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Abstract—Cross-resolution face recognition has become a chal-
lenging problem for modern deep face recognition systems.
It aims at matching a low-resolution probe image with high-
resolution gallery images registered in a database. Existing meth-
ods mainly leverage prior information from high-resolution im-
ages by either reconstructing facial details with super-resolution
techniques or learning a unified feature space. To address this
challenge, this paper proposes a new approach that enforces the
network to focus on the discriminative information stored in the
low-frequency components of a low-resolution image. A cross-
resolution knowledge distillation paradigm is first employed as
the learning framework. Then, an identity-preserving network,
WaveResNet, and a wavelet similarity loss are designed to capture
low-frequency details and boost performance. Finally, an image
degradation model is conceived to simulate more realistic low-
resolution training data. Consequently, extensive experimental
results show that the proposed method consistently outperforms
the baseline model and other state-of-the-art methods across a
variety of image resolutions.

Index Terms—Low resolution, Face recognition, Knowledge
distillation

I. INTRODUCTION

In the past decades, face recognition (FR) has founds its
way in many everyday applications. Current state-of-the-art
deep learning-based face recognition systems achieve near-
perfect performance on well-known public face recognition
benchmarks such as LFW [1] and MegaFace [2]. However,
these face datasets are primarily collected in controlled envi-
ronments and in high resolution, which quite differ from face
images captured by real-world devices. In fact, studies [3]–[7]
have demonstrated a significant performance deterioration of
the most advanced deep face recognition systems in presence
of resolution discrepancies. In this work, we mainly focus
on the problem of cross-resolution face recognition (CRFR),
which intends to match low-resolution (LR) probe images with
high-resolution (HR) gallery images in a database.

Most existing approaches to cope with CRFR can be di-
vided into two categories. In the first category, HR images
are reconstructed from LR images with face super-resolution
(FSR) techniques [8]–[12], which are then recognized by a
face recognition model. Although FSR methods can generate
missing information, even facial details, they are mainly op-
timized for visual appearance and often ignore and even alter
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crucial identity information. This results in limited improve-
ment of performance in LR domains. Furthermore, the high
computational cost of the FSR module during both training
and inference lays an additional burden on the entire face
recognition system and heavily impairs its efficiency.

Different from FSR-based approaches, the second category
converts LR and corresponding HR faces into a unified
resolution-invariant feature space. These approaches rely fully
on the identity information and learn a discriminative represen-
tation. Earlier work [13] leveraged a multidimensional scaling
approach to learn a mapping matrix. Lu et al. [14] proposed
a deep coupled ResNet model with two additional branch
networks to map coupled HR and LR features to a common
space. Zangeneh et al. [15] directly employed a two-branch
structure DCNNs to learn a non-linear feature transformation.
[16] conceived an invertible decoder and learned a quality-
agnostic model. [17]–[19] tackled the problem with a metric
learning approach. They were all built on triplet loss and
learned to reduce the resolution gap by pulling together
positive HR-LR pairs and pushing away dissimilar ones.

Knowledge distillation is a typical approach that builds
resolution-invariant feature space by distilling HR domain
knowledge to the LR domain. This idea was first proposed
in [20] to transfer knowledge from a high-performing but
computationally expensive teacher network into a simpler
student network. Recent studies [21]–[27] have shown the
potential of this approach in solving recognition problems
in low-resolution domains. For instance, Zhu et al. [21] and
Huang et al. [27] addressed the low-resolution object recog-
nition problem with the teacher-student learning paradigm.
Authors in [22], [25], [28] developed efficient low-resolution
face recognition models at low computational cost by distill-
ing informative facial features from teacher to a lightweight
student network. Ge et al. [23] obtained better performance in
CRFR by distilling structural relationships across teacher and
student networks. More recently, [26] performed an attention
similarity knowledge distillation. Instead of the feature map,
they transferred attention maps obtained from the teacher
network into a student network to boost performance in the
LR domain. In this paper, a cross-resolution knowledge distil-
lation framework is first employed, where the targeted student
network is trained with multi-scale LR data and optimized
with both face recognition and distillation losses.
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Fig. 1. The architecture of the proposed knowledge distillation framework and the identity-preserving student network.

