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Abstract—We propose an end-to-end learned image data hid-
ing framework that embeds and extracts secrets in the latent
representations of a generic neural compressor. By leveraging
a perceptual loss function in conjunction with our proposed
message encoder and decoder, our approach simultaneously
achieves high image quality and high bit accuracy. Compared to
existing techniques, our framework offers superior image secrecy
and competitive watermarking robustness in the compressed
domain while accelerating the embedding speed by over 50 times.
These results demonstrate the potential of combining data hiding
techniques and neural compression and offer new insights into
developing neural compression techniques and their applications.

Index Terms—Image steganography, watermarking, neural
compression, end-to-end learned data hiding

I. INTRODUCTION

Image steganography or watermarking hides secrets in a
cover image to form a container image for communication or
proof of ownership. Steganography focuses on the container
image’s secrecy and message capacity, while watermarking
techniques must be robust to various attacks. Traditional
methods worked on hiding and extracting secrets in either
the spatial domain [1], [2] or the frequency domain [3], [4].
Modern techniques [5]–[8] use deep neural networks (DNNs)
and adversarial training to end-to-end learn an encoder/decoder
pair that embeds and extracts the secrets with robustness
against noise attacks. These data hiding techniques are highly
relevant to image compression codecs and DNN-transformed
latent representations.

Neural compression [9], the end-to-end learned image com-
pression method [10]–[13], has been actively developed in
recent years and has proven to outperform traditional expert-
designed image codecs. Although the model complexity and
performance issues remain the challenges for neural compres-
sion to be widely adopted, international standards such as
JPEG AI [14] and MPEG VCM (Video Coding for Machines)
[15] have initiated to bridge data compression and computer
vision together for both human and machine vision. Choi et al.
[16] have proposed scalable image coding frameworks based
on well-developed neural compressors to achieve up to 80%
bitrate savings on machine vision tasks.
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Data compression itself may not justify the necessity to
replace handcrafted image/video codecs with learned ap-
proaches. However, the intersection of data compression and
multimedia applications may offer us a different perspective.
In this work, we propose an end-to-end learned image data
hiding framework that embeds and extracts secrets in the latent
representations of a neural compressor.

II. RELATED WORKS

A. Learned Image Compression

DNNs have opened new opportunities to rebuild data com-
pression as an end-to-end learning process. While several
approaches existed in the literature, Balle et al. [10] proposed
a highly successful image codec that out-performed JPEG and
JPEG 2000 in PSNR and SSIM metrics. Minnen et al. [11]
then used a joint autoregressive and hierarchical prior model
to achieve even higher coding efficiency than the HEVC [17]
codec. More recently, Cheng et al. [12] developed techniques
that achieve comparable performance to the latest coding
standard VVC [18]. There are now several excellent survey
and introduction papers [9], [19], [20] summarizing this wave
of end-to-end compression advances.

B. DNN-based Steganography and Watermarking

Deep steganography methods like DeepStega [5] and UDH
[6] defined a new task to hide one or more images into a cover
image with a DNN. Unlike traditional methods that require
a perfect restoration of secret messages, Deep steganography
methods minimize the distortion between the retrieved and
the original secret images. Thus, the message is securely
delivered because the authentic and recovered secret images
are visually indistinguishable. Lu et al. [21] recently advanced
deep steganography with a higher capacity of up to three or
more secret images.

Zhu et al. [7] proposed the HiDDeN model that embeds
the raw bits and extracts the secret message with a low bit
error rate using a DNN. With the generative model adversarial
trained against the noise layers, the HiDDeN model can
achieve the purposes of steganography and digital watermark-
ing with the same network architecture. Perhaps inspired by
HiDDeN, many researchers have proposed similar adversarial
network methods for steganography, such as StegaStamp [8],
Hinet [22], and watermarking [23]–[25].
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Fig. 1. The architecture of the proposed neural data hiding framework.

III. PROPOSED METHOD

We show our system architecture in Fig. 1 and describe our
techniques as follows.

