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ABSTRACT 
Despite recent advances in the software and hardware aspects of Virtual Reality (VR), 

from a software design point of view VR technology remains primitive. In particular, 

most existing VR applications suffer from lack of extensibility, maintainability, 

reusability and interoperability. This thesis proposes a flexible and practical architecture 

for defining and constructing VR simulations that addresses the above issues. The 

proposed architecture employs lessons learned from the more architecturally advanced 

software fields such as those of web-based applications and database banks. The 

advancement of these fields is driven by the fact that the contents and views change 

frequently, hence the architecture must be (1) flexible with changes in content, and (2) 

decouple the content and the view (i.e. using MVC pattern [52]). These essential 

requirements gave birth to such technologies as the extensible markup language (XML), 

and the extensible style sheets (XSL). 

Most VR applications are similar to the web-based applications in that they also deal with 

contents and views. The content (or model) describes the conceptual and the 

mathematical aspects of the elements that exist in the virtual environment. The view is the 

visual representation of the content often rendered in a 3D platform. As an application 

matures its content and view often change. The contents are the more reusable 

components whereas the views are more application specific. Take a heart surgery 

simulation for example. The content consists of some mathematical and conceptual 

models of the heart and the human body as a whole; and the view is the visualization of a 

human body (including the heart) and the operating room and surgical tools. 

Although there is a clear separation between the content and the view models, the two are 

often tightly interconnected at run-time. For example, a change in the content should 

reflect the corresponding changes in the view, often through means of dynamic scene 

creations and animations. Changes can also be initiated at the view side through means of 

user interactions and specifications. These changes should be reflected back at the 

contents accordingly. 
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The above issue is addressed in the web-based applications through use of XML for 

representing the content (data) and XSL for specifying how the content should be viewed. 

Most VR applications are interactive simulations of the real world and these simulations 

are either mathematical in nature or based on a rich set of data models both of which can 

be easily represented by XML models. The view component, however, is much more 

complex in VR than it is in web-based applications. In such applications, the view target 

is simply a static hyper-text representation of the data whereas in VR applications the 

view consists of dynamic 3D geometries that interact with each other and whose shape 

and appearance may change on the fly. 

This thesis presents AVRA, a novel architecture that dynamically generates VR 

simulations based on XML descriptions that are received as inputs. These XML 

descriptions are used to define and configure the various elements of an interactive VR 

application such as simulation models, 3D graphics, visualization behavior and the nature 

of user interactions. The proposed architecture uses two categories of XML models: those 

that describe the numerical model of a simulation and those that describe how the 

numerical output is to be visualized in a virtual environment. 

Upon loading the XML descriptions, AVRA dynamically generates a VR application that 

corresponds to those specifications. The result consists of a 3D scene with configurable 

graphical elements that are animated based on the numerical outputs of the simulation 

models. The task of managing the communication between the model and view 

components as well as their construction and destruction is automatically handled by 

AVRA. In essence, this framework allows developers to quickly construct the simulation 

components of a VR application through XML descriptions and view plugins thereby 

allowing developers to focus their efforts on implementing the higher level functionalities 

of the application. 
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CHAPTER 1 - INTRODUCTION 
The field of Virtual Reality (VR) has a promising future. VR is a technology that allows 

user interaction with computer generated environments that look and feel realistic. In this 

age of Information Technology, we are faced with seemingly never ending data streams 

in various forms and formats, often unfriendly to the human mind. VR provides a human-

friendly way of visualizing and effectively understanding these otherwise meaningless 

data streams. 

In the past decade, we witnessed the rebirth of VR as it finally overcame the hardware 

limitations. The VR technology is now widely used for medical, military, aero-space 

training and many other simulations and its popularity is steadily growing. 

As more and more VR applications are developed, the software limitations are becoming 

more apparent. Since VR was facing hardware limitations for a long time, little effort was 

made toward addressing the software issues. For that reason, the basic software 

engineering principles such as extensibility and reusability are not addressed well in 

existing VR architectures. There are however valuable lessons learned in the web and IT 

sectors that can be applied to VR as well. 

This thesis proposes an architecture that addresses the various software engineering 

issues that most VR applications are facing today by utilizing some of the lessons and 

technologies that proved effective in web-based applications. 

This chapter will review the model-view architecture and then present the motivation for 

using it in VR by discussing some of the most significant shortcomings that exiting VR 

applications are facing today. Subsequently the objectives and contributions of this thesis 

will be outlined. 

1.1 Model-View Architecture for Virtual Environments 

The concept of model-view or data-view architecture has existed since the early database 

software applications [52]. It was not emphasized, however, since at that early age the 
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capabilities of the computers were limited. Hence, the data structure and the view 

component often remained unchanged. The concept gained popularity and was 

extensively studied after the Internet revolution. Its necessity was felt due to the ever 

growing web-sites that relied heavily on dynamic databases and web-pages. XML 

technology which was introduced in 1998 provided a solution for this issue (see section 

2.2.1 for more information about XML). XML and its suite of style sheet markup 

languages successfully addressed two major requirements of the modern web-based 

applications: 

1) XML decoupled the data part of a web-page from its view elements. The data part 

is encoded in its own independent XML file and the view part is encoded in a 

style sheet file based on the knowledge of the general data structure. 

2) XML offered much more flexible data structure capabilities than the traditional 

methods. Under XML, data structures are typically in the form of trees with 

nested tags, a form that is generally considered more flexible for representing 

databases than simple tables. In XML you can also have tags that reference other 

elements in a same or external XML file hence representing more complex graph-

based data structures. In fact, XML is so flexible that its capabilities exceeds far 

beyond describing databases; it can be used to model any mathematical or 

graphical model. 

Due to the above, XML technology was quickly adopted by not only web-based 

applications, but any application that requires storage and/or transmission of structured 

data and models in a standard and reliable manner. In addition to data, XML is used by 

many applications for the purpose of encoding configurations and parameter settings [16]. 

In practice, the extend of which the functionality of a software application can be defined 

and configured through use of XML files has often direct correlation with the 

extensibility, reusability and scalability of that software. 

Virtual Reality (VR) applications can also benefit from the model-view architectures in a 

similar way as web applications do (see section 2.1 for information about VR). Just like 

their web-based counterparts, the primary task of most VR applications is to present a set 
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of dynamic input data or models through human-friendly output channels. The difference 

is that the data models are often simulation based and the output is presented through 3D 

graphics, sounds, haptic data and other sensory channels. 

A model-view architecture for virtual environments can be defined as an architecture 

which receives a set of [XML-based] models as its input from which it dynamically 

generates an interactive virtual environment. The input models can be simulation data, 

mathematical formulas, geometrical models, device configurations and more. 

1.2 Motivation 

For a long time, the VR technology was held back due to the limitations in hardware 

technology. VR applications are often heavily involved computationally and the fact that 

they must employ multiple output channels and stimulate the various senses of their 

human users adds considerably to their complexity. All these have resulted in more 

attention to the efficiency of the computations as opposed to effectiveness of the system 

design. 

