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Abstract—Spatial frequency analysis and transforms serve a
central role in most engineered image and video lossy codecs, but
are rarely employed in neural network (NN)-based approaches.
We propose a novel NN-based image coding framework that
utilizes forward wavelet transforms to decompose the input signal
by spatial frequency. Our encoder generates separate bitstreams
for each latent representation of low and high frequencies. This
enables our decoder to selectively decode bitstreams in a quality-
scalable manner. Hence, the decoder can produce an enhanced
image by using an enhancement bitstream in addition to the
base bitstream. Furthermore, our method is able to enhance
only a specific region of interest (ROI) by using a corresponding
part of the enhancement latent representation. Our experiments
demonstrate that the proposed method shows competitive rate-
distortion performance compared to several non-scalable image
codecs. We also showcase the effectiveness of our two-level quality
scalability, as well as its practicality in ROI quality enhancement.

Index Terms—End-to-end compression, learned image com-
pression, quality scalability, wavelet decomposition

I. INTRODUCTION

Conventional lossy codecs [1] use transforms such as
the Discrete Wavelet Transform (DWT) or Discrete Cosine
Transform (DCT), alongside quantization to achieve variable-
rate compression. An image is transformed into the frequency
domain, and the resulting transformed coefficients are quan-
tized into bins, where each bin is sized to minimize perceptible
distortion. Most importantly, distortion at high spatial frequen-
cies is much less noticeable than distortion at low frequencies.
Based on this property of the human visual system, a quality-
scalable coding method allows progressive improvement in
decoded image quality by providing the decoder with further
high-frequency information at higher bitrates [2]–[5].

End-to-end learned image compression (LIC) methods have
recently caught the research community’s interest. Ballé et
al. [6] first proposed a density modeling method using Gener-
alized Divisive Normalization (GDN) to transform the input
images into an entropy coding-friendly latent space, which
was effectively used in the autoencoder-based [7] approach
in [8]. More recently, several variational autoencoder (VAE)-
based methods [9]–[11] focused on accurately modeling the
distributions of the latent variables, resulting in rate-distortion
(RD) performance competitive with the latest fully-engineered
codecs [12], [13]. Other approaches [14], [15] sought im-

provements in the analysis transform1. In particular, Akbari
et al. [15] replaced regular 2D-convolutions with octave con-
volutions (OctConv) [16] which act like wavelet transforms
in that the spatial resolution is reduced while diminishing
spatial redundancy. However, rather than analyzing the input
by frequency, the authors’ modifications to OctConv focus on
improving representational power.

We propose a quality-scalable frequency-aware learned
image coding (FLIC) method using wavelet-embedded octave
convolution (WeOctConv) that has RD performance compet-
itive with non-scalable methods. Our method supports two-
level quality scalability by encoding an input image into two
separate bitstreams, as well as ROI-based quality scalability
by encoding only selected regions of the latent space.

In Section II, we review prior work that inspired the pro-
posed method, which is then described in detail in Section III.
Experimental results are presented in Section IV, followed by
conclusions in Section V.

II. PRIOR WORK

Chen et al. [16] introduced the OctConv layer which
factorizes its input into low-frequency (L) and high-frequency
(H) features. Given an input tensor Yin = {YH

in ,YL
in}, the

output tensor Yout = {YH
out,YL

out} is computed by

YH
out = fH→H(YH

in ) + Upsample(fL→H(YL
in ))

YL
out = fL→L(YL

in ) + fH→L(Pool(YH
in ))

(1)

where fA→B represents the convolutional update between
groups of frequencies A and B. fA→B is known as inter-
frequency communication whenever A and B are distinct
frequency groups, and intra-frequency update whenever they
are the same. Upsample uses nearest-neighbor interpolation.
Pool uses average pooling, which from the perspective of
frequency analysis is similar to a low-pass filter for the 2-D
discrete Haar wavelet transform. Thus, YL

out accumulates the
low-frequency information over successive OctConv layers.

Akbari et al. [15] introduced a modified OctConv in which
Pool is replaced with a convolution with a stride of 2. This
modification increases representational ability, but is also less
interpretable from the frequency decomposition perspective.
Additionally, extensively applying GDN to the OctConv lay-
ers potentially adds redundant computations since OctConv
already conducts some degree of factorization. Nonetheless,
their approach shows improvements in RD performance in
comparison to several LIC approaches.