A. Problem Formulation

a) Steganography: A message m ∈ {0, 1}n is hidden in
a cover image c. A neural encoder/decoder pair ge and gd are
used to obtain the compressed latent vector y = ge(c) and
the encoded cover image ĉ = gd(y). A message encoder he is
trained to transform the message to the same dimension as y.
The embedded latent vector ye is obtained as follows:

ye = y ⊕ he(m) (1)

where ⊕ is element-wise addition. The embedded latent
vector ye is then entropy-coded and transmitted. The stego
image ŝ = gd(ye) can be decoded by anyone with access to
the publicly available ge and gd. However, only the specified
receiver with a trained message decoder hd can extract the
secret message by:

m′ = hd(ye) (2)

b) Watermarking: The noised stego image ṡ = u(ŝ) is
derived using an attacker u to simulate noise attacks. The final
noised stego image ˆ̇s needs to be re-compressed using the
same neural encoder/decoder pair. The noised embedded latent
vector ẏe = ge(ṡ) is then used to extract secrets with ṁ′ =
hd(ẏe).

B. Network Architecture

We design our message encoder he and decoder hd to match
neural codecs [10] and [11]’s latent representations. We detail
the encoder/decoder structures in Table I. Different neural
codecs may have varying latent space dimensions, but the
general rules are: 1) Message encoder: Use a linear layer and
a CBNL (convolution, batch normalization, and leaky ReLU)
layer to expand the |m|-bit message to match the compressed
latents’ dimensions. 2) Message decoder: Use Conv/ReLU

layers with downsampling and then flatten and use linear
regression to obtain the |m|-bit message.

TABLE I
NETWORK ARCHITECTURE

Message Encoder he

Layers kernel stride padding in out channels
Linear |m| 64
CBNL 3 1 1 8× 8 8× 8 320

Message Decoder hd

Layers kernel stride padding in out channels
Conv/ReLU 3 2 1 8× 8 4× 4 320
Conv/ReLU 3 2 1 4× 4 2× 2 320
Conv/ReLU 3 2 1 2× 2 1× 1 320
Flatten
Linear 320 512
Linear 512 |m|

C. Loss Functions

We define our loss function as a combination of perceptual
loss LP and message loss LM :

L = LP + αLM , (3)

where α is a hyper-parameter used to control the relative
weight of the two losses.

The perceptual loss is measured by the DNN-based percep-
tual loss LPIPS [26]:

LP = LPIPS(ĉ, ŝ). (4)

We avoid using MSE (mean square error) to minimize
image distortion because we observed that the LPIPS metric
significantly impacts our fixed neural codec more than a self-
trained image encoder/decoder.

For measuring the decoded message error, we use binary
cross-entropy as the loss function:

LM = BCE(m,m′) + βBCE(m, ṁ′), (5)

where ṁ′ is the decoded message from the noised latent ẏe.
The loss function is weighted by hyper-parameters α = 1.5
and β = 1.0 in our experiments.

D. Noise Attacks

For the watermarking scenario, we defined four types of
common noise attacks as Cropout, Dropout, Gaussian noise,
and JPEG compression. We randomly generate the noise
parameters during training.

IV. EXPERIMENTAL RESULTS

We implemented our works on neural codecs hyper [10]
and mbt [11] from CompressAI. We denote our data hiding
methods as “Ours-hyper” and “Ours-mbt,” respectively. To
ensure high visual quality after encoding, we set the highest
coding quality as 8 in both codecs.

For training, we randomly selected 12,000 and 1,200 images
from the COCO dataset [28] as the training and validation set,
respectively. We resized the cover images to 128 × 128 and
randomly embedded 32-bit binary messages during training.



We trained our model using the PyTorch built-in Adam
optimizer with a learning rate of 0.001 and a batch size of 32.
We trained our model for 160 epochs. We compared our model
with HiDDeN1, DeepStega, UDH2, and StegaStamp3. Unlike
other DNN-based methods that calculate distortion between
the cover c and stego image s, we measured the distortion
between ĉ and ŝ, as described in Section III-A.

A. Steganography Secrecy

Quantitatively, we present image quality metrics in PSNR,
SSIM, MAE (mean absolute error), and bit error rate, as shown
in Table II. While it is well-known that DNN-based methods
cannot achieve zero bit error rates, there are established tech-
niques, such as BCH codes [29] and learning-based channel
noise modeling [30], to mitigate this issue.