As hardware technology has finally caught up to a level suitable for the growth of VR 

technology, we are now faced with software limitations. Most VR applications developed 

to date were designed with specific functional requirements; requirements that were 

tightly hard coded within an architecture that does not welcome changes. Take a heart 

surgery simulation as an example. It involved a particular surgery procedure, some visual 

models of the heart and the body and a set of surgical tools. Consider a simple change to 

enhance the graphics by adding or upgrading the 3D models in the scene. It may seem 

feasible; after all it is simply the matter of loading different model files. Unfortunately, in 

most applications, this task involves more work that just loading the new models in the 

environment. The complexity arises when deciding how the new models are to interact 

with the rest of the application. For example, will the new 3D model of the heart still 

animate the heart-beat at the precise rate as calculated by the simulation module? Or is 

the developer forced to manually re-establish the correlation between the heart beat rate 

and the corresponding animation in the new 3D model? If the simple task of adding new 
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3D models that represent biological organs or surgical tools requires changes at the 

application level then the architecture of the application is not well designed. 

Now consider changes at a wider scope such as changing the nature of the heart disease 

for which the simulation is designed. The extent of this change goes beyond the 

superficial changes in the appearance; it involves changes at the mathematical and 

physiological level. Consider a surgery simulation for cardiovascular disease [17]. It 

involves special procedures for reopening, repairing or replacing the damaged blood 

vessels. Now consider a surgery simulation for the heart valve disease [18] which 

involves removal of all infected tissue and repair or replacement of the affected valve. 

Although the surgical procedures involved in the treatment of the above diseases are very 

different in terms of tasks and objectives, they both involve interaction with the same 

organ (heart) and a same physiological system. A flexible architecture that allows reuse 

of the core physiology and the high-level simulation would be of significant value in such 

applications. 

The extent of variation in the above simulation may further expand from the original 

heart surgery to that of kidneys, eyes, lungs and the brain. Naturally the physiology is 

different depending on the particular organ of interest. The basic nature of the simulation 

is nevertheless the same as before: performing surgical procedures. Hence, we have a 

potential source of reusability. 

Within each of the above levels of changes, there is the issue of maintainability. Science 

changes on a daily basis. In the heart surgery example one must accommodate for the 

discoveries of the new physiological models that replace the older models to achieve a 

more precise simulation of the heart. Such models can change as frequently as the 

database model would in a typical web-based application for example. Unfortunately, 

most existing VR applications are not designed to accommodate for such frequent 

changes! 

A flexible and extensible architecture is needed in order to overcome the same problems 

that web-based applications were facing not too long ago. This is an essential requirement 
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that must be met before VR technology can enjoy the same rapid advancement that web 

technology has enjoyed a decade ago. 

1.3 Objectives 

The goal of this thesis is to introduce a new architecture that is more effective than 

existing architectures for constructing VR applications that are extensible, maintainable 

and reusable. The aforementioned factors are three basic software engineering principles 

that are currently absent in most VR applications due to the mixture of the underlying 

components. 

An objective of this thesis is to adopt the model-view principles in order to decouple the 

mathematical and data models from their graphical representations. Such a design would 

allow users to change the mathematical models independently of the graphical models 

and vise versa. It would also give developers the ability to control the nature of the 

simulation being displayed in a VR application without changing the application itself. 

The second objective of this thesis is to design and implement an architecture that 

automatically generates VR-based simulations that visualize target simulation models 

based on a reconfigurable XML file that describes the view. This architecture would 

enable users to specify exactly how the numerical results of a simulation model are to be 

visualized within an interactive and animated VR scene. 

In addition to the above, this thesis involves researching systematic approaches for 

specifying the behavior of the VR application that built on top of the above architecture 

with parameterized configurations for input/output devices, user interactions, and 

physical attributes. Although these components are not directly relevant to the simulation 

being performed by the VR application, they do constitute a major portion of the desired 

functionalities of the application. 

1.4 Contributions 

In addition to achieving the aforementioned objective this thesis has resulted in several 

major contributions. The following constitute the novel contributions of this thesis: 
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• Design of an architecture that receives the core simulation models as XML files at 

run-time and dynamically generates an application whose behavior is dictated by 

the contents of the model description files. 

• Design of a novel VR architecture that receives the view description of a 

simulation through XML files at run-time and dynamically generates a virtual 

environment with graphical models that are connected to corresponding 

simulation models in such a way that an update in the simulation time-step not 

only recalculates the mathematical models but also animates the graphical models. 

• Design of a novel plugin architecture along with a unified interface scheme for 

defining and interfacing with compiled entities that are used for specific 

visualization tasks which are selectively added to simulation applications upon 

request. These view plugins are built on top a physics engine [2] hence include 

capabilities for physically realistic visualizations. 

• Design of a dynamic system of model-view connections through entities called 

connectors in order to allow automated channeling of data from specified outputs 

of models to specified inputs of view plugins. 

• Design of MVML, a novel XML-based markup language for defining the 

simulation view which consists of the visualization of numerical simulations in 

VR. Through MVML application developers can specify which view plugins to 

use, how to connect them to simulation models and which parameters to pass to 

the simulation components. 

• Implementation of AVRA which consists of components and sub-components 

that address the various architectural elements as discussed above. The resulting 

implementation presents a fully functional framework that provides interfaces for 

receiving simulation models, view description and view plugins. 

• Implementation of a Hodgkin-Huxley model of neuron action potential [32] as 

defined within a CellML model. The view is customized to use particle systems 
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and various interpolators to present a realistic and numerically-accurate 

visualization of the axon of a neuron cell. 

Although most examples in this thesis are based on CellML models and medical surgery 

simulations, the proposed architecture is not limited to medical simulations. The 

architecture is useful for most simulations in a variety of fields and disciplines. 

1.5 Overview of Chapters 

This thesis is organized as follows. Chapter 2 presents a brief summary of the related 

technology and a discussion of the existing VR frameworks along with some of their 

shortcomings. Chapter 3 presents the requirements that were considered in the design of 

AVRA along with an overview of its architecture. Chapter 4 presents the simulation 

models which constitute the basis of AVRA structure. The details of the view 

components span over chapter 5 through 7. The main components of view are discussed 

in chapter 5, followed by specification of view plugins in chapter 6 and finally model-

view connectors in chapter 7. Chapter 8 uncovers the Model-View Markup Language 

along with simple examples that demonstrate how it can be generated. Chapter 9 presents 

the implementation of AVRA and a sample application along with a discussion on the 

results. Finally, a conclusion is presented in chapter 10. 
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CHAPTER 2 - BACKGROUND 

2.1 Virtual Reality 

The concept of Virtual Reality (VR) has been around since the 1950s, when Morton 

Heiling proposed and later built a film-viewer machine capable of employing multi-

sensory (sight, sound, smell, and touch) technology in order to immerse the viewers in 

the films [1]. More interactive VR applications emerged in the 60s and 70s and the 

interactivity feature eventually became a necessary part of all modern VR application. In 

their book, G.C. Burdea and P. Coiffet define virtual reality as follows: 

Virtual reality is a high-end user-computer interface that involves real-time 

simulation and interaction through multiple sensorial channels. Theses sensorial 

modalities are visual, auditory, tactile, smell and taste. [1] 

For each sensorial channel, there is a variety of hardware and software technologies 

available. Some of them, such as the auditory and visual hardware are in a matured state 

with widely accepted standards. The haptics technology (for tactile sensing) is a state-of-

the-art technology but it is maturing quickly. Others such as smell and taste are still 

primitive. 

