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Abstract—In this paper, we propose a reduced reference (RR)
point cloud quality assessment (PCQA) model named R-PCQA
to quantify the distortions introduced by the lossy compression.
Specifically, we use the attribute and geometry quantization
steps of different compression methods (i.e., V-PCC, G-PCC and
AVS) to infer the point cloud quality, assuming that the point
clouds have no other distortions before compression. First, we
analyze the compression distortion of point clouds under separate
attribute compression and geometry compression to avoid their
mutual masking, for which we consider 5 point clouds as
references to generate a compression dataset (PCCQA) containing
independent attribute compression and geometry compression
samples. Then, we develop the proposed R-PCQA via fitting the
relationship between the quantization steps and the perceptual
quality. We evaluate the performance of R-PCQA on both the
established dataset and another independent dataset. The results
demonstrate that the proposed R-PCQA can exhibit reliable
performance and high generalization ability.

I. INTRODUCTION

Recently, point cloud has emerged as a promising represen-
tation format in prevalent 3D applications (e.g., autonomous
driving [1] and augmented reality [2]), for which the point
cloud compression (PCC) is of great interest for providing
efficient service in practices. Currently, the Moving Picture
Experts Group (MPEG) has applied the separable measure-
ments of geometry and attribute distortion in the course of
lossy PCC. For the geometry distortion, MPEG proposes to use
the point-to-point (p2point) [3], or point-to-plane (p2plane) [4]
to quantify the spatial perturbation; while for the attribute
part, the PSNRyuv is proposed to measure the differences
between corresponding color channels. Besides these metrics
which have already been applied in MPEG PCC standardiza-
tion, some other metrics which consider more human visual
characteristics and present better performance on public PCQA
databases are also developed, such as [5]–[15]. However, they
are full reference (FR) metrics which require both the reference
and distorted samples and have high computational complexity
for real-time quality prediction.

In many practical cases, e.g., transmission, the timely
feedback is expected, and only the compressed samples and
the meta data are available, in which the reduced reference
(RR) PCQA metrics are indispensable. Only a few researches
explore the RR methods for PCQA. [16] uses the statistical in-
formation (e.g., the luminance histogram) as the substitute for

the complete samples, but still requires the backend processing.
[17] applies the quantization parameters in V-PCC to estimate
the quality of compressed samples and guide rate control,
but other prevalent compression strategies (e.g., G-PCC) are
ignored. Therefore, in this paper, we propose a general RR
PCQA model for compression distortions named R-PCQA
which only takes the attribute and geometry quantization steps
of compression schemes (including V-PCC [18], G-PCC [19]
and AVS [20], V-PCC and G-PCC are provided by MPEG
while AVS is recommended by China Audio-Video Coding
Standard) as variables, since the quality of compressed point
clouds is highly related to the compression parameters. To fully
study the relationship between the compression parameters
and perceptual quality, we first establish a complete subjective
database for PCC, named PCC quality assessment (PCCQA)
database.

The reason why we establish PCCQA while many PCQA
datasets [7], [21]–[24] have been proposed is that current
databases only consider the superimposed compression distor-
tion, i.e. lossy-geometry (G)-lossy-attribute (A) compression,
which is recommended in the Common Test Conditions (CTC)
[25]–[27]. The separate compression strategies, i.e. lossless-
G-lossy-A and lossy-G-lossless-A compression, which are
not included in the CTC are often ignored. Considering the
mutual masking between geometry and attribute distortions
[28], they are useful for exploring the relationship between the
perceptual quality and compression parameters. In PCCQA,
the reference point clouds are compressed by V-PCC, G-PCC
and AVS under lossless-G-lossy-A condition, lossy-G-lossless-
A condition, and lossy-G-lossy-A condition respectively.

To model the relationship between the perceptual quality
and the compression parameters, we first convert all the
compression parameters to the quantization steps. Then, we
model the relationship between the perceptual quality and the
attribute/geometry quantization steps respectively via using the
least square fitting. Finally, the proposed R-PCQA combines
the attribute compression model and geometry compression
model to predict the final quality scores.

The rest of this paper is organized as follows: section II
introduces the established PCCQA dataset; section III presents
the proposed R-PCQA; section IV illustrates the experiment
results; the conclusion is summarized in section V.978-1-6654-7592-1/22/$31.00 © 2022 IEEE
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II. PCCQA DATABASE

To better explore the relationship between the perceptual
quality and the attribute/geometry compression parameters,
we first establish a database called PCCQA under several
compression conditions.

