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Abstract—An unsupervised online object tracking method that exploits
both foreground and background correlations is proposed and named
UHP-SOT (Unsupervised High-Performance Single Object Tracker) in
this work. UHP-SOT consists of three modules: 1) appearance model
update, 2) background motion modeling, and 3) trajectory-based box
prediction. A state-of-the-art discriminative correlation filters (DCF)
based tracker is adopted by UHP-SOT as the first module. We point
out shortcomings of using the first module alone such as failure in
recovering from tracking loss and inflexibility in object box adaptation
and then propose the second and third modules to overcome them.
Both are novel in single object tracking (SOT). We test UHP-SOT on
two popular object tracking benchmarks, TB-50 and TB-100, and show
that it outperforms all previous unsupervised SOT methods, achieves
a performance comparable with the best supervised deep-learning-based
SOT methods, and operates at a fast speed (i.e. 22.7-32.0 FPS on a CPU).

Index Terms—object tracking, online tracking, single object tracking,
unsupervised tracking

I. INTRODUCTION

Video object tracking is one of the fundamental computer vision
problems and has found rich applications in video surveillance [1],
autonomous navigation [2], robotics vision [3], etc. In the setting of
online single object tracking (SOT), a tracker is given a bounding box
on the target object at the first frame and then predicts its boxes for
all remaining frames [4]. Online tracking methods can be categorized
into two categories, unsupervised and supervised [5]. Traditional
trackers are unsupervised. Recent deep-learning-based (DL-based)
trackers demand supervision. Unsupervised trackers are attractive
since they do not need annotated boxes to train supervised trackers.
The performance of trackers can be measured in terms of accuracy
(higher success rate), robustness (automatic recovery from tracking
loss), and speed (higher FPS).

We examine the design of an unsupervised high-performance
tracker and name it UHP-SOT (Unsupervised High-Performance Sin-
gle Object Tracker) in this work. UHP-SOT consists of three modules:
1) appearance model update, 2) background motion modeling, and 3)
trajectory-based box prediction. Previous unsupervised trackers pay
attention to efficient and effective appearance model update. Built
upon this foundation, an unsupervised discriminative-correlation-
filters-based (DCF-based) tracker is adopted by UHP-SOT as the
baseline in the first module. Yet, the use of the first module alone
has shortcomings such as failure in tracking loss recovery and being
weak in box size adaptation. We propose ideas for background motion
modeling and trajectory-based box prediction. Both are novel in
SOT. We test UHP-SOT on two popular object tracking benchmarks,
TB-50 and TB-100 [6], and show that it outperforms all previous
unsupervised SOT methods, achieves a performance comparable with
the best supervised DL-based SOT methods, and operates at a fast
speed (22.7-32.0 FPS on a CPU).

II. RELATED WORK

DCF-based trackers. DCF-based trackers provide an efficient
unsupervised SOT solution with quite a few variants, e.g., [7]–[14].

Generally speaking, they conduct dense sampling around the object
patch and solve a rigid regression problem to learn a template for
similarity matching. Under the periodic assumption of dense samples,
they learn the template efficiently in the Fourier domain and achieve
a fast tracking speed. Spatial-temporal regularized correlation filters
(STRCF) [12] adds spatial-temporal regularization to the template
learning process and performs favorably against other methods [15]–
[18].

DL-based trackers. DL-based trackers offer a supervised SOT
solution. Some of them use a pre-trained network [19], [20] as a
feature extractor and do online tracking based on extracted deep
features [10], [16], [21]–[23]. Others adopt an end-to-end model that
is either trained by offline video datasets [15], [24] or adapted to the
online video frames [25]–[28]. Recently, Siamese trackers [15], [24],
[29]–[33] are gaining attention due to the simplicity and effectiveness.
They treat the tracking as a problem of template matching in a large
search region. Unsupervised training in large-scale offline datasets
was investigated in [34] and [35].

III. PROPOSED UHP-SOT METHOD

System Overview. There are three main challenges in SOT:

1) significant change of object appearance,
2) loss of tracking,
3) rapid variation of object’s location and/or shape.

To address these challenges, we propose a new tracker, UHP-SOT,
whose system diagram is shown in Fig. 1. As shown in the figure, it
consists of three modules:

1) appearance model update,
2) background motion modeling,
3) trajectory-based box prediction.