2.1.1 Visual Technology 

The head-mounted-display or HMD, first introduced in 1968 by Ivan Sutherland, is one 

of the most effective ways to feel immersive. HMDs usually cover the entire vision scope 

of human eyes and their visual contents can be updated as the head rotates about the neck 

or the user wonders around the room. Stereoscopic displays go one step further and 

generate an optical illusion that enables the viewers to perceive the depth of the 3 

dimensional objects without the discomfort of wearing the head mounted display. 
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In HMDs, stereo output is achieved by simply displaying slightly different images on the 

LCD screens to correspond to the left-eye and right-eye perspectives. Especial stereo 

glasses need to be used in order to perceive stereo effects when looking at non-HMD 

displays such as a monitor or projector. These stereo glasses are synchronized with the 

display system in such a way that they block the left eye when the display corresponds to 

the right eye and vise-versa. 

Recently, special monitors are made available that contain one set of pixels visible to left 

eye and another set visible to right eye. At each frame, the images for both left and right 

eye perspectives are rendered and displayed on their corresponding pixels. As a result, 

stereo glasses are not required to perceive stereo images on these monitors. 

The projector-based displays are used with the wide screens and are useful for those 

scenarios in which many participants and observers are present. The CAVE is an example 

of a projector-based display consisting of several projection screens that surround the 

observers from the sides and in some cases from above and below [2]. Stereo images are 

projected on these screens and the participants are typically required to wear stereo 

glasses. 

2.1.2 Haptic Technology 

In the early 70s, haptic technology emerged and refined the way we interact with 3D 

worlds. The first haptic device was introduced by Frederick Brooks and his colleagues at 

the University of North Carolina in 1971 [1]. Although still experimental, haptic 

technology has proved extremely valuable for boosting immersive-ness, as it not only 

allows 3D interaction but also generates force-feedback. The introduction of the force-

feedback including the sense of touch, pulse, vibration, friction and viscosity opens a 

whole door to new possibilities for VR. 

There are several companies actively involved in design and manufacture of haptic 

devices. The PHANToM Arm (see Figure \) is one of the most popular devices available 

in the market [15]. It looks like a robotic arm and it can sense the movement and force 

exerted by the user [2]. It has 6 degrees of freedom for movement and 3 degrees of 

freedom for force-feedback. The Haptic Master Arm is a heavier haptic device with the 
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capability of exerting more feedback force. It is therefore more adequate for applications 

that involve heavy machinery training but less attractive for sensitive applications such as 

medical surgery [1]. For those applications that require force feedback for the each and 

every figures of the human hand, CyberGrasp (see Figure 2) is more useful. It is a haptic 

device that senses the movements of each joint of each finger and exerts force feedback 

as required. 

Figure 1 - PHANToM Arm 

Figure 2 - Cyber Grasp 
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2.1.3 Physics Engine 

Most VR applications require a realistic simulation of the basic laws of physics that 

govern our universe. For instance, all rigid objects in a VR environment must be affected 

by the pull of gravity. Also, unrealistic events such as a rigid object passing through a 

solid wall must be prevented. Since these requirements are common in most VR 

applications, it makes sense to implement them within reusable libraries in order to avoid 

reinventing the wheel every time a VR project is in need of such features. These reusable 

libraries of physics laws are called physics engines. Figure 3 demonstrates an example of 

how the objects of a VR application may be categorized according to their physical 

attributes. 

Viscosity Density 

Friction 

Breakage 
threshold 

Elasticity 

Figure 3 - Categories of physical objects and their attributes 

There are generally two types of physics engines: real-time and high-precision. Most 

interactive VR applications require that the physics computations execute as efficiently as 

possible while the application is running; hence they use the real-time physics engines. 

High-precision physics engines are usually used in non-interactive application such as 

animations in which case the physics calculations are done offline during the rendering 

phase. 

Real-time physics engines are widely used for game development where run-time 

efficiency takes precedence over precision. The most popular commercial physics engine 
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is HAVOK [41]; it is used in over 150 game titles. Other physics engines include the 

Open Dynamics Engine (ODE), Newton Game Dynamics, Tokamak Physics, Bullet, 

OPAL and more. Most of these physics engines are optimized for games and as a result 

inadequate for precision applications such as surgery simulations or medical training. 

Recently we witnessed the birth of Physics Processing Units (PPU) [42] that efficiently 

process many of the calculations involved in physics engines, hence taking some loads 

off the CPUs and improving the efficiency. The leading company in this field is Aegia; 

their PPU is called NovodeX which is used by their Megon physics engine in order to 

perform physics processing faster. 

In a response to the introduction of PPUs, nVidia and ATI have designed and 

manufactured programmable graphics cards that add more capabilities to the existing 

parallel pipeline infrastructures in order to make them suitable even for non-graphics 

calculations (i.e. physics calculations) [43]. 

2.2 Modeling Languages 

One of the motivations for design of AVRA is the vast availability of formal languages 

are used to represent the data or mathematical models of the simulations. This section 

introduces XML which is root of most modern modeling languages followed by some of 

its descendants that are used to represent mathematical formulations, biological 

phenomena and more. 

2.2.1 XML Technology 

The Extensible Markup Language (XML) is a general purpose markup language used in a 

wide variety of applications to represent structured data. XML is a well-formed markup 

language meaning that the beginning and the end of each clause is specified by 

corresponding tags. Hence XML data is readable not only for human observers but also 

for computer applications. There are many reasons that have led to introduction of XML 

however the objectives of interest when designing XML can be summarized in ten items. 

Table 1 outlines the designs goals of XML [21]. 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

XML shall be straightforwardly usable over the Internet. 

XML shall support a wide variety of applications. 

XML shall be compatible with SGML. 

It shall be easy to write programs which process XML documents. 

The number of optional features in XML is to be kept to the absolute minimum, 

ideally zero. 

XML documents should be human-legible and reasonably clear. 

The XML design should be prepared quickly. 

The design of XML shall be formal and concise. 

XML documents shall be easy to create. 

Terseness in XML markup is of minimal importance. 

Table 1 - Ten design goals of XML 

Figure 4 shows an example of a simple XML data file. XML data can be saved in disk 

(usually with an .xml extension) or they can be transferred to other applications through a 

network through the internet. As it is shown in the figure, the first line of an XML file is 

the XML declaration which denotes the XML version (usually 1.0) and other optional 

information such as the encoding and external dependencies. 

<?xml version= 
<rec ipe name=' 

="1.0" encoding= 
bread" 

'UTF-8"?> 
prep_time="5 mins" 

< t i t l e > B a s i c b r e a d < / t i t l e > 
< ingred ien t 
< ingred ien t 
< ingred ien t 
< ingred ien t 

amount= 
amount= 
amount= 
amount= 

< i n s t r u e t i o n s > 
<step>Mix 

= "3" unit= ="cups">Fl 
="0.25" unit="ounce 
="1.5" uni t="cups" 
= " 1 " unit= 

a l l i n g r e d i e n t s 
<step>Cover wi th a c l o t h , 
<step>Knead again , p lace 

< / i n s t r u e t i o n s > 
</ rec ipe> 

="teaspoon 

t o g e t h e r , 
and leave 

in a t i n , 

cook_time="3 hours"> 

our</ ingred ien t> 
">Yeast</ ingredient> 
s t a t e >="warm">Water</ingredient> 
">Sa l t< / ingred ien t> 

and 
f o r 

then 

knead thoroughly </step> 
1 hour in warm room.</step> 
bake in the oven </s tep> 

Figure 4 - XML data that contains the recipe for making break. [22] 

The application specific data start from the second line as shown in the figure. It consists 

of the recipe of an item (bread in this case). The recipe has 3 attributes: a name, a 
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preparation time and a cooking time. It also contains 6 elements: a title, 4 ingredients and 

one set of instructions. The ingredients are Flour, Yeast, Water and Salt. Also each of 

these ingredients has two attributes: the amount and the unit. The set of instructions is a 

nested XML element, as itself consists of 3 inner elements (the steps). 

