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Abstract—Recently, graph neural networks (GNNs) have
shown powerful ability to handle few-shot classification prob-
lem, which aims at classifying unseen samples when trained
with limited labeled samples per class. GNN-based few-shot
learning architectures mostly replace traditional metric with a
learnable GNN. In the GNN, the nodes are set as the samples’
embedding, and the relationship between two connected nodes
can be obtained by a network, the input of which is the
difference of their embedding features. We consider this method
of measuring relation of samples only models the sample-to-
sample relation, while neglects the specificity of different tasks.
That is, this method of measuring relation does not take the
task-level information into account. To this end, we propose
a new relation measure method, namely the task-level relation
module (TLRM), to explicitly model the task-level relation of
one sample to all the others. The proposed module captures
the relation representations between nodes by considering the
sample-to-task instead of sample-to-sample embedding features.
We conducted extensive experiments on four benchmark datasets:
mini-ImageNet, tiered-ImageNet, CUB-200-2011, and CIFAR-FS.
Experimental results demonstrate that the proposed module is
effective for GNN-based few-shot learning.

Index Terms—Few-shot learning, Graph Neural Networks,
Task-level Relation

I. INTRODUCTION

Deep Learning has been achieved great success in visual
recognition tasks [[1]-[4]], which depends on powerful model
and amounts of labelled samples [5]]. However, humans can
learn new concepts with little examples, or none at all. The
gap motivated researchers to study few-shot learning and zero-
shot learning.

The goal of few-shot learning is to classify unseen sam-
ples, given just a small number of labeled samples in each
class. It has attracted considerable attention [6]—[17]. One
promising study is metric-based few-shot learning [6]—[13]].
Given just a query sample and a few labeled support samples,
the embedding function extracts feature for all samples, and
then a metric module measures distance between the query
embedding and class embedding to give a recognition result.
Recently, there have some studies of utilizing Graph Neural
Networks (GNNs) [8], [[10]], [11]], [18]] to handle the few-shot
classification task, which can be seen as a kind of metric
learning method. In GNN-based few-shot learning model, all
embedding features are connected to construct a graph. And
each node is represented by the embedding feature of a sample.
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Fig. 1. The left panel shows a general framework of previous metric
approaches based on GNN. The right panel briefly illustrates our approach.

Then the graph classifies the unlabeled query by measuring the
similarity between two samples.

Even though GNN-based model have made significant ad-
vance in few-shot classification, they do suffer from distinct
limitation. In the metric module of GNN-based methods, rela-
tion representation for a pair samples is obtained by calculating
the absolute difference [8]], [[10], [L1]], [18]]. It only considers
the corresponding embedding features of the samples. Intu-
itively, pair-wise relationship is not only dependent on the
distance between corresponding embedding features, but also
related to all embedding features in a task. As shown in the left
panel of Figure[T] there is no significant difference between the
target sample and all other samples in the task. The distance
representation between two samples neglects the specificity of
the task and lacks discrimination. This will cause the problem
that the similarity scores are not significantly different, so that
the category of the target sample is not clear. To deal with the
key challenge of how to learn relation representations with
distinctive information, we propose a sample-to-task metric
module, as shown in the right panel of Figure[I] which adopts a
meta learning strategy to learn the relation representations. The
main contributions of this paper are summarized as follows:

o We propose an fask-level relation module (TLRM). The
proposed TLRM utilizes the attention mechanism to learn
task-specific relation representations for each task.

o The comprehensive experimental results on four bench-
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Fig. 2. (a) shows the GNN-based few-shot model. And in (b), the left panel shows a general framework of our approach used for calculating the similarity

scores, and the right panel shows the task-level relation module.

mark datasets show that our proposed module is effective
for GNN-based few-shot model. In addition, the results of
semi-supervised few-shot classification and visualization
of similarity scores are provided to further evaluate our
module.

II. RELATED WORK

Meta Learning in Few-shot Learning: Meta Learning
framework is an effective study for few-shot learning, which
mainly focuses on how to learn and utilize meta-level knowl-
edge to adapt to new tasks quickly and well. One of the ex-
cellent studies is model-agnostic meta-learning (MAML) [19].
The MAML learned initialization parameters by cross-task
training strategy such that the base learner can rapidly gen-
eralize new tasks using a few support samples. Subsequently,
many MAML variants [20]—[25]] have been developed.