1In LIC literature, the analysis transform ga transforms an input image into
the latent space, from which the synthesis transform gs reconstructs the image.978-1-6654-7592-1/22/$31.00 © 2022 IEEE
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(a) (b)

Fig. 1. Design of the proposed layers (a) WeOctConv and (b) TWeOctConv,
along with their corresponding Residual Block (RB). Inter-frequency updates
are shown as purple lines, and intra-frequency updates as green lines.

III. PROPOSED METHOD

This section describes the proposed WeOctConv layer and
introduces our quality-scalable FLIC method, consisting of
WeOctConvs, based on the factorized prior architecture [8].

A. Wavelet-embedded Octave Convolution

Fig. 1 depicts the overall computation flow of the proposed
WeOctConv layer, used in the analysis transform, and its dual
TWeOctConv, used in the synthesis transform. The WeOct-
Conv layer shown in Fig. 1(a) captures low and high frequency
information from input tensors Yk

in ∈ RCin×N×M for each
k ∈ {L,H}, where Cin is the number of input channels
and N ×M is the feature resolution, and outputs the tensors
Yk

out ∈ RCout×N
2 ×

M
2 , where Cout is the number of output

channels. Conversely, the TWeOctConv layer in Fig. 1(b)
synthesizes Yk

in ∈ RCin×N
2 ×

M
2 into Yk

out ∈ RCout×N×M .

For the WeOctConv layer, the inter-frequency update con-
sists of a DWT and a convolution, where the DWTs use the
following 2× 2 Haar wavelet kernels with a stride of 2:

LL =
1

2

[
1 1
1 1

]
, HH =

1

2

[
1 −1
−1 1

]
. (2)

The low-pass filter LL is used for the H → L update, and
the high-pass filter HH is used for the L → H update. The
downsampled filtered output is then fed into a convolutional
layer with 3×3 kernels, denoted as Conv3. We found that it is
challenging to simultaneously optimize for both the trainable
DWT transform coefficients [17] and the RD criterion. Hence,
we instead use fixed DWT transform coefficients. For the
TWeOctConv layer, the natural choice for the inter-frequency
update is a Conv3 and an inverse DWT (IDWT). However,
we found that using fixed IDWT transform coefficients causes
severe quality degradation, especially at lower bitrates. Hence,
we instead use a Conv3PS layer composed of a Conv3 followed
by a PixelShuffle [18], which is capable of upsampling its input
in a way similar to IDWT by mixing groups of 4 channels.

Each intra-frequency update uses Residual Blocks (RBs).
For WeOctConv, each RB consists of a Conv3 with stride
2 (denoted as Conv3s2), a L(eaky)ReLU, a Conv3, and a
LReLU; and in the “skip” branch, a convolution with a 1× 1
kernel and stride 2 (denoted as Conv1s2). For TWeOctConv,
Conv3PS replaces both Conv3s2 and Conv1s2 within each RB.

Lastly, the inter-frequency updates are added to their cor-
responding intra-frequency updates.

Fig. 2. Overall architecture of the proposed FLIC. The bottom of each
layer details a number of input channels Cin and output channels Cout,
respectively. For the first layer Cin in the analysis and the last layer Cout

in the synthesis, only one port of input and output with three channels (i.e.,
RGB) is available.

(a) (b)

Fig. 3. Tiled latent channels of (a) ŶL and (b) ŶH computed using a sample
image from the Kodak dataset [20]. Each channel is normalised to [0, 1] for
visibility. All channels with non-zero latent representations are presented.

B. Frequency-aware Learned Image Compression

Fig. 2 presents the overall architecture of the proposed
image compression network employing (T)WeOctConvs. De-
noted by “Frequency-aware Analysis”, the encoder-side anal-
ysis transform ga(·) with learned parameters ψa analyzes an
input image X and generates a pair of compressed latent
representations:

Y = {YL,YH} = ga(X;ψa). (3)

We limit the use of GDNs to only one instance after the
last WeOctConv. In our experiments, reducing the number of
computationally intensive GDNs in this way does not result
in a performance drop. Furthermore, no bias is used at all
to reduce the number of operations. YH and YL are then
rounded to the nearest integer during inference to obtain the
quantized latent representations ŶL and ŶH . During training,
like in [8], uniform noise is added to the latent representations
for the gradient computation. ŶL and ŶH are respectively
losslessly encoded into a base and an enhancement bitstream
using entropy encoders (ECs)2.