2.2.2 MathML 

When it comes to mathematical expressions, they can sever two distinct purposes: (1) to 

demonstrate [abstract] phenomena, and (2) to represent a calculation precisely. A teacher 

or project leader may use mathematical notations to visually demonstrate an idea or 

phenomena. In such situations, the details of the mathematical expression may be 

dropped in favor of presenting a more abstract human-friendly annotation. For this 

purpose, the mathematical expression is meant to be a visual representation. An example 

of this is the Leibniz notation for the chain rule when solving derivatives: 

df dx _ df 
dx dt dt 

The above serves as an excellent notation for demonstrating the subject mater even 

though it does not convey anything computationally meaningful. In the world of 

mathematics, any expression may serve either or both of the aforementioned purposes 

and MathML is a markup language that is designed to meet both [23]. 

The expression (a + b) can be demonstrated in two different ways using MathML 

notation: presentation or content. From a. presentational point of view (a+b) is a base and 

'2 ' is a script. In that case MathML notation for the expression would be as demonstrated 

in Figure 5. 

Like any XML notation, MathML expressions consist of a hierarchy of elements, some of 

which recursively contain a bunch of inner elements. The leaf elements are those that do 

not contain any sub elements. Instead they may contain an identifier, a number or an 

operator represented by <mi>, <mn> and <mo> tags respectively. 
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<msup> 

<mfenced> 

<mrow> 

<mi>a</mi> 

<mo>+</mo> 

<mi>b</mi> 

</mrow> 

</mfenced> 

<mn>2</mn> 

</msup> 

Figure 5 - The MathML presentational notation for (a + b)2 

The <msup> and <mrow> tags are used for scripting and general layout respectively. In 

the above expression, <msup> denotes that its second child is visually superscripted with 

respect to the first child. 

The above markup notation is great for visual rendering, but it does not effectively reflect 

the mathematically semantic meaning of the expression. In order to precisely encode a 

mathematical expression in MathML we must use the content markup instead of the 

presentation markup. The MathML code below demonstrates what the content markup 

for a same example looks like: 

<apply> 

<power/> 

<apply> 

<plus/> 

<ci>a</ci> 

<ci>b</ci> 

</apply> 

<cn>2</cn> 

</apply> 

Figure 6 - The MathML content notation for (a + b)2 
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The <apply> tag is perhaps the most important element in MathML content expressions. 

It denotes that the value of its children can be mathematically computed and returned. In 

the content markup we use <ci> to represent identified and <cn> to represent numbers. 

Unlike the presentation markup, the operators are denoted by empty elements in the 

content markup of MathML. For example <plus/> element denotes that the next two 

children are to be added together in current context. Similartly <power/> element denotes 

that the next element should be raised to the power of the one after. Currently MathML 

contents supports widely range of mathematical expressions in the following subject 

areas: 

• Arithmetic, Algebra, Logic and Relations 

• Calculus 

• Set Theory 

• Sequences and Series 

• Trigonometry 

• Statistics 

• Linear Algebra 

For the purpose of this thesis, we are more concerned with the content markup as 

opposed to the presentation markup as we would like to load, parse and compute the 

underlying mathematical expressions that constitute the high-level simulations. 

2.2.3 CellML 

CellML is an XML-based markup language designed to encode the models of biological 

phenomena [3] [4]. Although it was originally designed to describe biological models at 

cellular level, its capabilities have grown beyond that. Indeed, CellML models can be 

used to describe the behavior of a biological organ or even an entire system of organs for 

that matter. There are also several models built with CellML that describe non-biological 

phenomena such as those of civil and mechanical engineering. 

The idea behind CellML is as follows. When a model is published in a scientific journal, 

any reader who wishes to use or verify the model must implement his or her own 
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software program to verify the behavior of a system under the new model(s). This is 

especially difficult for those with little or no programming experience. In addition, when 

a newer (more accurate) version of the model becomes available, the older simulation 

becomes worthless as the entire simulation needs to be rewritten. If the models are 

encoded in CellML however, the older simulation can be reused by simply replacing the 

older CellML with the new one. 

Most models are defined by a set of mathematical equations that govern the interactions 

between two or more components. From a high-level point of view, CellML encodes a 

model by defining its components, the output and inputs of those components and finally 

mapping those outputs to their corresponding inputs (connecting the components 

together). 

Consider a simple Membrane/Electrophysiology model as shown in Figure 7. This model 

consists of a one-compartment cell with a membrane that separates the intracellular from 

the intracellular subspace. There are two channels from which sodium and calcium ions 

flow back and forth between the two subspaces [19]. 

Extracellular Subspace 

Figure 7 - The demonstration model consists of a one-compartment cell model, where the interior of 
the cell is separated from the extracellular space by a membrane [19]. 

Figure 8 shows the CellML structure for the above phenomenon. In CellML, the two 

subspaces and the membrane are represented by three components. The cell membrane 

component is connected to both Intra and Extra components. As this model is time 
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dependant, the CellML model will also contain an environment component that passes on 

the value of the global time to whichever component that requires it for its internal 

calculations. 

Figure 8 - The network defined in the CellML description of the simple electrophysiological model 
introduced in Figure 7. The model has four connections and four components, representing the intra-
and extra-cellular compartments, the membrane, and an abstract container representing the 
environment. The variables in the model are shown next to the components in which their value may 
be modified and alongside the connections along which they are passed to other components (where 
their value may not be modified) [19]. 

The partial CellML code in Figure 9 demonstrates the skeleton of the above model. The 

model element is the root element of any CellML data. Every CellML model has a name 

attribute that uniquely identified the model. 

Before we can define the components and their various interfaces, we need to define the 

units that are used by the models. The concentrationjunits in the above example is milli-

mole per liter for instance. Figure 10 shows how the unit of mole with the prefix of milli 

is added to the unit of liter with the exponent of-1 in order to represent the desired target 

unit. The fluxjmits is the concentration per second; therefore it reuses the previously 

defined concentration units. 

Figure 11 shows the implementation of the intra_cellular_space component. It consists 

of some variable definitions and a mathematical formula. The variables can have either 

"in" or "out" as their public_interface attribute. If a variable receives its value from an 

external source its publicinterface should be set to "in". If on the other hand the value of 
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a variable is to be calculated and fed into other components, it should be flagged as "out". 

Local variables should use the default value for this attribute ("none"). For the case of 

intra_cellular_space component, it receives I_Na , I_Ca and time as inputs and calculates 

Na and Ca as outputs. 