UHP-SOT follows the classic tracking-by-detection paradigm
where the object is detected within a region centered at its last
predicted location at each frame. The histogram of gradients (HOG)
and color name (CN) [36] features are extracted to yield the feature
map. We choose the STRCF tracker [12] as the baseline tracker.
However, STRCF cannot handle the second and the third challenges
well, as shown in Fig. 2. We propose the second and the third modules
in UHP-SOT to address them. They are the main contributions of
this work. UHP-SOT operates in the following fashion. The baseline
tracker gets initialized at the first frame. For the following frames,
UHP-SOT gets proposals from all three modules and chooses one
of them as the final prediction based on a fusion strategy. They are
elaborated below.

Spatial-temporal regularized correlation filters (STRCF). In
STRCF, the object appearance at frame t is modeled by a template
denoted by ft. It is used for similarity matching at frame (t + 1).
The template is initialized at the first frame. Assume that the cropped
patch centered at the object location has a size of Nx×Ny pixels at

ar
X

iv
:2

11
0.

01
81

2v
1 

 [
cs

.C
V

] 
 5

 O
ct

 2
02

1



Fig. 1. The system diagram of the proposed UHP-SOT method. In the example, the object was lost at time t − 1 but gets retrieved at time t because the
proposal from background motion modeling is accepted.

Fig. 2. Comparison of the tracking performance of STRCF (red) and UHP-
SOT (green), where the results of UHP-SOT are closer to the ground truth
and those of STRCF drift away.

frame t. Then, the template gets updated at frame t by solving the
following regression equation:

arg min
f

1

2
‖

D∑
d=1

xd
t ∗ fd − y‖2 +

1

2

D∑
d=1

‖w · fd‖2 +
µ

2
‖f − ft−1‖2,

where y ∈ RNx×Ny is a centered Gaussian-shaped map used as
regression labels, xt ∈ RNx×Ny×D is the spatial map of D features,
∗ denotes the spatial convolution of the same feature, w is the spatial
weight on the template, ft−1 is the template obtained from time t−1,
and µ is a constant regularization coefficient. We can interpret the
three terms in the right-hand-side of the above equation as follows.
The first term demands that the new template has to match the
newly observed features accordingly with the assigned labels. The
second term is the spatial regularization term which demands that
regions outside of the box contribute less to the matching result.
The third term corresponds to self-regularization that ensures smooth
appearance change. To search for the box in frame (t+ 1), STRCF
correlates template ft with the search region and determines the box
by finding the location that gives the highest response. Although
STRCF can model the appearance change for most sequences, it
suffers from overfitting so that it is not able to adapt to largely
deformable objects quickly. Furthermore, it cannot recover after

tracking loss.
The template model f is updated at every frame with a fixed

regularization coefficient µ in STRCF. In our implementation, we skip
updating f if no obvious motion is observed. In addition, a smaller µ
is used when all modules agree with each other in prediction so that
f can quickly adapt to the new appearance for largely deformable
objects.

Background motion modeling. For SOT, we can decompose the
pixel displacement between adjacent frames ( also called optical flow)
into two types: object motion and background motion. Background
motion is usually simpler so that it can be well modeled by a
parametric model. Background motion estimation [37], [38] finds
applications in video stabilization, coding and visual tracking. Here,
we propose a 6-parameter model in form of

xt+1 = α1xt + α2yt + α0, and yt+1 = β1xt + β2yt + β0,

where (xt+1, yt+1) and (xt, yt) are corresponding background points
in frames (t + 1) and t, and αi and βi, i = 0, 1, 2 are model
parameters. Given more than three pairs of corresponding points,
we can solve the model parameters using the linear least-squares
method. Usually, we choose a few salient points (e.g., corners) to
build the correspondence and determine the parameters. We apply
the background model to the grayscale image It(x, y) of frame t to
find the estimated Ît+1(x, y) of frame (t + 1). Afterwards, we can
compute the difference map ∆I:

∆I = Ît+1(x, y)− It+1(x, y)

which is expected to have small and large values in the back-
ground and foreground regions, respectively. Thus, we can determine
potential object locations. While the DCF-based baseline exploits
foreground correlation to locate the object, background modeling uses
background correlation to eliminate background influence in object
tracking. They complement each other for some challenging task such
as recovery from tracking loss. The DCF-based tracker cannot recover
from tracking loss easily since it does not have a global view of the
scene. In contrast, our background modeling module can still find
potential locations of the object by removing the background region.

