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Abstract—With the emergence of multiple modern video
codecs, streaming service providers are forced to encode, store,
and transmit bitrate ladders of multiple codecs separately,
consequently suffering from additional energy costs for encoding,
storage, and transmission. To tackle this issue, we introduce an
online energy-efficient Multi-Codec Bitrate ladder Estimation
scheme (MCBE) for adaptive video streaming applications. In
MCBE, quality representations within the bitrate ladder of new-
generation codecs (e.g., High Efficiency Video Coding (HEVC),
Alliance for Open Media Video 1 (AV1)) that lie below the pre-
dicted rate-distortion curve of the Advanced Video Coding (AVC)
codec are removed. Moreover, perceptual redundancy between
representations of the bitrate ladders of the considered codecs
is also minimized based on a Just Noticeable Difference (JND)
threshold. Therefore, random forest-based models predict the
VMAF score of bitrate ladder representations of each codec. In
a live streaming session where all clients support the decoding
of AVC, HEVC, and AV1, MCBE achieves impressive results,
reducing cumulative encoding energy by 56.45%, storage energy
usage by 94.99%, and transmission energy usage by 77.61%
(considering a JND of six VMAF points). These energy reductions
are in comparison to a baseline bitrate ladder encoding based
on current industry practice.

Index Terms—HTTP Adaptive Streaming; Multi-
Codec Streaming; Per-Title Encoding; Energy-Aware Streaming;
Just Noticeable Difference.

I. INTRODUCTION

The emergence of novel video formats and standards has fa-
cilitated content delivery across various platforms and devices.
HTTP Adaptive Streaming (HAS) delivery systems, such as
those based on the MPEG Dynamic Adaptive Streaming over
HTTP (DASH) [1] standard or Apple HTTP Live Streaming
(HLS) [2], have emerged as the dominant technologies utilized
by service providers to deliver live video content [3], [4]. In
such systems, each codec requires its own set of represen-
tations, i.e., bitrate ladders [5], [6]. For example, Advanced
Video Coding (AVC) [7] and High Efficiency Video Coding
(HEVC) [8] have distinct bitrate ladders. Initially, stream-
ing services used AVC for wider device compatibility [9].
However, as newer devices with HEVC and Alliance for
Open Media Video 1 (AV1) [10] support becomes prevalent,
HEVC and AV1-encoded bitrate ladder representations are
introduced. Recent years have developed new formats such as
Versatile Video Coding (VVC) [11], Essential Video Coding
(EVC) [12], and Low Complexity Enhancement Video Coding
(LCEVC) [13]. Over time, streaming systems have evolved
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Fig. 1: An example of a multi-codec streaming system.
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Fig. 2: Rate-distortion (RD) curves of representative sequences
of VCD dataset [15], encoded with JTPS bitrate ladder [16]
for x264 [17], x265 [18], and svtav1 [19] encoders.

to accommodate multiple codecs, with older devices relying
solely on AVC, some newer devices using HEVC streams, and
certain devices supporting both AVC and HEVC, including
seamlessly switching between them [9] (cf. Fig. 1). Handling
such multi-codec deployments requires generating ABR bitrate
ladders of each codec separately, considering the range of
codecs to be supported by the receiving device population
based on their decoding capabilities [14].

The estimation of a multi-codec bitrate ladder, as proposed
in this paper, is based on the fact that, in some cases, the
compression efficiency of AVC is better than new-generation
video codecs, i.e., at low bitrates [20], [21]. Furthermore, the
compression efficiency of codecs saturates at very high target
bitrates, as they become similar to lossless coding. The regions
where each codec performs better than others depend on the
complexity of the video content [22]. An example is shown
in Fig. 2 where the cross-over bitrate between the quality of
x264 [17] and x265 [18] is at approximately b1 = 0.3Mbps
for Basketball s000, while the cross-over bitrate between the
quality of x265 and svtav1 is at approximately b2 = 5.0Mbps.
This means that, at bitrates lower than b1, x264 outperforms
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Fig. 3: Online encoding using MCBE envisioned in this paper for adaptive video streaming.

x265, while at bitrates higher than b2, x265 outperforms
svtav1. On the other hand, for Riverbank s000, svtav1 remains
superior throughout the bitrate range. This is because old-
generation codecs may excel in scenarios where the content
does not leverage the advanced coding tools and techniques
introduced by the new-generation codecs. x265 encoding of
Basketball s000 at bitrates lower than b1 can be eliminated,
as clients can be served with x264 representations (due to
comprehensive support of AVC).

