has 29.2% to
be the best mode which is higher than MPM1 and MPM2.
We also evaluate the probability of TMs being the best mode
in the original case. We can see that there is no obvious bias
between the probability distribution of our proposal and origin.

About the composition of the MPM, when MPM0 and
MPM1 are not same, we set MPM2 as one of Planar (mode 0),
DC (mode 1) and Vertical (mode 26) considering that these
three modes have the highest probability to be the best mode.
Therefore, we also evaluate the probability of all the 35 NMs
to be the best mode in Fig. 4. We can see that mode 0, 1 and
26 still own the highest probability in our proposals.

IV. TRAINING PROCESS

The training is a regression problem from reference blocks
R to original block Y with the network parameter θ. The loss
function is composed of MSE and a regularization term as
given in Eq. 3

J(θ) =
1

M

M−1∑
m=0

||F (Rm, θ)− Y m||2 + λ||θw||22 (3)

where λ is set as 0.0005 and the batch size M is 16. We
used the New York city library [9] as the training set. We
encode each image with four QPs (22, 27, 32, 37), and the
best block is used for the training set Γ =

⋃34
0 Γi where i

is the mode number and Γi is composed of the blocks which
select i as the best mode. First, we train one baseline model
based on all the training set Γ. After that, we fine tune the

TABLE IV: Probability to be the best mode for MPMs and Non-
MPMs in the case of using TM and NM

MPM0 MPM1 MPM2
⋃

{32 Non-MPMs}
Origin (35 TMs) 29.5 18.7 14.9 36.9

Proposal (35 NMs) 29.2 16.7 14.0 40.1
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Fig. 4: Probability of 35 NMs and TMs to become the best mode.

baseline model for each specific mode i from 0 to 34 based
on the corresponding training set Γi. The training procedures
are shown in Algorithm 1. ADAM [10] is used as the optimizer
and the learning rate is set as 0.0001 and 0.0004 for FC and
CNN network respectively.

Algorithm 1 Proposed Training Method for 35 NMs

1: for training iterations I1 = card(Γ)
M

do
2: Update θ with ADAM optimizer
3: end for
4: Obtain baseline model with θ
5: for each mode i do
6: for fine tuning iterations I2 = card(Γi)

M
do

7: Update θi with ADAM optimizer
8: end for
9: return θi

10: end for

V. EXPERIMENTAL RESULTS

A. Coding Gain Analysis

We integrate the proposal into HM 16.9 [11], and test the
first frame of the sequences in Table V. We strictly follow
the coding configuration of ”all-intra main” given by HEVC
common test condition (CTC) [12]. Four QPs (22, 27, 32,
37) are tested, and the coding efficiency comparison with the
anchor (original HM16.9) is measured by BD-rate [13]. It
should be noted that there is no overlap between training set
[9] and test set [12].

The results of BD-rate are shown in Table V. The results
show that we can save BD-rates for all the test sequences. On
average, 3.55%, 3.03% and 3.27% Y, U, V BD-rate can be
saved compared with the anchor. Compared with [4], we can
achieve large BD-rate reduction for all the three channels. We
also compare the class-level results to the three previous works
with the same-level complexity in Table VI. When using the
proposed model, we can also achieve best coding gain at Class
B and E among all the works.



TABLE V: Coding gain comparison with previous work

Class Sequence TIP [4] Proposal
Y U V Y U V

A

Tango -7.4 -0.8 -4.3 -7.08 -7.27 -6.74
Drums100 -3.8 -1.6 -1.6 -2.94 -3.25 -3.15

CampfireParty -3.0 -3.3 -3.0 -1.37 -1.99 -1.51
ToddlerFountain -3.4 2.8 -1.5 -2.75 0.14 -1.71

CatRobot -4.2 -2.4 -2.6 -4.13 -3.23 -3.58
TrafficFlow -4.2 -1.3 -1.3 -4.62 -2.89 -2.41

DaylightRoad -4.5 0.1 -1.8 -4.85 -3.49 -4.15
Rollercoaster -5.8 -3.7 -2.7 -5.11 -4.48 -4.45