Five reference point clouds are selected from MPEG and
AVS point cloud datasets. These reference point clouds are
ensured to have no holes and other distortions under 1080P
presentation with size-2 primitives. The reference point clouds
are then distorted with 3 compression algorithms, i.e. V-
PCC [18], G-PCC [19] and AVS [20]. Each compression is
conducted under 3 conditions, i.e. lossless-G-lossy-A, lossy-G-
lossless-A, and lossy-G-lossy-A. The compression parameters
are shown in Table I. In total, 225 compressed point clouds
are generated.

TABLE I: Compression parameters used for distorted point
cloud generation.

Conditions Parameters

GPCC lossy-G-lossless-A

VPCC lossy-G-lossless-A

AVS lossy-G-lossless-A

(positionQuantizationScale)
0.75 0.5 0.25 0.125 0.0625
(geomQP)
22 32 37 42 51
(geom quant step)
2 4 8 12 16

GPCC lossless-G-lossy-A

VPCC lossless-G-lossy-A

AVS lossless-G-lossy-A

(qp)
35 39 43 47 51
(textureQP)
32 37 42 47 51
(attr quant param)
24 32 40 44 48

GPCC lossy-G-lossy-A

VPCC lossy-G-lossy-A

AVS lossy-G-lossy-A

(positionQuantizationScale, qp)
0.75,35 0.5,39 0.25,43 0.125,47 0.0625,51
(geomQP, textureQP)
24,32 28,37 32,42 36,47 40,51
(geom quant step, attr quant param)
2,24 4,32 8,40 12,44 16,48

To annotate the compressed point clouds, a subjective
experiment is organized to collect the Mean Opinion Scores
(MOS). We adopt the double stimulus method since it can
obtain more stable results for minor impairments. The ex-
periment process and environment setting strictly follow the
ITU-R Recommendation BT. 500 [29]. Such a method for
collecting subjective MOS is also adopted in other researches,
such as [23], [30]–[32].

III. PROPOSED QUALITY ASSESSMENT MODEL R-PCQA

A. Unifying the Compression Parameters

The compression parameters with different meanings are
used in V-PCC, G-PCC and AVS, but the used compression
parameters can all be converted to the quantization steps.
Thus, to better explore the relationship between the perceptual
quality and the quantization, we first convert these compres-
sion parameters to quantization steps, denoted as Qs, before
proposing the R-PCQA.

In V-PCC, the parameters textureQP and geomQP, de-
noted as QP , are used to control the attribute compression
and geometry compression respectively, which apply

Qs = round(2
QP−4

6 ), (1)

where round(·) means converting a number to the nearest
integer.

In attribute compression of G-PCC, the compression pa-
rameter qp has the same meaning as QP in V-PCC, following

(a)

(b)

Fig. 1: Variation of Qs as function of MOS for different
samples. (a) under V-PCC lossless-G-lossy-A condition; (b)
under V-PCC lossy-G-lossless-A condition.

the same conversion formula in Eq. (1). The parameter posi-
tionQuantizationScale, denoted as S, is used to control the
geometry quantization, which can be converted to Qs by

Qs =
1

S
. (2)

In AVS, the parameter attr quant param, denoted as
QPa, is used to control the attribute quantization, which can
use the following formulation to convert it to Qs

Qs = 2
QPa

8 . (3)

For the geometry compression of AVS, the parameter
geom quant step shares the same meaning with the quan-
tization step Qs.

B. Overall Quality Model

We use the average MOS in PCCQA to fit the mathematical
model for quality prediction. The relationships between MOS
and Qs under V-PCC lossless-G-lossy-A condition and V-PCC
lossy-G-lossless-A condition are shown in Fig. 1. We can see
that under the same compression condition, different samples
share the fitting model with basically the same shape but
are added to different additive factors. Therefore, we assume
MOS and Qs satisfy the following relationship under a certain
compression condition:

MOS = F (Qs) + c(pc), (4)



where F denotes the fitting function which is related to the
quantization step Qs. c denotes the additive factor which is
related to the intrinsic characteristics of the point cloud pc.