Encoding video content into multiple representations in
various bitrate-resolution pairs for each codec results in sub-
stantial computational workload and energy consumption [23].
Additionally, the storage and transmission of these repre-
sentations further contribute to the overall energy consump-
tion [24]. When unnecessary high-bitrate representations (of
new-generation codecs) are eliminated, the energy consump-
tion of the streaming system is significantly reduced [25]. This
is because the energy consumption of AVC is significantly
lower than that of new-generation video codecs [26], [27]. As
video streaming continues to grow in popularity and usage,
finding energy-efficient solutions to optimize the multi-codec
bitrate ladder becomes crucial to mitigate the environmental
impact and reduce operational costs for streaming service
providers [28].

In this light, this paper proposes an online Multi-Codec
Bitrate ladder Estimation (MCBE) scheme for adaptive video
streaming applications. A lightweight algorithm is proposed to
eliminate redundant representations of the bitrate ladders of
new-generation video codecs, based on their predicted percep-
tual quality. Therefore, random forest models [29] are trained
to estimate the VMAF score of each representation based on
low-complexity spatio-temporal features of the input video
segment. Note that other quality metrics can be envisioned,
which are subject to our future work. When AVC performs
better (in terms of perceptual quality) than or is identical
as HEVC and/or another new-generation codec (e.g., AV1)
in a bitrate range, the corresponding new-generation codec
representations are eliminated from the bitrate ladder. This
is because clients can be served with AVC representations
with better RD performance. Moreover, the bitrate ladder
representations with a perceptual quality difference within a
given Just Noticeable Difference (JND) [30] threshold are
eliminated. Finally, it is worth noting that MCBE can be used

in conjunction with state-of-the-art bitrate-ladder prediction
schemes [16], [31]–[33]).

II. MCBE ARCHITECTURE

Adaptive video streaming systems often use bitrate-ladder
prediction methods to enhance the Quality of Experience
(QoE) for users [32], [34], [35]. The architecture of the
proposed MCBE scheme is shown in Fig. 3. MCBE receives
input bitrate ladders for each codec, e.g., c1, c2, and c3 for
AVC, HEVC, and AV1 codecs, respectively. Other codecs may
be envisioned as part of future work but are supported by the
current architecture. It extracts DCT-energy-based features and
eliminates redundant representations based on the predicted
quality metric (i.e., VMAF in this paper) of each representa-
tion. MCBE comprises three phases (cf. Fig. 3):
1 Spatio-temporal feature extraction (Section II-A)
2 Redundant representation elimination (Section II-B)
3 Encoding of the segments using the selected bitrate-

resolution pairs of each codec

A. Spatio-Temporal Feature Extraction

MCBE uses the following DCT-energy-based features [36],
extracted using open-source VCA v2.0 video complexity an-
alyzer [22] for every segment:

1) Average luma texture energy (EY)
2) Average gradient of the luma texture energy (h)
3) Average luminescence (LY)

B. Redundant Representation Elimination

In this paper, the VMAF score vrt,bt,c of the tth repre-
sentation of the codec c is modeled as a function of the
video content complexity features and the target representation
(i.e., resolution rt and bitrate bt) [37], [38], as shown in the
following equation:

vrt,bt,c = fV(EY, h, LY, rt, bt, c) (1)

Random forest models [29] which are hyperparameter-
tuned with the parameters min samples leaf =1,
min samples split=2, n estimators= 100, and max depth=14
are trained for each codec c ∈ C and resolution r ∈ R to
predict VMAF. Input to the model for each codec-resolution
are [EY, h, LY, b]. The pseudo-code of the redundant
representation elimination method is shown in Algorithm 1.
This algorithm consists of two primary steps as follows:



Algorithm 1: Redundant representation elimination.
Inputs:
M : number of supported codecs
C : set of all codecs c1, c2...cM in order of priority
Nc : number of representations for codec c
(r̂t, b̂t, c) pairs ∀c ∈ C, t ∈ Nc

vJ : target JND
Output: Q :Set of selected representations
Step 1:
for each c ∈ C do

t = 2
while t ≤ Nc do

if v̂c,r̂t,b̂t > vmax or v̂c,r̂t,b̂t − v̂c,r̂t−1,b̂t−1
< vJ

then
Eliminate (r̂t, b̂t, c) from the ladder
N̂c = Nc − 1

t = t+ 1

Step 2:
Q= {(r̂t, b̂t, c1)}, t ∈ N̂c1

for each c ∈ {c2, .., cM} do
for each t ∈ N̂c do

(r̃i, b̃i, c1)← argmini | b̂i,c1 − b̂t | s.t. b̂t ≥ bi,c1
(r̃j , b̃j , c1)← argminj | b̂j,c1 − b̂t | s.t. b̂t ≤ b̂i,c1
RD curve L between (r̃i, b̃i, c1) and (r̃j , b̃j , c1):

v =
v̂
c1,r̂j ,b̂j

−v̂
c1,r̂i,b̂i

b̃j−b̃i
· (b− b̃i) + v̂c1,r̂i,b̂i

if (v̂c,r̂t,b̂t is above L) then
Add (r̂t, b̂t, c) to Q.