<model names"basic_ep_model" > 

<units name="concentration_units"> 
<!-- unit definition here — > 

</units> 

<component name="intra_cellular_space"> 
<!-- component definition here --> 

</component> 

<component names"extra_cellular_space"> 
<!-- component definition here --> 

</component> 

<component name="cell_membrane"> 
<!-- component definition here --> 

</component > 

<connection> 
<!-- membrane-intra connection definition 

</connection> 

<connection> 
<!-- membrane-extra connection definition 

</connection> 

</model> 

here --> 

here --> 

Figure 9 - The skeleton of a CellML file that contains a model named basicepmodel which is 
consisted of four components and a number of connections and units. 

<units name=" concentration_units"> 
<unit prefix="milli" 
<unit units 

</units> 

<units name=" 
<unit units 
<unit units 

</units> 

<units name=" 
<unit units 

</units> 

="litre" 
units="mole" 
exponent="-l" 

flux_units"> 
="concentration_units" 
="second" exponent="-1 

rate_constant"> 
="second" exponent="-l 

/> 
/> 

/> 
' /> 

' /> 

Figure 10 - Units definition in CellML 
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<component name="int ra_cel lu lar_space"> 
< ! - - the fol lowing v a r i a b l e s a re used in o the r components --> 
<var i ab le name="Na" pub l i c_ in te r face="ou t " 

u n i t s = " c o n c e n t r a t i o n _ u n i t s " /> 
<va r i ab le name="Ca" pub l i c_ in t e r f ace="ou t " 

u n i t s = " c o n c e n t r a t i o n _ u n i t s " /> 

< ! - - t h e fol lowing v a r i a b l e s a re imported from o the r components--> 
<var i ab le name="time" pub l i c_ in t e r f ace=" in" uni ts="second" /> 
<va r i ab le name="I_Na" pub l i c_ in t e r f ace=" in" u n i t s = " f l u x _ u n i t s " /> 
<va r i ab le name="I__Ca" pub l i c_ in t e r f ace=" in" u n i t s = " f l u x _ u n i t s " /> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
< a p p l y x e q /> 

< a p p l y x d i f f /> 
< b v a r x c i > time < / c i x / b v a r > 
<ci> Na </ci> 

</apply> 
<ci> I_Na </ci> 

</apply> 

o p p l y x e q /> 
< a p p l y x d i f f /> 

<bvar><ci> time < / c i x / b v a r > 
<ci> Ca </ci> 

</apply> 
<ci> I_Ca </ci> 

</apply> 
</math> 

</component> 

Figure 11 - The complete definition of intra_cellular_space component in CellML. It contains two 
output variables, three input variables and two math equations. 

CellML uses MathML notation to represent mathematical formulas (see section 2.2.2). In 

Figure 11, the math element contains two distinct differential equations: 

d ( i V a ) = / J V « 
d(time) 

d{Ca) 
d(t,ime) 

I.Ca 

I_Na and I_Ca are the rate of change in the amount of Na and Ca respectively. Note that 

the INa and I_Ca are received as inputs from the membrane component. Given the rate 
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of change and the Atime, this component must calculate the new amount of the Na and 

Ca. 

At the membrane side, the Na and Ca amounts are received as inputs from both intra and 

extra cellular spaces. Based on those amounts, the membrane calculates a new change 

formulated as follows: 

JJVa = v.Na * (NaJ - Na.e) 

I-Ca = vjCa * (CaJ - Ca.e) 

Where v_Na and v_Ca are constants valued at l . Oe-8 and l . 5e-8 respectively. The final 

piece of the puzzle is to connect the inputs and outputs of the three components together. 

This is done in through connection elements as shown in Figure 12. 

Each connection element contains a single map_component element and several 

map_yariables elements. The component_l and component_2 attributes in 

map_components element help determine which variables belong to which components. 

In the first connection element of the CellML code shown in Figure 12, all variable_1 

variables belong to component_l which happened to be intra_cellular_space. For 

example, variable Na of intracellularspace is connected to variable Na_i of 

cell_membrane component. If we refer back to the definition of the two components, we 

notice that Na is an output of intra component and Na_i is an input of the membrane 

component. Naturally you should not connect the output of one component to the output 

of another component, nor connect two inputs to each other. To see the complete CellML 

code of the basic_ep_model discussed here, refer to Appendix A. 
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<connection> 
<map_ .components component. 

component_2= 
<map_ 
<map_ 
<map_ 
<map_ 

.variables 

.variables 

.variables 

.variables 
</connection> 

<connection> 
<map. .components 

component_2 = 
<map_ 
<map. 
<map. 
<map_ 

.variables 

.variables 

.variables 

.variables 
</connection> 

1=" 
'cell_membrane" 
variable. 
variable. 
variable. 
variable. 

.1= 

.1 = 

.1 = 

.1 = 

3 component.. 

"Na 
"Ca 
"I_ 
"I_ 

-1=' 
'cell_membrane' 
variable. 
variable. 
variable. 
variable. 

.1 = 

.1= 

.1 = 

.1= 

= "Na 
= "Ca 
= »I_ 

= "I_ 

intra_cellular_space" 

/> 
" variable_2= 
" variable_2= 
Na" variable. 
.Ca" variable. 

= "Na_i" /> 
="Ca_i" /> 
_2 = "I_Na" /> 
_2 = "I_Ca" /> 

extra_cellular_space" 
/> 
" variable_2= 
i" variable_2 = 
.Na" variable. 
.Ca" variable. 

= "Na_e" /> 
="Ca_e" /> 
_2="I_Na" /> 
_2="I_Ca" /> 

Figure 12 - The specification of inter-component connections in CellML. The outputs of 
intra_cellular_space and extracellularspace components are connected to inputs of the 
cell_membrane component. 

2.2.4 Physiome Project 

The need of XML standards for specifying the underlying mathematics of physiological 

models has led to numerously research projects and tools collectively known as the 

Physiome project. The CellML modeling language described in the previous section was 

developed under the Physiome project. Other modeling languages such as AnatML and 

FieldML [36] are currently under development under this project as well. 

The Physiome project is a worldwide effort of numerous universities and research 

institutes to provide common means of encoding and sharing databases of physiological 

models along with tools and technologies to aid researcher in constructing realistic 

computer simulations of physiological entities [3]. One such tool is JSim that receives 

CellML models as inputs and displays the numerical results of the simulation in the 

screen. There are however no tool or research project under the Physiome project which 

is focused on the VR-based simulations of the physiological entities. 

2.3 Existing VR Frameworks 

As the VR technology is gaining more popularity, there are more frameworks introduced 

by the researchers and the VR industry in order to maximize the reusability and minimize 
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the time and cost of developing new VR applications. The challenges that VR 

frameworks are facing today include: 

• Lack of standards, in both software and hardware industries; 

• Infinite variety of VR applications; 

• The vast number of available VR input/output devices; 

The frameworks that are introduced in this section are some of the more evolved VR 

frameworks available to developers. Most of these frameworks address only a specific 

category of VR applications; therefore while they are of great assistance in building a 

certain category of applications, they are of little use for those projects that have a 

different set of requirements. 

2.3.1 SCIVE Framework 

There are numerous frameworks proposed by various research institutes to address the 

extensibility and reusability issues in VR applications. The most notable work in this 

field is SCIVE [5] [6], a simulation framework proposed by Latoschik et al. that uses 

semantic reflection, a concept for modular design of intelligent applications. 