The decoder uses entropy decoders (EDs) to losslessly
decode the given bitstreams into ŶL and ŶH . Denoted by
“Frequency-aware Synthesis”, the synthesis transform gs(·)
with learned parameters ψs synthesizes a reconstructed image
X̂ from ŶL and ŶH by applying to each a Conv3 and
an inverse GDN (IGDN), and then applying a number of
TWeOctConvs. This is written as

X̂ = gs(ŶL, ŶH ;ψs). (4)

As shown in Fig. 3, spatial low- and high-frequency
features are captured well by ŶL and ŶH , respectively. This
is because WeOctConv examines the wavelet decomposition
on each layer’s input throughout the analysis transform.

2Specifically, arithmetic range coder based on Asymmetric Numeral Sys-
tems (ANS) provided in [19] is used.



C. Quality scalability

In traditional scalable codecs [2]–[4], the decoder may
reconstruct an input image using its encoded base bitstream.
A more detailed, higher quality image may be reconstructed
by additionally providing the decoder with an enhancement
bitstream that typically carries further high-frequency infor-
mation. The proposed FLIC provides a similar form of quality
scalability. Eq. (4) generates a high-quality input reconstruc-
tion using all latent representations. However, a lower quality
image may be reconstructed by setting ŶH = 0 so that

X̂base = gs(ŶL,0;ψs), (5)

where 0 denotes a zero tensor whose elements are all zeros
with the same dimension as ŶH .

Furthermore, the decoder also supports the quality enhance-
ment of selected ROIs. This can be done by feeding gs with a
decoded tensor ŶH

ROI (of the same dimensions as ŶH ) contain-
ing coded latent variables only for corresponding regions and
zeros everywhere else. This produces the reconstructed image

X̂ROI = gs(ŶL, ŶH
ROI;ψs), (6)

where the selected ROI regions have been enhanced.

D. Loss function

During training, we use a loss function in the form of an
RD Lagrangian as in [8]:

L = Ex∼px [−log2pŷ(ŷ)]︸ ︷︷ ︸
rate estimation

+λ · (D(X, X̂) + α ·D(X, X̂base)︸ ︷︷ ︸
distortion

),

(7)
where px denotes the probability density of the input data
x and pŷ represents a fully factorized distribution of the
quantized latent variable ŷ. The distortion metric D can be
any objective quality metric; we use mean squared error
(MSE) and MS-SSIM [21] for our experiments. The hyper-
parameter α ≥ 0 balances the importance in quality of the
full base+enhancement reconstruction X̂ and the base-only
reconstruction X̂base.

IV. EXPERIMENTS

Our FLIC networks are trained on random cropped patches
of size 256×256 from the Vimeo-90K dataset [22]. The mini-
batch size is set to 8 and our networks are trained for up to
2.5M steps (≈ 350 epochs), corresponding to about 10 to 12
days. We use an Adam optimizer with an initial learning rate
of 10−4, which is then decreased by 90% after the first 30
epochs whenever the validation loss plateaus with a patience
of 4 epochs. We train models for each λ = 2n · 10−2 over all
n ∈ {3, 2, 1, 0,−1,−2,−3}. The models are tested on all 24
images in the Kodak dataset [20] to evaluate RD performance.

A. Compression performance

1) Impact of the hyperparameter α: We introduced α in
Eq. (5) to control the quality of X̂base. To examine its impact on
RD performance, we trained our model over various values of
λ for several α ∈ {0.1, 0.01, 0.001, 0.0001, 0}. The RD curves
for various α are shown in Fig. 4. The RD performance of
the full bitstream (solid curves) is only marginally affected by

Fig. 4. RD performance of our proposed FLIC with various α on the Kodak
dataset [20]. Solid and dashed lines represent the full bitstream and the base-
only bitstream, respectively.

Fig. 5. Comparison of average bit proportion between the base layer and
the enhancement layer for several models including [15] and the proposed
models, trained with λ = 23 · 10−2.

changing α. In contrast, the RD performance of the base-only
bitstream (dashed curves) drastically improves as α increases.
Thus, a larger value of α ≥ 0.1 may be used to obtain
good base-only reconstructions without compromising full
reconstruction performance.

Fig. 5 compares the average bit proportion between the
base and enhancement bitstreams for various models. Although
there is no scalability in [15]3, we consider their low- and
high-frequency feature tensors to be the base and the en-
hancement layers, respectively. On average, about 4% of the
entire bitstream by [15] represents low-frequency information.
In contrast, our method adaptively uses α to control the bit
proportion trade-off between bitstreams, without significantly
affecting overall RD performance.