Our evaluation accounts for the effect of quantization on
latent vectors. As both the hyper and mbt neural codecs use
unit scalar quantization, the modified latent coefficients can
still withstand the quantization operation. Table II indicates
that our proposed methods have less perceptual distortion than
others. The superior stego image quality of the hyper codec
stems from its lower coding efficiency than the mbt codec,
allowing more room for data hiding in the latent space. On
the other hand, the mbt codec has more densely compressed
latents, which results in more significant quality degradation
from the quantization operation.

TABLE II
QUALITY METRICS VS. BIT ERROR RATE COMPARISON

Kodak [31]
Method PSNR↑ SSIM↑ MAE↓ Error
Ours-hyper [10] 143.44 10.9942 11.02 0.00000
Ours-mbt [11] 240.48 20.9881 21.65 0.00000
HiDDeN [7] 39.61 0.9813 1.91 0.00000
DeepStegaa [5] 36.51 0.9374 2.81 0.01564
UDHa [6] 37.88 0.9184 2.63 0.02131
StegaStampb [8] 31.60 0.9430 4.54 0.00500

DIV2K [32]
Method PSNR↑ SSIM↑ MAE↓ Error
Ours-hyper 141.67 10.9945 11.36 0.00000
Ours-mbt 238.42 20.9847 22.25 c0.00094
HiDDeN 37.59 0.9733 2.44 0.00125
DeepStega 34.72 0.9283 3.58 0.01839
UDH 38.35 0.9414 2.51 0.02475
StegaStamp 30.50 0.9451 5.38 0.00890

CelebA [33]
Method PSNR↑ SSIM↑ MAE↓ Error
Ours-hyper 146.08 10.9962 10.75 0.00000
Ours-mbt 240.56 0.9768 2.25 0.00000
HiDDeN 39.28 20.9806 21.85 0.00000
DeepStega 38.27 0.9410 2.34 0.01822
UDH 38.27 0.9147 2.54 0.01502
StegaStamp 35.40 0.9586 2.67 0.00460
aUse the change of MSB to report bit error
bImage size 400× 400, embed 100 bits
cBit errors due to quantization

1https://github.com/ando-khachatryan/HiDDeN
2https://github.com/ChaoningZhang/Universal-Deep-Hiding
3https://github.com/tancik/StegaStamp

Fig. 2. Comparison of stego image quality and residual. Please zoom in to
observe the modified pixel locations.

Fig. 3. The stego image residual comparison of different data hiding methods.
Please zoom in to observe the modified pixel locations.

Qualitatively, we present the cover images and the resulting
stego images in Fig. 2 and compare our methods’ stego image
residual with other DNN-based methods in Fig. 3.

a) Pixel modification: Modern DNN-based data hiding
methods add perturbations to the low-level feature space to
extract messages from the spatial domain with robustness.
As a result, these methods modify all the low-level pixels of
the cover image, as shown in Fig. 3. Our neural data hiding
method learns to modify the compressed latents, so the pixel
modifications are placed in high-level image features, as shown
in Fig. 2. Overall, our proposed method can generalize well
on different neural codecs and has a less perceptual impact.

Although in our scenario, the receiver does not have access
to the encoded cover image ĉ, we list the LPIPS [26] metrics
between c and ŝ in Table III and compare them with those of
other methods. Our LPIPS metrics remain close to those of
the HiDDeN method and are superior the other methods. The
LPIPS is a learned perceptual metric based on a pre-trained



Fig. 4. The ROC curve of StegExpose classifier.

DNN, which can be thought of as how effectively the stego
image can be used as a proxy for the original cover image.
Therefore, we believe the generated stego image ŝ has not lost
its general utility.

TABLE III
LPIPS COMPARISON OF STEGO IMAGES ON DIV2K

Method LPIPS(ĉ, ŝ) LPIPS(c, ŝ) LPIPS(c, s)
Ours-hyper 0.00064 0.00392 -
Ours-mbt 0.00485 0.00599 -
HiDDeN - 0.00375
DeepStega - 0.07718
UDH - 0.04261
StegaStamp - 0.08039

b) Steganalysis: We measured the ability of our model
to resist steganalysis using publicly available steganalysis
tools, including traditional statistical methods [34] and new
DL-based approaches [35] [36]. To assess our model’s anti-
steganalysis ability on the DIV2K dataset, we used the ste-
ganalysis tool StegExpose [34].