Step 1: In practice, it is often observed that the VMAF
scores of different representations are highly similar, leading to
perceptual redundancy in the bitrate ladder. Consequently, this
redundancy implies a wastage of energy during the encoding,
storage, and transmission of data, without any improvement
in QoE. To minimize this perceptual redundancy, MCBE lever-
ages the concept of the JND threshold, which represents the
minimum threshold at which the human eye can perceive dif-
ferences in quality [39]–[41]. A fixed JND threshold denoted
as vJ is input from the streaming service provider. If the
VMAF difference between two representations is lower than
vJ , the higher bitrate representation among them is eliminated.
Furthermore, when the predicted VMAF is greater than the
maximum VMAF above which the representation is deemed
perceptually lossless (vmax), the corresponding representation
is eliminated from the bitrate ladder [42]. This way, MCBE
lowers the overall energy requirement for encoding.

Step 2: RD points (based on the bitrates predicted by
the bitrate ladder estimators (cf. Fig. 3) and the correspond-
ing predicted VMAF scores) of each representation of new-
generation codecs are geometrically compared to the predicted
RD curve of the previous generation codec. The representation
is eliminated if the point is below the RD curve of the previous
generation codec.

In the final phase, the encoding process is performed exclu-
sively for the selected bitrate-resolution combinations (b̂, r̂) of
each codec (ĉ) for every video segment.

III. EXPERIMENTAL RESULTS

A. Test Setup

In this paper, 400 sequences (80% of the sequences) from
the Video Complexity Dataset [15] are used as the training
dataset, and the remaining (i.e., 20%) are used as the test
dataset. The sequences are encoded at 30fps with the fastest
encoding preset supported by the considered encoders on a
dual-processor server with Intel Xeon Gold 5218R (80 cores,
frequency at 2.10 GHz) with C={x264 v1.1, x265 v3.5, svtav1
v1.6}. VCA and the encoders specified in C are run using eight
CPU threads with x86 SIMD optimization [44]. The resolu-
tions specified in the Apple HLS authoring specifications [43]
are considered in the evaluation, i.e., R= {360p, 432p, 540p,
720p, 1080p, 1440p, 2160p}. In all experiments, the average
target JND function (vJ ) is considered as two [45], four, and
six [46] based on current industry practices. Accordingly, vmax
is set as 98, 96, and 94, respectively. This paper uses the
following state-of-the-art encoding bitrate ladder prediction
schemes in conjunction with MCBE:

1) Default HLS bitrate ladder [43] for each codec/encoder.
2) OPTE [33], where optimized resolutions for the set of

bitrates in the HLS bitrate ladder are predicted for each
encoder.

3) JTPS [16], where optimized bitrate-resolution pairs are
predicted for JND-aware efficient encoding for each en-
coder.

Note that separate bitrate ladders are generated for each
encoder in the state-of-the-art encoding schemes.

B. Latency and Accuracy Analysis

Spatio-temporal features (cf. Section II-A) are extracted at
a rate of 370 fps. The overall inference time (including the
feature extraction time, VMAF prediction time, and inference
time) for a 4 s video segment of 2160p resolution is 0.37 s.
Hence, the additional latency introduced by MCBE is neg-
ligible. The average mean absolute error (MAE) of VMAF
prediction for all resolutions is observed to be 2.42, which is
acceptable for live-streaming applications.

C. Storage Consumption Analysis

Fig. 4 shows the rate-distortion (RD) curves of selected
video sequences (segments) encoded using JTPS bitrate lad-
der prediction method for x264, x265, and svtav1. It is ob-
served that there are bitrate regions where the new-generation
codecs (i.e., HEVC and AV1) have lower RD performance
compared to AVC. MCBE eliminates the representations of
new-generation codecs when their predicted VMAF is lower
than the RD curve of the AVC encoding. In Fig. 4, dot
marks indicate the eliminated representations. Furthermore, it
is also observed that MCBE removed the perceptual redundancy
between multiple codec representations based on the JND
threshold of six VMAF points. Table I shows the storage re-
duction (∆S) using MCBE in conjunction with the HLS bitrate
ladder, OPTE, and JTPS. As vJ increases, more representa-
tions are eliminated, which reduces the storage needed. HLS
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Fig. 4: RD curves of representative segments (a) Bunny s000 (EY=22.40, h=4.70, LY=129.21), (b) Characters s000 (EY=45.42,
h=36.88, LY=134.56), (c) RushHour s000 (EY=47.75, h=19.70, LY=101.66), and (d) Wood s000 (EY=124.72, h=47.03,
LY=119.57) of VCD dataset [15] encoded using MCBE (x264, x265, svtav1). Here, JTPS [16] is considered as the bitrate
ladder prediction method, and vJ = 6. Representations marked using dots indicate the eliminated representations.