Despite the guidance of the prior knowledge extracted from
HR face images, the large resolution disparity between HR and
LR images makes it difficult for the student network to capture
informative features. Frequency analysis in [6], [29] has shown
that the high-frequency information in a facial image, such as
edge and noise, is eliminated during the resolution reduction,
while the low-frequency subbands still preserve the most
discriminative features. Thus, this work proposes an identity-
preserving network, WaveResNet, to capture the discriminative
information stored in low-frequency components of the LR
images. It is adapted from ResNet [30] by replacing the pool-
ing and stride convolution layers with a low-pass filter based
on Discrete Wavelet Transform (DWT). The high-frequency
subbands of the intermediate feature maps are filtered out
to remove ambiguous and noisy information and enforce the
network to focus on the more discriminative low-frequency
information. In addition, a wavelet similarity loss is designed
as an auxiliary distillation loss in order to further enhance
attention in low-frequency subbands. Moreover, a degradation
model is designed to simulate real-world LR training data
and develop a more robust recognition system. The proposed
method has been evaluated on four datasets in a variety of
resolutions and it outperforms the baseline model and some
other related solutions.

II. METHOD

A. Problem Definition

This paper mainly describes and resolves the cross-
resolution face recognition (CRFR) problem, where the probe
images are LR due to the limited definition of the camera or
the large distance between the camera and the subject, while
the gallery images registered in the database are all of higher
quality and resolution. In the testing phase, one focuses on the

face verification task and examines the matching between an
LR probe image and an HR gallery image.

B. Identity Preserving Network

Different from FSR-based methods which aim at recovering
high-frequency details for identity matching, this paper pro-
poses to focus on the information stored in the low-frequency
domain and directly mines deep identity features from LR
training data. The main insight is that the high-frequency
details are eliminated after the resolution reduction while
the low-frequency components in LR images contain more
discriminative information. In this subsection, an identity-
preserving network, WaveResNet, is introduced for this pur-
pose. The idea is to remove the ambiguous and noisy high-
frequency information and enhance the discriminative features
in LR images during the training process. Ideally, it performs
more accurate recognition across various image resolutions.

In detail, as shown in Fig. 1, a low-pass convolutional
filter based on Discrete Wavelet Transformation (DWT) is
embedded into ResNet, denoted as WaveConv. It replaces the
Maxpooling and stride convolution operations. Given an input
image x, a low-pass filter fLL based on 2D DWT converts
x into its low-frequency subband image xLL. The filter itself
is a stride 2 convolutional operator during the transformation
and automatically downsamples the image by a factor 2. The
embedded operation in the WaveConv layer is defined as
xLL = (fLL⊛x) ↓2, where ⊛ refers to convolution operator
and ↓2 means downsampling by 2.

C. Knowledge Distillation Framework for CRFR

1) Face Recognition Framework: Fig. 1 illustrates the
knowledge distillation framework for the CRFR task. The
teacher model is built on the ResNet network. Different from
many teacher-student frameworks where the student model is
a much simpler network for the sake of efficiency, our student



network utilizes the proposed WaveResNet with the same
amount of parameters to pursue high representation capability
in both HR and LR data. Under this framework, the teacher
network is first trained on HR images and learns to extract
rich and informative facial details from high-quality training
data. Then, cross-resolution distillation adapts the knowledge
of discriminative features to the student network, which is
trained on multi-scale LR data.

2) Losses: Under the framework of knowledge distillation,
the following loss functions have been conceived and em-
ployed.
Recognition Loss: The popular ArcFace [31] loss is employed
by both teacher and student networks as a recognition loss to
learn the discriminative power.

Larcface = − 1

N

N∑
i=1

log
es(cos(θyi+m))

es(cos(θyi+m))+
∑n

j=1,j ̸=yi
es(cos(θj))

.