We varied the detection thresholds as input to StegExpose
and plotted the ROC (receiver operating characteristic) curve.
We then calculated the AUC (area under the curve) to indicate
the classification effectiveness. Ideally, the AUC should be
close to 0.5, indicating that the classifier performs no better
than random guessing. Figure 4 shows the ROC curve and
the AUC of the compared methods. Our proposed Ours-hyper
method achieved slightly better secrecy than HiDDeN, with
an AUC of 0.561.

B. Watermark Robustness
We evaluated the robustness of our method against trained

noise attacks on the DIV2K dataset, as shown in Fig. 5. We
varied the attack strength by increasing the noise parameter,
which degrades image quality along the horizontal axis. In
the last chart of Fig. 5, we observe that the overall PSNR is
lower than the numbers we reported in Table II, which is the
trade-off we make for achieving robustness.

Our neural data hiding method performs equivalently to
HiDDeN in the cropout attack, as the cropped-out pixels
do not provide any information to the message extractor.
However, for attacks such as dropout, Gaussian noise, and
JPEG compression, the proposed method demonstrates su-
perior robustness to spatial domain extraction methods like
HiDDeN and StegaStamp. We believe this is due to modifying
of the compressed latent space, which retains more information
in the high-level features without being impacted.

Fig. 5. Watermark robustness against selected noise attacks, evaluated on
DIV2K.

C. Embedding Performance

We report the message embedding/extraction time in Table
IV, measured on an Intel i7-9700K workstation with an Nvidia
GTX 3090 GPU. As expected, our method embeds messages
50 times faster than other spatial domain approaches.

TABLE IV
EMBED/EXTRACT TIME ON

DIV2K, IN SECONDS.

Method Embed Extract
Ours-hyper 0.00021 0.00051
Ours-mbt 0.00020 0.00049
HiDDeN 0.01040 0.00074
DeepStega 0.01108 0.00071
UDH 0.01091 0.00070
StegaStamp 0.05893 0.03412

TABLE V
MESSAGE EMBEDDING SIZE

OVERHEAD, IN PERCENTAGE.

Method Kodak DIV2K CelebA
Ours-hyper 15.62% 11.95% 25.61%
Ours-mbt 20.51% 14.38% 31.18%
HiDDeNa 4.36% 5.03% 9.71%
aIn compressed PNG

D. Neural Codecs

We point out some key considerations to be taken into
account when building applications on neural compressed
latent representations:

First, the continuous latents will be quantized before entropy
coding. Although in our case, the modified latent coefficients
can still withstand unit quantization being used, it is worth
further investigating how different quantization operations can
affect the message embedding process.

Second, the impact on coding efficiency. The neural com-
pressor learns a compact representation and a near-optimal
probability estimation end-to-end. Adding perturbations to
latent coefficients inevitably breaks the compressor’s learned
optimal coding strategy. The overheads shown in Table V
range from 11% to 31% depending on the dataset and the
underlying codecs used.

We did not jointly optimize the image codec with the mes-
sage encoder/decoder because we aimed to prove the concept
of neural data hiding in a standard neural compressor. Third,
we observed that a more coding efficient neural compressor
leads to more quality degradation from quantization and more
size overhead after embedding.



E. Perceptual Loss Study

The success of message extraction is highly dependent
on the design of the message encoder/decoder when jointly
trained with a standard codec that minimizes image distortion.
Experimental results show that the widely used MSE loss
performs poorly. Interestingly, we observed that the LPIPS
metric significantly impacts our fixed neural codec more than
a self-trained image encoder/decoder. This observation could
be due to the high compactness of our neural codec, which is
more strongly connected to certain perceptual features in the
latent space.

V. CONCLUSION

In this work, we proposed a novel end-to-end framework for
image data hiding that embeds secrets in the latent representa-
tions of a neural compressor. Our approach is generic and can
be used with different neural compressors. We demonstrated
its superior image secrecy and competitive watermarking ro-
bustness while significantly accelerating the embedding speed.
Future researches could focus on designing more efficient
neural compressors that reserve space for data hiding in their
latent vectors.
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