Metric Learning in Few-shot Learning: On the met-
ric learning side, most of algorithms consist of embedding
function extracting features for instances and metric function
for measuring sample between the query embedding and
class embedding. Koch et al. [9] used siamese network to
compute the pair-wise distance between samples. Prototypical
networks [|6] firstly built a prototype representation of each
class and measured the samples between the query embedding
and class’s prototype by using euclidean distance. Matching
network [26] used a neural network with external memories
to map samples to embedding features, which considers full
context in a task. TADAM [27] introduced a metric scaling
factor to optimize the similarity metric of prototypical nets.
Zheng et al. [28] believed that the average prototype ignores
the different importance of different support samples and
proposed principal characteristic nets.

Fixed metric methods will restrict the embedding function
to produce discriminative representations. Sung et al. [7]
introduced relation network (RN) for few-shot learning. The
relation network learns to learn a deep distance metric by a
neural network. However, due to the inherent local connectiv-
ity of CNN, the RN can be sensitive to the spatial position
relationship of semantic objects in two compared images. To

address this problem, Wu et al. [29] introduced a deformable
feature extractor (DFE) to extract more efficient features, and
designed a dual correlation attention mechanism (DCA) to deal
with its inherent local connectivity. Hou et al. [30] proposed
a cross attention network for few-shot classification, which is
designed to model the semantic relevance between class and
query features.

GNN-based methods in Few-shot Learning: Recently,
most approaches are proposed to exploit GNN in the field
of few-shot learning task. Specifically, Garcia et al. [8] first
utilized GNN to solve few-shot learning problem, where
all embedding features extracting by a convolutional neural
network are densely connected. Liu et al. [11] proposed a
transductive propagation network (TPN). The TPN utilizes the
entire query set for transductive inference. To further exploit
intra-cluster similarity and inter-cluster dissimilarity, kim et
al. [[10] proposed an edge-labeling graph neural network. Then
in order to explicitly model the distribution-level relation, Yang
et al. [18] proposed distribution propagation graph network
(DPGN).

In the existing GNN-based few-shot learning methods,
pair-wise distance representations are absolute difference of
the embedding features. However, when the classes in the
task are similar, it will lead to the problem of insufficient
discrimination in metric representations. So, in this paper, we
focus on learning distinctive relation information through an
task-level relation module.

III. THE PROPOSED METHOD

A. GNN-based few-shot learning

As shown in Figure |Z| (a), GNN-based few-shot model
usually consists of a CNN for extracting features and a GNN
for propagating labels from labeled nodes to unlabeled ac-
cording to similarity scores between nodes. In the training and
testing process, GNN-based few-shot model usually adopts the
episodic mechanism, in which each episode (task) consists of
the support set .S and the query set (). And the support set



5-WAY 1-SHOT CLASSIFICATION ACCURACY ON FOUR BENCHMARK DATASETS: MINI-IMAGENET, TIERED-IMAGENET, CUB-200-2011, AND CIFAR-FS

TABLE I

Model Trans. | mini-ImageNet | tiered-ImageNet | CUB-200-2011 CIFAR-FS
EGNN (CVPR 19) No 52.86 + 0.42 57.09 +0.42 64.82 £0.41 65.51 £ 0.43
EGNN + TLRM No 53.65 £ 0.43 57.40 £ 0.42 65.07 £ 0.41 65.00 £ 0.42
TPN (ICLR 18) Yes 59.46 — - —
EGNN Yes 58.94 £ 0.51 62.37 £0.51 73.18 £0.51 72.20 £0.49
DPGN (CVPR 20) Yes 66.41 £ 0.51 71.86 £ 0.50 75.25 + 0.46 75.83 £ 0.47
EGNN + TLRM Yes 60.79 £ 0.51 64.52 £ 0.51 75.02 £ 0.46 73.42 £0.50
DPGN + TLRM Yes 66.97 +0.53 | 72.24 +0.50 | 77.53 +0.46 | 77.05 £ 0.46
TABLE II
5-WAY 5-SHOT CLASSIFICATION ACCURACY ON FOUR BENCHMARK DATASETS: MINI-IMAGENET, TIERED-IMAGENET, CUB-200-2011, AND CIFAR-FS
Model Trans. | mini-ImageNet | tiered-ImageNet | CUB-200-2011 CIFAR-FS
EGNN No 68.20 £ 0.41 71.13 £ 0.39 80.05 £ 0.36 76.95 £ 0.37
EGNN + TLRM No 68.72 £ 0.40 72.39 £ 0.39 81.03 £ 0.36 77.78 £0.37
TPN Yes 75.65 — — —
EGNN Yes 75.71 £ 0.46 81.04 £0.43 87.68 £0.38 86.13 £ 0.41
DPGN Yes 82.04 £ 0.45 82.70 £ 0.43 87.72 £ 0.36 87.85 £ 0.38
EGNN + TLRM Yes 76.18 £ 0.45 81.47 £0.43 88.00 £ 0.36 85.70 £0.39
DPGN + TLRM Yes 82.58 +0.45 | 83.31 +0.44 | 90.39 +0.34 | 89.15 4 0.37