2) Comparison with benchmarks: Table I summarizes the
average bit savings by several LIC methods and our proposed
models with various α against JPEG20004 in terms of BD-
rate [25]. Since our method is built upon [8] and uses 30M
parameters, we reconfigured and retrained the relevant bench-
marks [8], [15] to use the same number of parameters and
entropy bottleneck as ours. As such, we reasonably compare
the coding results of the benchmarks in the first two columns
with our proposed methods in the last three columns of Table I.
The first row shows the average bit savings of the models
optimized for MSE in terms of BD-rate computed on the PSNR
versus bpp curves. The last row shows coding gain by the
models optimized for MS-SSIM in terms of BD-rate computed
on the MS-SSIM versus bpp curves.

3Since there is no publicly available code, we have reimplemented the
network using the factorized prior-based entropy bottleneck [8] and trained
it on the same dataset used for our proposed model.

4FFMPEG [23] (v3.4.8) and libopenjpeg [24] (v2.3.0) are used.



Original (uncompressed) Base+Enh. (28.8dB / 0.467bpp) Base-only (23.6dB / 0.184bpp) Base+ROIs (25.2dB / 0.288bpp)

(a) (b) (c) (d)
Fig. 6. Visual example of our quality scalability method for the sample input image kodim14.png from the Kodak [20] dataset. The first column (a)
represents the uncompressed input. The top header shows the coding results (RGB-PSNR / bpp) for the last three columns in the case of: (b) using both base
and enhancement bitstreams, (c) using only the base bitstream, and (d) using the base bitstream along with the enhancement bitstream containing only selected
ROIs. For visibility, the first row shows a cropped patch of the compressed image at (300, 50) with a size of 468 × 400. The second row shows the image
represented in the Fourier domain. The third row shows enlarged ROIs.

TABLE I. BD-RATE (%) PERFORMANCE OF VARIOUS LEARNED IMAGE
CODECS AGAINST JPEG2000 [3]

Anchor Benchmark LIC models Proposed models
JPEG2000 [8] [15] α = 0.1 α = 0.01 α = 0

opt-MSE -17.48 -14.48 -16.11 -12.72 -13.24
opt-MS-SSIM -62.48 -64.88 -63.30 -62.51 -63.73

Conventional scalable codecs cost 15-25% overhead bits
to add a scalability layer in comparison with equivalent non-
scalable codecs [26]. Compared to [8], which optimized for
MSE, our two-level quality-scalable model with α = 0.1 only
increases bitrate usage by 1.3%. Furthermore, for α = 0.1, our
codec outperforms our reimplementation of the non-scalable
OctConv model in [15]. For the second row comparing mod-
els optimized for MS-SSIM, the OctConv-based LIC models
show coding gains compared to [8], which uses only regular
convolution. We attribute these gains to the structural ability of
OctConv in efficiently capturing the spatial structure of their
input in a manner reminiscent of Wavelet transforms.

B. Quality scalability and frequency analysis

Fig. 6 shows a visual example of quality scalablility in
action, where an input image X is compressed using our
MSE-optimized FLIC model trained with small λ = 0.01 and
α = 0.01 to make the quality degradation more apparent.
Each of the columns shows an image, its Fourier domain,
and two select enlarged ROIs. The image in each column in
Fig. 6 is: (a) X, the original uncompressed image, (b) X̂,
reconstructed using both base and enhancement bitstreams,
(c) X̂base, reconstructed using only the base bitstream, and

(d) X̂ROI, reconstructed using the base bitstream along with the
enhancement bitstream containing only selected ROIs. Since
the base bitstream primarily contains low-frequency informa-
tion, much of the high-frequency information is missing from
X̂base. Indeed, the Fourier domain for X̂base shows much less
energy in the high-frequency spectrum compared to X and X̂.

To demonstrate our model’s capability for ROI-based qual-
ity scalability, we select two ROIs for enhancement: the man
in the center of the boat, and the text on the boat. These
regions are blocky and unreadable in X̂base. By including
these regions within the enhancement bitstream, the decoder
effectively reconstructs these regions within X̂ROI, with a
quality equivalent to the same regions in X̂ by PSNR.

V. CONCLUSION

We presented a novel frequency-aware learned image com-
pression (FLIC) framework that uses our newly introduced
WeOctConv layer. The WeOctConv layer is designed to op-
timize the separation of spatial frequencies into two latent
representations, enabling our FLIC to serve two-level quality-
scalable coding with minimal overhead bits. Furthermore, our
method efficiently balances the amount of information between
the low- and high-frequency latent representations using a scale
factor during training. This allows it to achieve flexible RD
trade-offs for the base bitstream while having minimal impact
on overall coding gain. Finally, we demonstrated the potential
of our approach in the context of ROI-based quality enhance-
ment by utilizing partial information from the enhancement
latent representation, without requiring any extra retraining.
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