On the whole, different samples share the same relationship
model under a certain compression condition, but they are
added to an additive sample factor. To deal with the addi-
tive sample factor, we use Qs and average MOS which is
denoted as MOS to build up the relationship model for each
compression condition:

MOSf = MOS = F (Qs) + c(pc), (5)

where MOSf is the final predicted quality score and c denotes
the average value of additive factors.

C. Modeling the Attribute Compression

The relationships between MOS and Qs are illustrated in
Fig. 2. For the attribute compression of all V-PCC, G-PCC and
AVS compression algorithms, the relationship between MOS
and Qs follows the linear model, i.e.,

MOSa = c1,a ∗Qsa + c2,a, (6)

where Qsa denotes the quantization steps for attribute com-
pression. c1,a and c2,a are the model parameters, whose fitting
values are shown in Table II.

TABLE II: Fitting parameters in the attribute compression
model.

V-PCC G-PCC AVS
c1,a -0.0089 -0.01 -0.0519
c2,a 4.4862 5.3515 5.1337

D. Modeling the Geometry Compression

For geometry compression of V-PCC, the relationship
between MOS and Qs follows the natural logarithm function,
i.e.,

MOSg,V−PCC = c1,g ∗ lnQsg + c2,g, (7)

where Qsg denotes the quantization steps for geometry com-
pression. c1,g and c2,g denote the model parameters.

For geometry compression of G-PCC and AVS compres-
sion algorithms, the relationship between MOS and Qs fol-
lows the linear model, i.e.,

MOSg,G−PCC,AV S = c1,g ∗Qsg + c2,g. (8)

The fitted parameters in the geometry compression models
are shown in Table III:

TABLE III: Fitting parameters in the geometry compression
model.

V-PCC G-PCC AVS
c1,g -0.559 -0.2381 -0.273
c2,g 5.4165 5.3818 5.5034

E. Combining the Attribute Model and Geometry Model

The point clouds are often compressed in both attribute
and geometry, and the attribute degradation and geometry
degradation are superimposed on the point clouds at the same
time. As explored in Section IV-B, the linear combination
of the attribute model and geometry model can accurately
estimate the quality. We take the weighted summation of
MOSa and MOSg to predict the final quality scores.

For V-PCC, the established model is

MOSf = p1,a ∗Qsa + p1,g ∗ lnQsg + P. (9)

For G-PCC and AVS, the established model is

MOSf = p1,a ∗Qsa + p1,g ∗Qsg + P, (10)

where MOSf is the predicted quality scores, Qsa is the
quantization steps for attribute compression, and Qsg is the
quantization steps for geometry compression. p1,a = 1

2 ∗ c1,a,
p1,g = 1

2 ∗ c1,g , and P = 1
2 ∗ (c2,a+ c2,g) to cast the predicted

quality scores under the same range of subjective scores.

F. Analysis

Some findings can be made in the experiment: i) Eq. 6
and Eq. 7 demonstrate that for the V-PCC distortion, the
geometry distortion is more annoying compared with the
attribute distortion, but the human eyes are more sensitive to
the quantization change in the attribute compression; ii) for
the geometry compression, the fitting curves of V-PCC and G-
PCC are different, which derives from that the quantization of
V-PCC is conducted on the projection while the quantization
of G-PCC and AVS is conducted on octree; iii) for the attribute
compression, all the three compression algorithms follow the
linear model, since their quantization is all conducted on RGB,
resulting in the similar perceptual pattern.

A potential concern is whether the obtained relation func-
tion is generic for different datasets. As discussed in Section
III-B, the difference of reference samples will only affect
the additive factors, as P in Eq. 9 and Eq. 10 which is a
predefined constant. Thus, the obtained relation function can
still accurately predict the quality rank of samples in other
datasets, which is demonstrated by the cross-dataset evaluation
in Section IV-C.

IV. EXPERIMENTS

In this section, we evaluate the performance of the pro-
posed R-PCQA on the established PCCQA and WPC [24]
dataset. Specifically, we use PCCQA to fit the model parame-
ters and evaluate the fitting errors. Then, we evaluate on WPC
dataset as cross check to verify the performance of R-PCQA
and its generalization ability.