TABLE I: Average performance results using MCBE compared to HLS, OPTE, and JTPS bitrate ladders prediction methods
for various target encoder combinations.

MCBE configuration HLS ladder [43] OPTE [33] JTPS [16]

Target encoders vJ ∆Eenc ∆S ∆Esto ∆Eenc ∆S ∆Esto ∆Eenc ∆S ∆Esto

(x264, x265)
2 -34.05% -43.70% -68.30% -36.03% -46.12% -70.97% -15.82% -10.20% -19.36%
4 -47.72% -60.48% -84.38% -49.96% -63.00% -86.31% -16.07% -9.53% -18.15%
6 -58.09% -69.91% -90.94% -59.75% -72.50% -92.44% -16.18% -11.27% -21.26%

(x264, svtav1)
2 -34.50% -43.31% -67.87% -36.87% -45.73% -70.55% -12.76% -8.79% -16.81%
4 -48.19% -59.95% -83.96% -51.17% -62.82% -86.18% -12.82% -8.27% -15.86%
6 -58.61% -69.18% -90.50% -61.06% -72.60% -92.49% -12.90% -9.38% -17.88%

(x264, x265, svtav1)
2 -20.42% -53.20% -78.10% -18.55% -53.63% -78.50% -22.56% -14.57% -27.01%
4 -41.67% -69.15% -90.49% -39.68% -69.49% -90.69% -23.74% -17.81% -32.45%
6 -56.45% -77.61% -94.99% -54.34% -78.32% -95.30% -27.80% -22.62% -40.12%

bitrate ladder and OPTE representations have high perceptual
redundancy compared to JTPS, as JTPS representations are
predicted with a perceptual gap of one JND [16]. Hence,
storage reduction is significantly high with HLS bitrate ladder
and OPTE, compared to JTPS.

D. Energy Consumption Analysis

This section evaluates energy consumption using MCBE in
terms of (i) encoding (∆Eenc), and (ii) storage (∆Esto). The
CodeCarbon tool [47] is used to calculate the encoding energy.
The storage energy is modeled inspired by [48] as Esto = Sd ·
Pb · Ts, where Sd is the video data size (in bits), Pb is power
consumption per bit (in W/bit), and Ts is the time taken for
data to be stored (in hours).

Table I illustrates the average energy reduction achieved in
encoding and storage using MCBE compared to the alternative
schemes. Negative values in the table indicate the extent of the
reduction in energy consumption. Compared to the state-of-
the-art, the results show significant encoding energy reduction
∆Eenc for MCBE. For instance, in a streaming session with
devices supporting AVC, HEVC, and AV1 decoding, and
considering a JND of six VMAF points, MCBE achieves energy
reductions of up to 56.45%, 54.34%, and 27.80% when com-
pared to HLS bitrate ladder encoding, OPTE, and JTPS, re-
spectively. This substantial reduction in encoding energy is pri-
marily because MCBE eliminates the need to encode segments
for all representations in all x264, x265, and svtav1 bitrate
ladders as explained previously in Section II-B. Instead, MCBE
selects the representation with the lowest energy requirement

(i.e., AVC representation) for encoding when representations
in different codecs have the same VMAF value. Consequently,
MCBE predominantly includes all x264 representations and
only the higher VMAF representations from the other codecs,
leading to a reduced amount of data to encode ∆Eenc and
store ∆Esto, thus consuming less storage energy. For example,
compared to the HLS ladder, MCBE reduces the data to store
by 77.61%, resulting in a remarkable 94.99% less energy
consumed for storage during a streaming session with devices
supporting AVC, HEVC and AV1 decoding and a JND of six
VMAF points.

IV. CONCLUSIONS

This paper proposed MCBE, an online energy-efficient multi-
codec JND-aware bitrate ladder estimation scheme for adap-
tive streaming applications. MCBE includes an algorithm to
determine an optimized multi-codec encoding bitrate lad-
der, where redundant representations of new-generation video
codecs are eliminated. Furthermore, perceptual redundancy
within the representations of each codec is minimized by
eliminating representations based on the JND threshold. MCBE
can be used in conjunction with any bitrate ladder estimation
scheme. MCBE on average, yields encoding, storage, and
transmission energy savings of 56.45%, 77.61%, and 94.99%,
respectively, compared to the state-of-the-art HLS bitrate lad-
der encoding, for a streaming session with devices supporting
AVC, HEVC, and AV1 decoding, considering a JND of six
VMAF points.
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