The SCIVE framework uses what is known as a Knowledge Representation Layer (KRL) 

which contains all the data needed by the various modules of the VR application (see 

Figure 13). KRL allows sharing and updating of these data hence avoiding redundancy 

and duplications. As shown in Figure 13, KRL provides a common ground for all the data 

that is needed by the various interconnecting modules of a VR application such as user 

interaction, agent perception, animation and physics. Having all the involving data within 

a single platform has the advantage of avoid redundancy through sharing of hierarchical 

data nodes. For example it is common for the rendering module needs data structure for 

preserving the scene graph; the physics module also needs access to the scene graph 

however not in its entirely. It physics module does not require those scene graph 

attributes that define the color and appearance of the nodes. Also the physics module 

requires some additional information about the target graphical model such as mass, 
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friction, elasticity and more. KRL allows all modules to share their data hence avoid 

redundancy while giving them the freedom to add additional data if necessary. 

While SCIVE is an effective framework for its objectives, it puts great interconnectivity 

and dependencies on the individual modules. Furthermore, SCIVE does not address the 

specific needs of simulations that receive their behaviour and visual description 

dynamically at run-time. For such simulations, a clear separation between model and 

view behaviour is required. In addition, the focus of SCIVE is on data structures and it 

does not address alternative representations such as those of mathematical simulations. 

Figure 13 - Application Layout of SCIVE 

2.3.2 VirtualExplorer: A Plugin-Based VR Framework 

Although VirtualExplorer is designed for a limited number of tasks such as scientific data 

visualization and exploration, it has a flexible architecture thanks to its plugin-based 
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design [9]. Four categories of components can be plugged into the system in order to 

configure and customize the VR applications that use this framework: System, Device, 

Utility and Application (see Figure 14). The first three are advanced plugin types and as 

such the users of this framework can simply pick and choose from a list of available 

components rather than defining them individually. The Application plugin is a user-

defined component that dictates the behavior and features of the high-level application as 

specified by the application requirements. As such, it is the only plugin type that 

mandates custom definition from the users (application developers). 

O System plugins 

VirtualExplorer Plugin 9 Device plugins 
Harness 6 Utility plugins 

P Application plugins 

Figure 14 - VirtualExplorer plugin categories 

The advanced plugins are used to specify or reconfigure those aspects of VR applications 

that are common and hence highly reusable. They include plugins for input devices, 

output devices, display devices, rendering platforms, network types, collision engines and 

more. VirtualExplorer has a rich library of such plugins that can be readily used by the 

applications that are built on top of this framework. For example, an application can use 

Keywork, PinchGlove or Fastrak as their input devices. Figure 15 shows the list of 

plugins that VirtualExplorer currently supports. Each plugin must be plugged into its own 

plugin manager. Plugin mangers are entities that provide control loop and are responsible 

for handling all operations associated with plugins. 
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Figure 15 - VirtualExplorer plugin structure 

2.3.3 ASVC Framework 

There are very few frameworks that are designed specifically for surgery training 

applications. Researchers at the University of Akron have presented ASVC (Acquisition, 

Simulation, Visualization and Controller), a simple framework for integrating 

heterogeneous virtual surgery modules [10]. The ASVC system consists of three main 

modules: Data Acquisition, Simulation and Visualization. The Data Acquisition module 

is responsible for reading data from input devices periodically. These data typically 

represent the force and orientation of a surgical tool held by the user. The Simulation 

module continuously reads these data and generates simulation result such as a tissue 

deformation or the cutting of a flesh. Finally, the Visualization module uses the outputs 

generated by the Simulation module to render the scene. Figure 16 shows the 

arrangement of these modules within ASVC framework. The Controller module is in 
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charge of the communications among the three main modules and also the 

communication with outside world. 

Data Acquisition 

Controller 

n 

Simulation 

1 1 

Visualization 

Figure 16 - The ASVC framework 
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Figure 17 - The ASVC server-client architecture 

The ASVC framework supports for Client/Server applications in which the client(s) 

observer the surgery procedure performed by the server. On the server side, the 

networking module continuously receives interaction data from Global Data module and 

sends them to clients (see Figure 17). On the client side, there is no Data Acquisition 

module; instead all input data are received by the networking module and forwarded to 
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the Simulation module. Since the Simulation module is the same on both sides, the 

resulting visualization will be the same on both sides. Sending interaction data as suppose 

to the entire geometry data saves bandwidth resources and makes real-time performance 

possible. 

2.3.4 DIVERSE Framework 

DIVERSE (Device Independent Virtual Environments - Reconfigurable, Scalable, 

Extensible) is an open source framework that was introduced to specifically address the 

problem of device dependency [21]. DIVERSE introduces a modular framework allows 

VR applications to run independent of the underlying platform and connecting devices. It 

uses reconfigurable modules to conveniently allow users to select different input/output 

sources without having an impact in the application implementation. For example, the 

output device can be a typical non-immersive desktop monitor or an immersive CAVE or 

HMD system. Similarly, the inputs can come from keyboard, mouse, 3D sensors, or 

haptic devices. 

Application 

dgiPf 

Performer DTK 

System LIB, OpenGL, X Win 

Hardware Interfaces 

Figure 18 - DIVERSE Layered Architecture 

Figure 18 shows the layered structure of the DIVERSE system. The objective of this 

system is to separate the Application layer from the Hardware Interface in order to allow 

hardware reconfiguration without affecting the application itself. The basic idea is that 
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application does not care where the input comes from and where the output goes to; it 

simply allows DIVERSE to take care of those issues. 

As it is shown in Figure 18, DIVERSE minimized the device-dependency through dgiPf 

and DTK modules. DgiPf is the graphical module that is built on top of OpenGL 

performer. This library contains a Display module that can be reconfigured to channel the 

application output to either non-immersive desktop or immersive CAVE or HMD 

systems. DTK is in charge of non-graphical tasks such as peripheral hardware services 

and networking. It contains an Input module that can be configured to use different input 

sources. The input source can be a hardware device or a software program that simulates 

a hardware device (useful for testing). 
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CHAPTER 3- GENERAL ARCHITECTURE 

This chapter will introduce a novel architecture that uses XML technology to provide a 

flexible mean of defining, constructing and customizing interactive simulations in VR. 

First we will discuss some of the fundamental requirements of the interactive VR-based 

simulations. We will then introduce AVRA, a dynamic architecture that addresses these 

requirements by incorporating a variety of dedicated and interconnected infrastructures. 

3.1 Overview of the Requirements 

Computer simulations often involve a variety of hardware and software technologies, 

some of which are more common than others. However at the most abstract level, almost 

all simulations are consisted of two categories of specifications: the model and the view. 

The model defines the numerical aspects of the simulation and the view defines the visual 

aspects of the model. Before one can develop any given simulation, the nature of the 

model and view must be determined. 

The model may be a collection of data that is generated through scientific experiments or 

is collected from some sensors for example. Alternatively, the model can be a set of 

mathematical formulas originated from the laboratory observations or some theoretical 

predictions proposed by the scientific communities. 

The view of a simulation specifies the visualization of the simulation results from the 

time it starts until the time it ends. It can be anything from a simple 2D chart to a 

sophisticated 3D scene graph in a virtual environment. More often than not, several 

different views are employed to display the various aspects of a single simulation model. 