Average of Class A -4.5 -1.3 -2.4 -4.11 -3.31 -3.46

B

Kimono -3.1 -2.1 -1.5 -2.58 -3.25 -2.91
ParkScene -3.6 -2.2 -2.4 -2.58 -2.33 -2.23

Cactus -3.2 -1.8 -1.5 -4.27 -1.82 -4.10
BQTerrace -2.1 -1.3 -0.5 -4.72 -2.41 -2.59

BasketballDrive -3.6 -2.9 -2.7 -2.48 -1.53 -2.77
Average of Class B -3.1 -2.1 -1.7 -3.33 -2.27 -2.92

C

BasketballDrill -1.5 -3.3 -2.2 -2.70 -4.75 -4.28
BQMall -2.2 -1.9 -1.0 -2.03 -2.53 -3.14

PartyScene -1.6 -1.2 -0.1 -1.81 -1.62 -1.20
RaceHorsesC -3.2 -1.9 -2.8 -3.01 -1.98 -2.80

Average of Class C -2.1 -2.1 -1.5 -2.39 -2.72 -2.85

D

BasketballPass -1.2 -0.3 1.1 -2.32 -2.01 -1.31
BQSquare -0.9 -0.1 -2.8 -1.77 0.24 -2.34

BlowingBubbles -1.9 -2.8 -3.5 -1.76 -4.23 -3.36
RaceHorses -3.2 -2.6 -2.8 -3.52 -4.08 -4.38

Average of Class D -1.8 -1.5 -2.0 -2.34 -2.52 -2.85

E
FourPeople -4.4 -4.5 -3.1 -5.81 -5.05 -4.81

Johnny -5.3 -3.1 -3.5 -5.33 -4.06 -3.75
KristenAndSara -3.9 -3.0 -3.1 -5.55 -4.91 -4.70

Average of Class E -4.5 -3.5 -3.2 -5.56 -4.67 -4.42
Average of All Squences -3.4 -1.9 -2.1 -3.55 -3.03 -3.27
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Fig. 5: R-D comparison at low bitrates (QP37). [4] achieved smaller
bitrates than the anchor at the cost of worse PSNR, while we can
achieve both smaller bitrates and better PSNR.

To clarify the relationship of bitrate and PSNR when using
the proposal, we give the R-D results of QP37 of the sequence
KristenAndSara and BQSquare in Fig. 5. We can see that
we can save bitrates when achieving better PSNR compared
with the anchor. The method [4] can also reduce the bitrate.
However, there is some PSNR loss. It is because [4] appended
NMs. In the case of NM being the best mode, the number of
bit consumption for the mode signaling can be significantly
reduced while the coding quality is also degraded.

B. Coding Complexity Analysis

In addition to the coding gain, we also evaluate the coding
time in Table VII. The evaluation is executed on Intel Core i7-
7820X CPU@3.60GHz with 32GB memory. Same as previous
works, we measure the time under the CPU platform. When
using the proposed model, 36x and 174x encoding and decod-
ing complexity is cost. Compared with [4], 60% encoding and

TABLE VI: Class-level Y-BD-rate comparison with previous works
TIP [4] TIP [5] TMM [6] Proposed

Class A -4.5 N/A N/A -4.11
Class B -3.1 -3.24 -2.39 -3.33
Class C -2.1 -3.09 -2.31 -2.39
Class D -1.8 -2.81 -2.54 -2.34
Class E -4.5 N/A -3.68 -5.56

TABLE VII: Coding complexity comparison with previous works
TIP [4] TIP [5] TMM [6] Proposed

Enc. 91x (-60%) 51x (-29%) N/A 36x
Dec. 230x (-24%) 191x (-9%) 207x (-16%) 174x

24% decoding complexity can be reduced. Compared with [5],
29% encoding and 9% decoding complexity can be decreased.
Compared with [6], 16% decoding complexity can reduced.
The relatively low complexity mainly comes from our network
with few nodes or filters.

VI. CONCLUSIONS

This paper proposes a fully NM based intra coding. First,
we propose the network for all the 35 modes of variable block
sizes from 4×4 to 32×32. Second, we propose a coding frame-
work with NM based on the best mode probability analysis.
The experimental results show that we can outperform the
previous works in terms of coding gain and complexity. For the
future work, we will extend the method to the next-generation
video coding standard VVC.
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