(1)

Cross-resolution Distillation Loss: In the training stage, the
knowledge from the teacher network is transferred to the
student model with a distillation loss. In order to improve
the performance of the student network on different sizes
of LR data, the distillation process is designed in a way to
enforce a constraint over features across variant resolutions
in one unified feature space. During the training, multi-scale
versions of LR training data is collected and a cross-resolution
distillation loss is applied to minimize the discrepancy between
HR and LR features. Specifically, given a pair of training
samples, HR image xH and LR image xL of random size
s, they are respectively passed into the teacher and student
networks including classification layers to obtain the logits
zH and zs

L and to calculate the loss. The distillation loss is
expressed as:

Ldistill =
1

N

N∑
i=1

T 2LKL

(
σ
(zH
T

)
, σ

(
zsL
T

))
, (2)

where LKL refers to the KL Divergence, T is the temperature
parameter to smooth the distillation loss, and σ(·) refers to the
softmax function.
Wavelet Similarity Loss: An additional auxiliary loss on the
intermediate feature maps is introduced to further enhance
the attention on low-frequency components, namely wavelet
similarity loss. It enforces the student network to learn more
discriminative knowledge stored in low-frequency features
from the teacher network. First, the feature maps from both
teacher and student streams are spotted and then decomposed
into multiple frequency bands by DWT. Afterward, MSELoss
is applied to the low-frequency components only. The formula
of the proposed wavelet similarity loss is as follows.

Lwavesim =

2∑
k=1

∥fLL(z
k
H)− fLL(z

k
L)∥22, (3)

where zk means the intermediate feature in the kth stage of
ResNet and fLL refers to the DWT-based low-pass filter.
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Fig. 2. Data degradation model to produce realistic LR data.

The total loss is a weighted combination of recognition loss,
distillation loss, and wavelet similarity loss.

Ltotal = Larcface + λ1Ldistill + λ2Lwavesim. (4)

D. Degradation Model for LR Data Synthesis
In the proposed learning framework, the student network is

trained on synthesized low-resolution data. In order to develop
a robust recognition system, the synthesized LR training data
should not deviate much from those captured in the real world.
Previous studies in the CRFR task tend to add Gaussian blur
before downsampling to better simulate the low-resolution
effect on images. In more realistic scenarios, LR images
captured by surveillance cameras are often accompanied by
random motion blur, noise, and compression artifacts. This
paper hand-designs a degradation model to produce LR face
images that are closer to real-world data. As depicted in Fig.
2, the HR image is first randomly corrupted by blur opera-
tion, synthetic noise, and JPEG compression artifacts. During
experiments, the probability of applying each corruption in
the degradation model is set to 0.5. Afterward, the data is
downsampled into selected sizes by bicubic operation. Some
examples are visualized in Fig. 1.

III. EXPERIMENTAL RESULTS

A. Experimental Settings
1) Datasets: The cleaned MS1M dataset [31] is used as the

training set, which is composed of approximately 3.28M face
images belonging to 72,778 identities. All the images in the
training set are cropped to the size of 112x112 and aligned
with five facial landmarks. Under the teacher-student training
framework, every sample is randomly downsized in order to
construct HR-LR training pairs. As for evaluation, four popular
datasets are employed, i.e. LFW [1], AgeDB-30 [32], CPLFW
[33], and CALFW [34]. For a fair comparison with previous
related work, all the testing samples are downsampled using
linear interpolation instead of the degradation model.

2) Implementation Details: In the proposed knowledge
distillation framework, the teacher network leverages ResNet
as a backbone and the student network employs the proposed
WaveResNet. The teacher network is trained on HR images
only, while the student network is trained on multi-scale LR
images. The LR images are obtained through the proposed
degradation model in random scales and then upsampled to the
same size as HR images for training. Both teacher and student
networks are trained for 18 epochs using the SGD optimizer
with a batch size of 128. The learning rate is initially set to be
0.1 and divided by 10 at 10, 13, and 16 epochs. The weights
in the loss function are set to be λ1 = 1 and λ2 = 0.05.