Consider the three different views of a heart model as shown in Figure 19. Although all 

three views are used to visualize a same model (the heart), their focus is on different 

aspects of the model. The image on the top is an electrocardiogram graph generated in 

real-time by Body Simulation, a software application developed by RTI International for 

the purpose of training first-aid workers [26]. The middle image is an application 

developed by the University of Ulm that utilizes 3D anatomy and animations for the 
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purpose of visualizing the heart [24]. The bottom image belongs to a haptic-enabled 

interactive surgery simulation that trains new surgeons through means of deformable 

tissues and laws of physics [25]. What these three applications have in common is that all 

of them implement the mathematical model of a heart. Their only difference is that they 

channel the numerical outputs of the heart model toward different views to meet the 

particular visual needs of their applications. Our proposed architecture addresses this 

redundancy problem by making a clear separation between the views and the models, 

thus making them reusable. 

j S .. " • - r < ^ ! | B t s j . i n r g ill 
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Figure 19 - Different views of a same model (the heart): The electrocardiogram graph, the 3D 
animation of heart beats, and a complex interactive surgery simulation [24]. 

43 



In addition to model and view, simulations may have interaction elements. The 

interaction element of a given simulation determines (1) what kinds of interactions are 

allowed, and (2) how the system should respond to those interactions. A simulation may 

allow haptic interaction with the view contents for example (i.e. touching the 3D model 

of the heart). As a response, the heart may experience an electrical shock or it may 

naturally deform. Unlike models and views the interaction elements are not pre-

deterministic and are often implemented in the higher level applications. 

SlmiaiBB 

Figure 20 - Use-case diagram of simulations built based on existing frameworks 

Figure 20 shows the use-case diagram of a typical simulation system under a traditional 

framework. As it is apparent from the figure, the end user is capable of applying a limited 

set of configurations through those features that are implemented by the developer(s) of 

the system upon request. These configurations however are typically parametric (i.e. 

specifying the initial Na and Ca quantities in a neuron cell model under simulation) hence 
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not capable of changing the underlying mathematical and visual behaviors. In order 

words, updating the models and graphics of the simulation falls under the responsibilities 

of the core simulation framework which requires considerable changes and the expertise 

of the original developer(s) of the system. Considering how frequently the mathematical 

and visual models of VR applications change during the lifetime of the application, the 

need for a highly configurable simulation framework is apparent. 

a 
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y 
User 

Artist 
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Sh»(st»n Framework 

Figure 21- Use-case diagram of simulations built based on the proposed framework 

As shown in Figure 21, under the proposed framework (AVRA), the mathematical and 

visual configuration tasks are highly configurable through XML files that can be 

conveniently fed into the system by anyone, taking the burden off the developer's 

shoulder. Take the simulation of an open heart surgery for example. The end user of such 

system may be students that use the simulation for training purposes. In that case, the 

expert is a heart surgeon or a heart researcher that updates the mathematical model of the 

heart upon new discoveries in the field. The artist is a graphics designer that constantly 

develops new anatomical models that are visually more appealing and/or more accurate. 
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3.2 Layered Architecture 

AVRA is a framework that generates VR-based simulations for predefined models. More 

specifically given a simulation model and a desired view description, AVRA can 

generate a virtual scene in which visual objects change and interact according to the 

numerical outputs of the model. Applications that are built on top of AVRA can simply 

feed the framework with a set of model and view descriptions in XML and then start the 

simulation. Alternatively applications can control the simulation or add new 

functionalities by extending the existing capabilities of AVRA. 

Application 

! 
•s 

t 

Model Loader 

View Loader 

Physics Engine 
View 

Plugin 

Figure 22 - The layered architecture of AVRA. 

As shown in Figure 22 the architecture of AVRA consists of several main components 

with which the higher level application interacts. Each of these main components consists 

of a set of static or dynamic sub-components that will be discussed in depth in upcoming 

chapters. The model loader receives XML description of the model and generates a data 

structure to represent data models or a system of interconnected sub-components to 

represent mathematical models. When a model description is loaded and its 

corresponding model entity constructed it is sent to the simulation engine which 

maintains a list of loaded simulations, model entities and view components. 
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The view loader receives the description of how the previously loaded model is to be 

visualized through MVML, an XML format that we designed for this purpose. A MVML 

file contains descriptions that specify which graphical models to load in the virtual 

environment and how to modify the graphical models based on the outputs received from 

the simulation models. In addition to constructing view entities, the view loader generates 

connector components and view plugins with dependencies on the physics engine (details 

discussed in section 5.1). The physics engine has a dual role in AVRA: it generates 

physically realistic animations and interactions, and it plays a central role in the 

development of view plugins which are critical for transforming numerical outputs of 

models into visual effects in virtual environments. 
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Figure 23 - Control flow within the AVRA framework 
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The scene manager is responsible for maintaining the graphical models as they are added 

or removed from the virtual environment. The scene manager is the main communication 

medium between AVRA and the higher level application. It allows application to 

introduce their own graphical models to coexist with those that are automatically 

generated by AVRA. Scene manager also allows the applications to retrieve the AVRA-

generated entities for additional processing if necessary. 

The control flow in AVRA is summarized in Figure 23. Upon loading a model a single 

model entity which consists of data or mathematical sub-components is created. Loading 

a view typically results in a view entity that has one or more graphical elements and 

several view plugins. The simulation engine continuously updates the models and 

channels their outputs toward view and view plugins. The physics engine continuously 

updates the view plugins which ultimately results in changes in graphical models and the 

virtual environment. 

3.3 Model Components 

The most fundamental element of the proposed framework is the simulation model that 

contains the data and mathematical formulas that constitute the behavior of the system. 

As it was discussed in section 2.2.3 CellML is currently the most popular XML format 

for defining the mathematical behavior of a system especially those of biological and 

physiological nature. Regardless of whether or not CellML modeling is used, the model 

components of the proposed architecture are designed to represent a series of inter­

connected simulation components that compute their outputs based on given inputs and 

internal mathematics as demonstrated in Figure 24. 

As it is shown in the diagram, the outputs of the components are directly fed into the 

inputs of their neighboring components. For example the outputs ol.l and ol.2 of 

component 1 is linked to the inputs i2.1 of component 2 and i3.3 of component 3. This 

schema does not set a one-to-one limitation on the input-output linking. For example, the 

output o2.1 of component 2 is linked to the inputs of both component 3 and component 1. 
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Figure 24 - The inter-connectivity of model components. The outgoing variables are denoted by a 
preceding 'o' and the incoming variable are denoted by a preceding ' i \ 
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Figure 25 - The three types of inputs that components may receive. 
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Many of the inter-connected components in a given model are time-dependent, that is 

they require access to the current simulation time in order to perform their internal 

computations. This simulation time is generated by the Simulation Engine and made 

available to the simulation components at each simulation step cycle. 