Trajectory-based Box Prediction. Given box centers of last N
frames, {(xt−N , yt−N ), · · · , (xt−1, yt−1)}, we calculate N −1 dis-
placement vectors {(∆xt−N+1,∆yt−N+1), · · · , (∆xt−1,∆yt−1)}
and apply the principal component analysis (PCA) to them. To predict



the displacement at frame t, we fit the first principal component using
a line and set the second principal component to zero to remove noise.
Then, the center location of the box at frame t can be written as

(x̂t, ŷt) = (xt−1, yt−1) + (∆̂xt, ∆̂yt).

Similarly, we can estimate the width and the height of the box at
frame t, denoted by (ŵt, ĥt). Typically, the physical motion of an
object has an inertia in motion trajectory and its size, and the box
prediction process attempts to maintain the inertia. It contributes to
better tracking performance in two ways. First, it can remove small
fluctuation of the box in its location and size. Second, when there is
a rapid deformation of the target object, the appearance model alone
cannot capture the shape change effectively. In contrast, the combi-
nation of background motion modeling and the trajectory-based box
prediction can offer a more satisfactory solution. An example is given
in Fig. 3, which shows a frame of the diving sequence in the upper-
left subfigure, where the green and the blue boxes are the ground
truth and the result of UHP-SOT, respectively. Although a DCF-based
tracker can detect the size change by comparing correlation scores
at five image resolutions, it cannot estimate the change of its aspect
ratio. In contrast, the residual image after background removal in
UHP-SOT, as shown in the lower-left subfigure, reveals the object
shape. We sum up the absolute pixel values of the residual image
horizontally and vertically. We use a threshold to determine the two
ends of an interval. Then, we have

ŵ = xmax − xmin, and ĥ = ymax − ymin.

Note that the raw estimation may not be stable across different
frames. Estimations that deviate too much from the trajectory of
(∆wt,∆ht) are rejected. Then, we have a robust yet flexibly de-
formable box proposal.

Fig. 3. Illustration of shape change estimation based on background motion
model and the trajectory-based box prediction, where the ground truth and
our proposal are in green and blue, respectively.

Fusion strategy. We have three box proposals for the target object
at frame t: 1) Bapp from the baseline tracker to capture appearance
change, 2) Btrj from the trajectory predictor to maintain the inertia
of box position/shape and 3) Bbgd from the background motion
predictor to eliminate unlikely object regions. We need a fusion
strategy to yield the final box location/shape, which is described
below. We store two template models: the latest model ft−1, and
an older model, fi, i ≤ t − 1, where i is the last time step where
all three boxes have the same location. Model fi is less likely to be

contaminated since it needs agreement from all modules while Bbgd

can jump around. To check the reliability of the three proposals, we
compute correlation scores between three pairs: (ft−1, Bapp), (ft−1,
Btrj), and (fi, Bbgd) and then apply a rule-based fusion strategy:

• General rule: Choose the proposal with the highest score.
• Special rule: Although Bapp has the highest score, we observe

that Btrj has a close score, agrees with Bbgd, and reveals sudden
jump (say, larger than 30 pixels). Then, we choose Btrj instead.

IV. EXPERIMENTS

Experimental Set-up. We compare UHP-SOT with state-of-the-art
unsupervised and supervised trackers on TB-50 and TB-100 datasets
[6]. The latter contains 100 videos and 59, 040 frames. Evaluation
is performed based on the “One Pass Evaluation (OPE)” protocol.
Evaluation metrics include the precision plot (i.e., the distance of the
predicted and actual box centers) and the success plot (i.e., overlap-
ping ratios at various thresholds). The distance precision is measured
at 20-pixel threshold to rank different methods. The overlap precision
is measured by the area-under-curve (AUC) score. We use the same
hyperparameter settings in STRCF except regularization coefficient
µ. STRCF sets µ = 15 while UHP-SOT selects µ ∈ {10, 5, 0} if
the appearance box is not chosen. The smaller the correlation score,
the smaller µ. We set N = 20 in the number of previous frames for
trajectory prediction. The cutting threshold along horizontal/vertical
directions is set to 0.1. UHP-SOT runs at 22.7 FPS on a PC equipped
with an Intel(R) Core(TM) i5-9400F CPU, maintaining a near real-
time speed (while STRCF operates at a speed of 24.3 FPS).