* “No” means non-transductive method, and “Yes” means transductive method.

contains N % K labeled support samples and the query set
contains 7" unseen samples in a N-way K -shot problem.

Generally, the CNN g(-) as backbone of extracting features
has two different types 1) the 4-layer convolution network
(ConvNet) [10], [11]] and 2) the 12-layer residual network
(ResNet-12) used in [18]. The GNN consists of L layers
to process the graph. Let V' = {Vi,Va,...,VNxkiT} be
embedding features for all nodes extracted by the CNN, Rz;; be
relation representations between nodes, and s;; be similarity
score between node i and j. Given VZ~! and s“~! from the
layer L — 1, node feature update is firstly conducted by a
neighborhood aggregation procedure. And node ¢ is updated
as

B. Task-level Relation Module

In this paper, attention mechanism is employed to transform
sample embedding to relation representations with considera-
tion to task-specific embedding. Note that the relation repre-
sentation is task-specific and not only the distance between
nodes. We denote it as Task-level Relation Module (TLRM).
The proposed TLRM can avoid direct comparison relative rela-
tionship irrelevant local representations. As shown in Figure
(b), given the feature representations V' € RWWXEAT)XC  he
relation representations can be obtained. The implementation
details are performed as follows.

For node i, the attention value between the target embedding
and all other samples in the task can be obtained by adopting

NxK+T : ) )
vE=§, Z ijLfl 51'13'71 , (1) meth(?d commgnly used in the attention mechanism. The
o attention value is performed as follows
where f, is the feature (node) transformation network. Then, a(Vi, V) = exp(ei;) @)
the relation representation is obtained by calculating the ab- v chvleK +Texp(eik),

solute difference between two vector nodes. It can be denoted
as

. )

Finally, the relation representation [?;; is input into a Mul-
tilayer Perceptron (MLP) to capture the similarity scores
between nodes

sij = [fs (Rij)
= fo (X vk - vE|)
— o (L |ViE -~ ViE]).

Where fs is transformation network. The goal of GNN-
based few-shot learning is to learn function g, f,
and f, to classify query sample Zguery bY Yguery =
Fs(Fo(9(2query; Dsupport))) € (0,1)". Note that the rela-
tionship is obtained by measuring the distance between two
corresponding node, which is node-to-node and task-agnostic.

C
Ri; = |Vi* = V| =20, ’Vz'i - Vik

3)

Where a € RWXE+T)x(NxK+T)  which represents the
similarity between nodes comparing to all other embedding
in the task. e;; reflects the matching degree of node 7 to node
j. When the degree is higher, a;; is bigger. The matching
degree e;; is performed as follows

€ij =S (V}, V;T) /\/5, (5)

Where, first, the feature representation V; € RY*C of target
sample is reshaped to V; € RE*! through a transpose opera-
tion and s (V;, V;"') is the vector multiplication operation. And
then, a;; is used to encode V; and the relation representations
can be obtained, which can be denoted as

Rij=a(Vi,V;) 0V, (6)

The relation representation ﬁij models the relation repre-
sentation between node ¢ and j, which is a task-level relation
representation of sample 7 to j comparing to all the other



TABLE III
SEMI-SUPERVISED FEW-SHOT CLASSIFICATION ACCURACY ON
MINI-IMAGENET. THE RESULTS ARE TESTED IN TRANSDUCTIVE

LEARNING.
Model 20% 40% 60%
EGNN 63.91 +£0.42 65.84 + 0.41 68.06 + 0.44
EGNN + TLRM | 66.37 +0.41 66.82 +0.42 69.08 +0.42
DPGN 74.16 +0.44 81.23 +0.44 80.84 + 0.46
DPGN + TLRM | 80.99+0.44 | 81.70 +0.45 80.94 £ 0.45
TABLE IV

EFFECT OF ADDING THE PROPOSED TLRM TO DIFFERENT LAYER OF
EGNN. THE RESULTS ON 5-WAY 1-SHOT ARE REPORTED.

