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Abstract—In many image processing tasks it occurs that pixels
or blocks of pixels are missing or lost in only some channels.
For example during defective transmissions of RGB images,
it may happen that one or more blocks in one color channel
are lost. Nearly all modern applications in image processing
and transmission use at least three color channels, some of the
applications employ even more bands, for example in the infrared
and ultraviolet area of the light spectrum. Typically, only some
pixels and blocks in a subset of color channels are distorted.
Thus, other channels can be used to reconstruct the missing
pixels, which is called spatio-spectral reconstruction. Current
state-of-the-art methods purely rely on the local neighborhood,
which works well for homogeneous regions. However, in high-
frequency regions like edges or textures, these methods fail to
properly model the relationship between color bands. Hence,
this paper introduces non-local filtering for building a linear
regression model that describes the inter-band relationship and
is used to reconstruct the missing pixels. Our novel method is
able to increase the PSNR on average by 2 dB and yields visually
much more appealing images in high-frequency regions.

Index Terms—Spatio-spectral Reconstruction, Error Conceal-
ment, Linear Regression, Block Matching, Non-Local Filtering

I. INTRODUCTION

In many image processing tasks missing or defected pixels
occur only in some of the available color channels. The goal of
reconstruction algorithms is to extrapolate these missing pixels
using spatial and spectral information. The setup for this paper
is shown in Fig. [} The green channel has a lot of missing
pixels while the red and the blue channel are fully available.
Thus, one can not only use the spatial information within the
green channel, but the spectral and spatial information of the
red and blue channel can also be exploited for reconstruction.

This situation often occurs when recovering missing blocks
for defective transmissions of JPEG images [/1]] and videos [?2],
since the channels of the different blocks are quantized and
transmitted individually. Another example is remote hyper-
spectral imaging [J3|], where only some bands contain defected
pixels due to atmospheric effects. Finally, cross-spectral multi-
view cameras like in [4], where different views have to be
warped to the center perspective, are also affected by missing
pixels in some bands. Since every camera picks up slightly
different viewing angles, occlusions occur. Hence, there are
pixels that are recorded by the center camera, but are not
visible to the peripheral cameras. Thus, in the end these pixels

Fig. 1. The addressed problem of this paper. The green channel has some
missing pixels, while the red and the blue channel are complete. The red and
the blue channel serve as reference channels to reconstruct the green channel.

need to be reconstructed. Luckily, other cameras, especially the
center camera, can see these pixels, however, these cameras
pick up different parts of the light spectrum. Thus, using these
reference channels, a model can be built to predict the value
of the occluded pixels.

Generall, existing reconstruction algorithms can be classi-
fied into three categories. First, the problem of missing pixels
and blocks can be tackled using only spatial information, e.g.,
[S] uses discrete cosine pyramids, [|6] and [[7] try to find similar
patches within the image, [8]] first extrapolates structures and
tries to find suitable patches afterwards, and [9] uses convex
optimization and tries to minimize the total variation. Second,
other algorithms also take the color information into account,
for example [10], which builds a model based on spatial
basis functions with different frequencies, or by utilizing a
Bayesian approach [11]. The third category are fully spatio-
spectral reconstruction methods, which assume that the same
spatial structures are visible in all color channels. Thus, these
methods exploit spatio-spectral correlation. The state of the
art for these type of algorithms is Content-Adaptive Selective
Extrapolation (CASE) [12], which is based on estimating a
local linear regression model and predicts the missing values
within the block by applying this model. Unfortunately, due
to the block-based processing approach, blocks with high
frequency content are often modeled inaccurately due to the
rapid change between different pixels for the linear color
model. Hence, the idea of this paper is to employ a block-
matching procedure to isolate the pixels that belong to the
same homogeneous region and build the linear regression
model based on these pixels.
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Fig. 2. The basic concept of our novel method NOCS.

The goal of spatio-spectral image reconstruction is to es-
timate the missing pixels of a distorted grayscale channel D
using a set of NV reference channels R, which contain the same
scene but in different spectral bands. For example, a goal could
be to reconstruct missing pixels of the green channel of an
RGB image using the undistorted red and blue channel. The
mask, that indicates which pixels to reconstruct, is denoted as
M. A zero in the mask M shows a pixel to reconstruct while
a one marks pixels that contain information. Hence, the goal
is to reconstruct the clean channel C out of D = C & M,
where © represents the element-wise multiplication.

II. PROPOSED METHOD

Our novel method Non-Local Cross-Spectral Reconstruction
(NOCS) uses a block-matching procedure on the reference
channels to find pixels that approximately show the same
content. Block-matching and non-local filtering algorithms
became very popular with the introduction of block-matching
3D filtering [13] and non-local means filtering [|14], which
denoise grayscale images. Afterwards, these pixel stacks are
used to estimate the parameters of a linear regression model.
This model is then used to predict the pixel value of the
masked pixel for which the blocks are matched. This basic
procedure is shown in Fig. [2| In the following a more detailed
description is given.