Performance Evaluation. Fig. 4 compares UHP-SOT with state-
of-the-art unsupervised trackers ECO-HC [16], STRCF [12], SRD-
CFdecon [39], CSR-DCF [40], SRDCF [41], Staple [11], KCF [8],
DSST [9] and supervised trackers SiamRPN++ [15], ECO [16],
HDT [5], SiamFC 3s [29], LCT [42]. UHP-SOT outperforms STRCF
by 4% in precision and 3.03% in overlap on TB-100 and 4%
in precision and 2.7% in overlap on TB-50, respectively. As an
unsupervised light-weight tracker, UHP-SOT achieves performance
comparable with state-of-the-art deep trackers such as SiamRPN++
with ResNet-50 [43] as the backbone. UHP-SOT outperforms another
deep tracker, ECO, which uses a Gaussian Mixture Model to store
seen appearances and runs at around 10 FPS, in both accuracy and
speed.

We show results on 10 challenging sequences on TB-100 for
the top-4 trackers in Fig. 5. Generally, UHP-SOT can follow small
moving objects or largely deformed objects like human body tightly
even though some of them have occlusions. These are attributed to
its quick recovery from tracking loss via background modeling and
stability via trajectory prediction. On the other hand, UHP-SOT does
not perform well for Ironman and Matrix because of rapid changes
in both the foreground object and background. They exist in movie
content due to editing in movie post-production. They do not occur in
real-world object tracking. Deep trackers perform well for Ironman
and Matrix by leveraging supervision.

We further analyze the performance variation under different
challenging tracking scenarios for TB-100. We present the AUC
score in Fig. 6 and compare with other state-of-the-art unsupervised
DCF trackers STRCF, ECO-HC, and SRDCFdecon. Our method
outperforms other trackers in all attributes, especially in deformation
(DEF), in-plane rotation (IPR) and low resolution (LR). Difficult
sequences in those attributes include MotorRolling, Jump, Diving
and Skiing, where the target appearance changes fast due to large
deformation. It is difficult to reach a high overlapping ratio without
supervision or without an adaptive box aspect ratio strategy.
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Fig. 4. The precision plot and the success plot on TB-50 and TB-100. To rank different methods, the distance precision is measured at 20-pixel threshold,
and the overlap precision is measured by the AUC score. We collect other trackers’ raw results from the official websites to generate results.

Fig. 5. Qualitative evaluation of UHP-SOT, STRCF [12], ECO [16] and SiamRPN++ [15] on 10 challenging videos from TB-100. They are (from left to
right and top to down): Trans, Skiing, MotorRolling, Coupon, Girl2, Bird1, KiteSurf, Bird2, Diving, Jump, respectively.
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Fig. 6. Area-under-curve (AUC) score for attribute-based evaluation on
the TB-100 dataset, where the 11 attributes are background clutter (BC),
deformation (DEF), fast motion (FM), in-plane rotation (IPR), illumination
variation (IV), low resolution (LR), motion blur (MB), occlusion (OCC),
out-of-plane rotation (OPR), out-of-view (OV), and scale variation (SV),
respectively.

Finally, we test two other variants of UHP-SOT: UHP-SOT-I
(without trajectory prediction), and UHP-SOT-II (without background
motion modeling) in Table I. The gap between UHP-SOT and
UHP-SOT-I reveals the importance of inertia provided by trajectory
prediction. UHP-SOT-I shows that background modeling does a good
job in handling some difficult cases that STRCF cannot cope with,

leading to a gain of 2% in precision and 1.95% in overlap. UHP-SOT-
II rejects large trajectory deviation and uses a smaller regularization
coefficient to strengthen this correction. The accuracy of UHP-
SOT-II drops more due to naive correction without confirmation
from background modeling. Yet, it operates a much faster speed
(32.02 FPS). Both background modeling and trajectory prediction
are lightweight modules and run in real time.

TABLE I
PERFORMANCE OF UHP-SOT, UHP-SOT-I, UHP-SOT-II AND STRCF

ON THE TB-100 DATASET, WHERE AUC IS USED FOR SUCCESS RATE.

UHP-SOT UHP-SOT-I UHP-SOT-II STRCF
Success (%) 68.95 67.87 65.64 65.92

Precision 0.91 0.89 0.87 0.87
Speed (FPS) 22.73 23.68 32.02 24.30

V. CONCLUSION AND FUTURE WORK

An unsupervised high-performance tracker called UHP-SOT, which
uses STRCF as the baseline with two novel improvements, was
proposed in this work. They are background motion modeling and a
trajectory-based box prediction. It was shown by experimental results
that UHP-SOT offers an effective real-time tracker in resource-limited
platforms. Based on our study, object tracking appears to be a low-
level vision problem where supervision may not be critical in all
cases. To test this hypothesis we would like to apply supervised
object detectors such as Yolo to edited movie sequences frame by
frame and demonstrate the merit of supervision in the future.
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