TABLE I
VERIFICATION ACCURACY (%) OF THE PROPOSED METHOD ON MULTIPLE DATASETS OF DIFFERENT RESOLUTIONS. DEGRADATION MEANS THE

DEGRADATION MODEL. KD REFERS TO THE PROPOSED KNOWLEDGE DISTILLATION FRAMEWORK. WAVESIM REFERS TO THE AUXILIARY WAVELET
SIMILARITY LOSS. RED COLOR DENOTES THE HIGHEST SCORE AND BLUE COLOR DENOTES THE SECOND HIGHEST SCORE.

Methods Avg on ∪{LFW,AgeDB,CPLFW,CALFW} Overall
AverageBackbone Degradation KD WaveSim 14x14 28x28 56x56 112x112(HR)

ResNet 84.92 93.23 94.14 94.13 91.61
WaveResNet 86.73 92.86 94.17 94.17 91.98
WaveResNet ✓ 87.77 92.55 93.31 93.30 91.73
WaveResNet ✓ ✓ 88.31 93.18 94.21 94.31 92.50
WaveResNet ✓ ✓ ✓ 88.30 93.25 94.33 94.47 92.59
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Fig. 3. Verification accuracy (%) on the LFW dataset.

B. Performance on Multiple Datasets

Table. I shows the verification accuracy of the proposed
method on multiple datasets of different resolutions. The
results demonstrate the effectiveness of each proposed module.
Compared to the baseline model in the first row, the proposed
identity-preserving WaveResNet significantly improves the
performance in very low-resolution testing images. Training
with realistic synthetic data further improves the performance
in LR test data but it impairs recognition accuracy on HR
images. The cross-resolution distillation framework not only
remedies the performance sacrifice in HR images but also
enhances the accuracy in LR conditions, thereby improving the
overall scores. Finally, after additionally employing the auxil-
iary wavelet similarity loss, the model demonstrates promising
results and significantly outperforms the baseline model on
both low and high-resolution images.

C. Comparison with the State-of-the-Art Methods

The performance of the proposed method is also compared
with other state-of-the-art approaches. Due to a lack of open-
source codes, it is not possible to re-train the SOTA methods
under exactly the same configurations. Thus, we directly took
the highest-performing scores in their original publications
for comparison. Fig. 3 presents the results of SFace [11],
DCR [14], TCN [17], Lai and Lam [18], Knoche et al. [19],
and our proposed method on low-resolution LFW dataset.
The results show that our method consistently outperforms
other approaches in both low and high-resolution settings.

TABLE II
VERIFICATION ACCURACY (%) ON THE AGEDB-30 DATASET.

Methods 14x14 28x28 56x56 112x112

Kim et al. [16] 73.20 87.05 91.27 92.22
Shin et al. [26] 79.45 89.15 93.58 93.78

Proposed Method 81.87 93.95 96.05 96.50

An additional comparisons with Kim et al. [16] and Shin
et al. [26] have been made on the AgeDB-30 dataset, see
Table. II. As a result, the proposed method achieves the best
performance across all resolutions of images. Besides, it is also
observable that the FSR-based method [11] performs better on
higher-resolution data than many other approaches based on
resolution-invariant feature spaces [14], [17], [18], but it is
less powerful in very low-resolution scenarios.

D. Discussion

The experimental results demonstrate the effectiveness of
the proposed method in the CRFR task. In fact, each module
of the method plays a different role. For example, the Wa-
veResNet and synthetic LR training data mainly contribute
to LR face recognition, and the cross-resolution knowledge
distillation paradigm further elevates the performance in HR
images. The wavelet similarity loss additionally improves the
performance on all resolutions. It is notable that most of the
previous work presents a relatively poor result either in high
or very low-resolution data. On the contrary, the proposed
method offers high performance across a variety of resolution
scenarios after combination of all proposed modules.

IV. CONCLUSION

A new approach to address the challenge of cross-resolution
face recognition was proposed based on identity-preserving
network built upon a knowledge distillation framework. A
realistic data degradation model is also contributed to further
improve the performance in LR scenarios and demonstrating
the discriminative power contained in the low-frequency do-
main of LR data.
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