The first operation is a block-matching procedure using
all reference channels. Therefore, it is necessary to extract
blocks for every pixel. These blocks centered around the two-
dimensional image coordinate x are denoted as B™(x) and
of size S x S. The ly-norm is used for calculating the distance
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between two image coordinates, where the subscript denotes
the index of the reference channel. Thus, the distance between
two pixels is the sum of distances between the extracted blocks
over all reference channels.

Afterwards, the M blocks with the smallest distances are
sorted according to their distance d(«, y) and the locations of
these blocks are stored in the list I,,. Therefore, the coordinate

x itself with distance zero is always at the first position, i.e.,
I.(1) = «. This list is then used to build reference bars R(x),
where R(x) stores all reference bars as rows in a matrix,
and the masked bar m(x) as shown in Fig. 2| Since the
following procedure is the same and independent for every
pixel and thus bars R(x) and m(x) are abbreviated as R and
m, respectively. Only bars, where a masked pixel is at the
first index, are considered since this pixel is the only one that
will be reconstructed in the bar.

Obviously, there are blocks that are easier to reconstruct
since they have more valid pixels that can be used to build the
model. Thus, the next steps are done in an iterative way. To
speed up the reconstruction process, several bars are processed
in parallel. A good measure how well the reconstruction can
be done is the number of non-masked pixels in the masked
bar. Therefore, all non-reconstructed bars are sorted for every
iteration by the number of masked pixels in the bar in a
descending order. Afterwards, the first 10% of the sorted bars
are processed in parallel.

For every pixel to reconstruct, similar pixels are found and
the corresponding reference bars are set up. The next step is
to build the linear regression model. This model is used to
reconstruct the masked pixel in the bar. For this, first the best
reference is found by maximizing the correlation between the
non-masked pixels m of the masked bar and the pixels R at
the same locations in the reference bars. The reference index
is found by

n—m) (R, — 7
z = argmax Em _m) ( = T_) , 2
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where R denotes the i-th row of the non-masked reference
bar matrix R and m and 7; denote the mean of m and RZ,
respectively. Of course, if there is only one reference channel
available, this procedure can be skipped and z is set to 1.
Then, it is assumed that there is a linear relationship between
the masked bar and the best reference bar. Thus, the model
reads as

m=a-R,+b, 3)



where a and b are the linear regression parameters. These
parameters are then found by

a,b = argmin |ja- R, + b — m|3. 4)
a,b

Since this optimization problem is a simple minimization of
a quadratic function, the parameters can be found in closed
form

(R. —7.)T (1 — m)
(R. —7.)"(R. —7)
These model parameters can then be used to reconstruct the
masked pixel, i.e., the first pixel of the current bar

and b=m—a-7,. (5

d:

my =a-R.,+b, (6)

where the 1 in the subscript denotes the first element of the
vector. Thus, in the distorted channel, the according pixel can
be set to the reconstructed value D(x) = m;. Furthermore,
the image mask at the same position is set to one M (x) = 1.

It may occur that the block-matching matches purely
masked blocks in a circular manner, i.e., a closed masked
region where all of the matched pixels again fall into this
region. Thus, the linear regression cannot be build since there
are no non-masked pixels. A trivial, but not practical, example
for this case would be if the distorted channel is completely
masked. Hence, an emergency strategy is necessary, if there
are only completely masked bars left in the iterative procedure.
Out of the set of pixels in the closed region, only the set of
pixels P with at least one non-masked neighbor is consid-
ered. Then, the squared difference in the reference channels
between these pixels and the corresponding non-masked direct
neighbors with pixel distance one is minimized. Thus, for
each pixel y from the set P, evel_rly non- masked direction
out of {(1 O) ,(0 1) (=1 0,0 - ) } is put into
the correspondmg nelghbor direction set N (y). Therefore, the
minimization problem can be written as

argmin Z

yeP.neN (y) ;-1

y,n = y+n)’. ()
This results in a pair of pixels with one masked pixel ¥ and one
non-masked pixel y + 7, which have the minimal difference
between them in the reference channels. Then, the value of
the non-masked pixel in the masked channel is copied to the
position of the masked pixel D(g) = D(g + n). Afterwards,
the emergency procedure is left and the normal algorithm can
continue, since this pixel can be used for other masked pixels
again. Of course, it may occur that this emergency mode is
entered multiple times during the reconstruction procedure.

III. EXPERIMENTAL RESULTS

The evaluation is done utilizing the TECNICK dataset [[13].
This dataset contains 100 images of natural and urban scene
with a resolution of 1200 x 1200 pixels. For the evaluation,
The green channel of the RGB images was masked using
a masking pattern as shown in Fig. 3] The pattern itself is
split into four different subpatterns. The top left pattern has
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Fig. 3. A masked image and the reconstructed image of the TECNICK dataset.

TABLE I
PSNR AND SSIM RESULTS OVER THE TECNICK DATABASE OF DIVERSE
RECONSTRUCTION METHODS.