A. Error Analysis

The proposed PCCQA consists of three parts, part 1:
lossless-G-lossy-A, part 2: lossy-G-lossless-A and part 3:
lossy-G-lossy-A. The proposed R-PCQA is fitted on the
lossless-G-lossy-A and lossy-G-lossless-A parts, and we use
the remaining lossy-G-lossy-A part to evaluate the perfor-
mance. Especially, we note the former two parts as the training



(a) (b) (c)
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Fig. 2: Variation of Qs as function of average MOS for each compression condition. The top row is under lossless-G-lossy-A,
and the bottom row is under lossy-G-lossless-A. (a) (d) is for V-PCC, (b) (e) is for G-PCC, and (c) (f) is for AVS.

set and the latter part as the testing set. The mean, standard
deviation and 95% quantile of fitting errors MOS − MOSf

on the testing set are shown in Table IV. The correlation
performance on the testing set is shown in Table V.

TABLE IV: Mean, standard deviation and 95% quantile of the
fitting errors on the testing set.

Mean Standard deviation 95% quantile
V-PCC 0.0378 0.5885 0.7561
G-PCC -0.5794 0.5113 0.0969
AVS -0.1356 0.2845 0.2531

We can see from Table IV and Table V that the proposed
model can not only fit the dataset accurately, but also conforms
to the characteristics of human visual system.

B. Combination Analysis

The correlation performance of four combination schemes
of the attribute model and geometry model on the testing set
is shown in Table V.

TABLE V: Correlation performance of four combination
schemes on the testing set.

PLCC SROCC RMSE PLCC SROCC RMSE
Linear Combination Multiplicative Combination

V-PCC 0.8360 0.8554 0.5070 0.8360 0.8554 0.5070
G-PCC 0.9854 0.9582 0.2098 0.9853 0.9582 0.2100
AVS 0.9917 0.9854 0.1650 0.9913 0.9854 0.1691

GA Combination AG Combination
V-PCC 0.8351 0.8554 0.5082 0.8356 0.8554 0.5075
G-PCC 0.9444 0.9582 0.4046 0.9767 0.9582 0.2644
AVS 0.9881 0.9854 0.1978 0.9862 0.9854 0.2127

We can see from Table V that: i) the linear combination
is determined due to its slightly better performance and sim-
pler calculation for two relationship model mixing; ii) the
combination schemes hardly affect the performance, which
indicates that the obtained relationship models for attribute
and geometry are independent. Due to the removal of mutual

masking, it is not necessary to consider the interaction of
attribute and geometry components in the mixing.

C. Cross-dataset Evaluation

After the model is established on the proposed dataset, we
evaluate its generalization performance on another independent
dataset, the V-PCC part of WPC [24], which contains 400
distorted samples derived from 16 reference point clouds with
25 different quantization parameters. The results are shown in
Table VI.

TABLE VI: Cross-dataset performance on WPC dataset.
PLCC SROCC PLCC SROCC

M-p2po (FR) [3] 0.61 0.58 H-PSNRyuv (FR) [33] 0.29 0.23
M-p2pl (FR) [34] 0.63 0.59 PCQM (FR) [12] 0.74 0.75
H-p2po (FR) [3] 0.51 0.46 GraphSIM (FR) [13] 0.74 0.75
H-p2pl (FR) [34] 0.55 0.48 MPED (FR) [35] 0.60 0.59
PSNRyuv (FR) [33] 0.46 0.47
PCM RR (RR) [16] 0.42 0.38 R-PCQA (RR) 0.88 0.88

We can see from Table VI that: i) for the compression
distortions, the proposed R-PCQA exhibits the state-of-the-
art performance which only needs the assistance of two
compression parameters, even compared with the existing FR
metrics; ii) the model parameters derived from PCCQA still
exhibit robust performance on another independent dataset,
which demonstrates the generalization ability of the proposed
RR metric R-PCQA; iii) the massive increase in points after
reconstruction may interfere with the measurement of point-
wise FR metrics, resulting in the poor performance of some
FR metrics.

V. CONCLUSION

In this paper, we analyze the compression distortions of
point clouds under separate attribute compression and geom-
etry compression to avoid their mutual masking. Then by
fitting the relationship between the quantization steps and the



perceptual quality, we propose a RR PCQA model, called R-
PCQA, for evaluating V-PCC, G-PCC and AVS distortions.
The experiment results have demonstrated that the proposed
R-PCQA exhibits reliable and robust performance.
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