Model mini-ImageNet

EGNN 52.86 + 0.42

L=1 53.11 +0.43

L=2 53.29 +0.44

EGNN+TLRM L=3 53.42 + 0.42
L=1&2&3 | 53.65+0.43

~

samples. Afterwards, R;; is fed to an MLP to capture the
relation score for performing further classification

~

IV. EXPERIMENTS AND DISCUSSIONS

A. Datasets and setups

To evaluate our module, we select two GNN-based few-shot
models: EGNN and DPGN, and four standard few-shot learn-
ing benchmarks: mini-ImageNet [26], tiered-ImageNet [31]],
CUB-200-2011 [32] and CIFAR-FS [33].

For the sake of fairness, all experiments employed the same
setups as EGNN and DPGN. EGNN used ConvNet, and DPGN
used ResNet-12 for extracting features. In training process, the
Adam optimizer was used in all experiments with the initial
learning rate 1073. And the learning rate was decayed by
0.1 per 15000 iterations. The weight decay was set as 1075,
For all datasets, 5-way 1-shot and 5-way 5-shot experiments
were conducted. We randomly sampled 10, 000 tasks and then
reported the mean accuracy along with its 95% confidence
interval.

B. Results and discussions for few-shot classification

Experimental results for 5-way 1-shot and 5-way 5-shot
classification are shown in Table[lland Table[[ll We can see that
EGNN or DPGN with our TLRM have higher accuracy than
the ones without TLRM on mini-ImageNet, tiered-ImageNet,
and CUB-200-2011. Meanwhile, partial experimental results
on the CIFAR-FS dataset dropped slightly, the reason of
which might lie in the categories in the CIFAR-FS dataset
are highly distinguishable. In addition, the CUB-200-2011
dataset is the most widely used benchmark for fine-grained
image classification, which has significant intra-class variance
and inter-class similarity. Fine-grained image task is more
challenging in few-shot learning. Clearly, the improvement on
the CUB-200-2011 dataset is significant in Table [I] and Table
M which shows that the relationship representation obtained
by our module is more discriminative than previous method for
tasks with high similarity. And overall, our method is simple
and effective.
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Fig. 3. Visualization of similarity scores obtained by EGNN (top) and EGNN
with our module (bottom).

Semi-supervised experiments were conducted in 5-way 5-
shot setting on mini-ImageNet with two backbones, in which
the support samples are only partially labeled. The results are
presented in Table [T} Notably, the EGNN and DPGN with our
TLRM outperforms the previous backbones especially when
the labeled samples portion was decreased.

C. Ablation studies

In order to investigate the effect of our proposed TLRM on
different layer of GNN, ablation studies were conducted with
L =1, L = 2, and L = 3 on mini-ImageNet with EGNN
backbone. It can be observed from Table [[V] that the proposed
TLRM plays a significant role in each layer of EGNN.

D. Visualization of similarity scores

For further analysis, Figure [3] shows similarity scores in
the last layer of EGNN. The similarity scores are the average
of 10000 tasks in setting of 5-way 5-shot and 5 queries for
each class. The 25 samples in vertical axis are support set,
and 25 samples in horizontal axis are query set. Notably,
EGNN with our module not only contributes to predicting
more accurately but also reduces the similarity score between
samples in different classes and increases the similarity score
between samples in the same classes.



V. CONCLUSIONS

In this paper, we propose an task-level relation module to
capture the relation representations by employing all the em-
bedding features in a single task. By considering all the sam-
ples in the task, our method can hold discriminative relation
features for each node pair. Experimental results demonstrate
that it improves the performance of recently proposed GNN-
based methods on four benchmark datasets: mini-ImageNet,
tiered-ImageNet, CUB-200-2011, and CIFAR-FS.
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