™v [|§|] FSR [10] | CASE [12] | Proposed NOCS
PSNR || 32.37dB | 3449 dB | 44.33 dB 46.33 dB
SSIM || 0.967 0.981 0.996 0.997

uniformly distributed rectangles that mask the channel. Next to
it on the right, horizontal bars are utilized as masking shape.
In the bottom left, a mixture of rectangles, horizontal bars
and vertical bars is used as mask. Finally, in the bottom right,
rectangles are randomly distributed. These rectangles unmask
the corresponding area. These different areas represent errors
occuring in different applications. For example, block losses
are occuring in a defective transmission, while the random
pattern is a typical example for missing pixels for occlusion
cases [L6]. Only the green channel is masked since one of the
key features is that several reference channels can be taken
into account. Thus, the only possibility for an RGB image to
have several reference channels is to only mask one channel.
Of course, it would also be possible to only have one reference
channel and two distorted channels. On the right side, one can
see the reconstruction result of NOCS.

The parameters of NOCS were optimized using the DIV2K
dataset [17]]. Luckily, our novel method only has two direct
parameters and one parameter to speed up processing time.
First, the direct parameters of NOCS are the block size S and
the number of stacked blocks in the cube M, which are set to
9 and 44, respectively. These parameters are found by a grid
search on the DIV2K dataset with a similar mask in the range
between 6 and 16 with step size 1 for S and in the range
between 28 and 80 with step size 4 for M. Furthermore, to
speed up processing time, the maximum search range for the
block-matching procedure is set to 33. Thus, similar blocks
are searched in the rectangle spanned by 16 pixels to the left,
right, up, and down. The parameters of the competitors [9],
[10], and are set to the values given in the corresponding
paper.

Table [I] shows the averaged PSNR and SSIM values for
TV, FSR, CASE and our proposed NOCS. The methods that
operate purely spatially TV and FSR are much worse than the
ones that take spatio-spectral correlation into account, namely,
CASE and NOCS. Quantitatively speaking, NOCS is more
than 11 dB better than FSR and more nearly 14 dB better than
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Fig. 4. Evaluation of PSNR and SSIM over the whole TECHNIK database.
The mean values of PSNR and SSIM of both methods are shown in the legend.

the total variation-based approach. This proves that exploiting
spatio-spectral correlation between channels is a promising
technique to reconstruct missing pixels.

Fig. [ shows the evaluation result for each of the 100 images
of the TECNICK dataset for CASE and NOCS. Our proposed
NOCS outperforms CASE in terms of SSIM with 0.997 to
0.996. Moreover, the average PSNR of NOCS is 2 dB higher
than of CASE (44.3 dB vs. 46.3 dB). There are only 15 images
where CASE has a slightly higher SSIM than NOCS. More
importantly, there is not a single image that has a higher PSNR
when reconstructed with CASE in comparison to NOCS.

Fig. [p] shows three image patches which verify that NOCS
performs much better in high-frequency regions than CASE. In
the first patch, a disadvantage of CASE is revealed. Due to the
block-based processing approach, in high frequency areas the
model is often build using a linear color model of a different
texture, which leads to wrong reconstructions. Here, the linear
regression model is setup using the building part of the image.
As a consequence, the sky is wrongly reconstructed with this
model. In the middle figure, it is shown that the non-local
filtering does not only work for straight edges, but also for
other shapes. Moreover, this example intuitively shows that
CASE is often using the wrong model in regions with edges.
For the red circle on the right, the model is built mainly using
the black pixels. Thus, the linear regression parameters are
close to zero. This leads to green values close to zeros and thus
a purplish color. On the other hand, for the circle in the bottom
right, the model is built mainly using white pixels, which leads
to the greenish color. In the last example, the tiles frequently
change their color. Thus, the regression model built by CASE
is often invalid, which results in many different colors in
masked areas that do not fit the color of the corresponding
tile at all. NOCS handles this situation much better, especially
since many tiles are repeated in the neighborhood.

Proposed NOCS

CASE Proposed NOCS

Fig. 5. Various defects in high frequency areas highlighted using red circles
of multiple images of the TECHNIK dataset. NOCS is able to remove nearly
all of them. Best to be viewed enlarged on a monitor.

IV. CONCLUSION

A novel spatio-spectral reconstruction method called Non-
Local Cross-Spectral Reconstruction (NOCS) was introduced.
In comparison to the state-of-the-art algorithms, NOCS uses
a block-matching procedure to find non-local similar pixels.
These similar pixels are then utilized to build a linear regres-
sion model using only the non-masked pixels. After calculating
the linear regression model parameters in closed-form, this
model can be used to reconstruct the masked pixel for which
the similar pixels are found. By exploiting the fact that same
or similar pixels are distributed all over the image, e.g., along
an edge, the model parameters can be much more precisely
built in high-frequency areas than using traditional block-based
processing. The evaluation showed that the novel method
NOCS increases the PSNR on average by 2 dB, while not
a single image out of the 100 test images was reconstructed
worse by NOCS than when utilizing the current state of the art.
As an outlook, we plan to remove the constraint that at least
one channel has to be fully available. Furthermore, this will
also allow to take channels with missing pixels into account
for reconstructing pixels of other channels with missing pixels.
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