Figure 25 summarizes the three types of inputs that a component can receive. As it is 

apparent from the diagram, in addition to the time and input values, some components 

require initial values. This typically applies to those components that contain differential 

equations as part of their internal mathematics. The use of differential equations is rather 

common in CellML format and is often used to express the rate of change. After 

computing the rate of change, one needs to know the initial amount before the current 

amount can be calculated. Take the CellML model demonstrated in section 2.2.3 as 

example. It contains a component named intra cellular_space that has the following 

formulas encoded within it: 

i i ^ L _ 7_JVa 
aytvme) 

d(Ca) T „ 
-77^ — — IJJa 
aytvme) 

This component receives I_Na and I_Ca as its inputs and must calculate and supply the 

corresponding outputs for Na and Ca. As this is a differential equation, and the time is 

supplied by the SimulationEngine, the only missing elements are the initial amounts for 

Na and Ca: 

Na = init_Na + I_Na * time 

Ca = init_Ca + I_Ca * time 

These initial amounts are typically set by the user indirectly and through the higher level 

applications. 
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Figure 26 shows the class diagram of a system that addresses the above scenarios. The 

ModelLoader class is in charge of loading CellML models and generating the 

corresponding instance(s) of the Model class. The Model class represents a model entity 

that is consisted of a set of interconnected components. Each of these components is 

composed of a single Math object and four different sets of variables, namely 

inputVariables, outputVariables, initVariables and local Variables. 

The local variables are internal variables that are often declared as constant (i.e. a 

constant variable for PI); they are merely used for the internal calculations of the given 

component and as such their values are not accessible through the public interface of the 

component. All other variables are accessible to public. 

The VariableSet has a hash table data structure that quickly and efficiently finds and 

returns the Variable object associated with a given variable name. The Value objects are 

used to contain the current values of the variables. The Math object needs access to initial, 

local and input variables and their corresponding values before it can compute and update 

the values of the output variables. 

Note in the above class diagram that a given variable does not "contain" a value object 

but is rather associated with a value object in a shared manner. The reason for this is to 

allow different variables to share a same value object. This mechanism effectively allows 

the outputs of one component to be linked to the inputs of another component by defining 

two different variables that share a same value space. Figure 38 demonstrates this 

configuration in our simple CellML example. 
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Figure 26 - The UML class diagram of the model infrastructure 
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3.4 View Components & Model-View Mapping 

The view aspect of a simulation is more than just the graphics and visual elements. It may 

include everything that defines the core elements of a simulation including the graphical 

elements, the virtual scene, the animations and the interactions. This is why the view 

component along with its flexible architecture and XML-based schema is the most 

challenging part of AVRA. 

As it was presented in the previous section, the Model component is the numerical 

representation of the simulation model that computes the current state of the model based 

on current time and possibly other incoming data. From the most abstract point of view, 

the view component is responsible for visualizing the current state of the model. From an 

implementation point of view, this translates to receiving the numerical outputs of the 

model and mapping them to the various attributes of the visual objects, dynamic 

animations or physical interactions. For example, given that the numerical output of a 

model is 0.5, the simulation engine may interpret it as: 

• The current position of a corresponding 3D object is to be incremented by 0.5 

units in the X direction; 

• The scale of a corresponding 3D object is to be set to 0.5; 

• The speed of a heart-beat animation must be reduced by 50% times; 

• The universal gravity is to be incremented by 0.5; 

• The velocity of a Newtonian object is to be incremented by 0.5; 

• The density of 3D particles within a given environment is to be 0.5 particles per 

squared inch; 

• etc. 

Indeed any of the above scenarios may be the desired behavior of the intended simulation. 

Considering how different these behaviors are in term of implementations, such drastic 

changes to the view components often require re-implementation of the entire application. 

It is therefore evident how valuable it would be to have a generic framework that permits 

customization of the view components to such extend. 
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Figure 27 - Model-View configuration in a sample heart simulation that is generated base on two 
models XML files and two views XML files. 

Figure 27 shows the configuration of a sample application that utilizes both model and 

view XML files. The heart beat and blood pressure models are constructed based on the 

contents of their corresponding model files. The heart and blood views are similarly 

constructed based on the attached view files. The heart view is connected to a 

deformation component during the initialization phase. This connection is something that 

is specified and configured in the view XML (MVML) and can be customized as such. 

Indeed as it is shown in the diagram, the blood view has a different connection 

configuration (it is connected to a Fluid Generator). 
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Once the simulation is started, the current time is continuously distributed amongst 

models, as a result of which the models generate new outputs. These outputs are received 

by the view models and translated into parameters that are understandable by the 

graphical modules such as the deformation and the fluid generator components. 

Subsequently those components will modify the visual model of the heart to simulate the 

fluctuations in the mathematical models. For example, the deformation component would 

continuously deform the polygon mesh of the lower and higher segments of the heart to 

animate a heart beat. The fluid generator on the other hand is in charge of regulating the 

float of the blood particles through the veins. It does that by generating or removing the 

blood particles and changing their speed or color. 

3.5 Physically Realistic Views 

When it comes to visualizing the outputs of the simulation models, one can simply trigger 

a pre-designed animation. Alternatively physics engines can be used for dynamic and 

physically realistic effects. Physics engines are libraries that enforce laws of physics in a 

scene by continuously updating the position, orientation and shape of the visual models 

based on their physical attributes such as mass, velocity, force, friction, aerodynamics 

and more. 

There are many physics engine libraries available today some in the form of commercial 

products and some are freely available as open source projects. AVRA uses xPheve 

(Extensible Physics Engine for Virtual Environments) which is particularly beneficial due 

to its extensible architecture and the use of pluggable physics laws [2][35]. In AVRA 

physics laws form the basis of view plugins that are in essence those components that 

receive parameters from the mathematical models and subsequently translate them into 

visual animations. 

Figure 28 shows the general architecture of xPheve. The diagram shows a multi-threaded 

implementation of xPheve that consists of the application thread, the physics engine 

thread and the physical law thread. The application thread initializes the physics engine 

and may occasionally modify the physical attributes of objects. The physics engine thread 

continuously updates the graphical attributes of physical objects such as the position, 
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orientation and shape (i.e. for deformation) of the physical objects. The physical law 

thread continuously updates the physical attributes such as force, velocity, momentum, 

etc. 
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Figure 28 - The xPheve architecture [2] 

3.6 Interactive Views 

Today VR applications employ a wide variety of technologies and devices in order to 

stimulate the various senses of human body including the sense of touch. The haptic 

technology as described in section 2.1.2 utilizes force feedback arms and sensor gloves in 

order to present a realistic 3D interaction experience. Not all potential users have access 

to such interaction devices however. In addition, different applications utilize these input 

devices for different purposes. For example, in our simple cellular model, haptic device 

may be used to alter the concentration of Na and Ca inside and outside of the cell's 

subspace. In a heart surgery simulation, the haptic device may control a virtual knife that 
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can cut through veins and flesh, indirectly causing disturbances in the parameters of the 

blood pressure and heart beat models as shown in Figure 29. All these scenarios 

encourage a flexible architecture through which the haptic (along with other input/output 

devices) can be configured with ease. 

Simulation 
Engine 

HeartBeat 
Law 

Figure 29 - A sample heart surgery simulation configured with model and view XML. The model 
and view components affect each other in a cascading manner. 

There are two models loaded in the simulation shown in Figure 29: the heart model and 

the blood model. The view instance contains four elements for performing collision 

detection, cutting, bleeding and animating heart beats. Up until this point there is nothing 

distinctive about this diagram. Note however that the outputs of some of the view 

elements are fed back into the model elements giving the view element the capability to 
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alter the outcome of the mathematical models and hence the entire simulation. In 

particular the user action of forcing a knife on the surface of the virtual heart causes a 

collision event that triggers a visual cutting of the mesh and a bleeding effect through 

means of fluid particles. The rate of this bleeding however depends on the output of the 

blood model. Once the bleeding is started, this fluctuation in blood supply is reported 

back to the blood model which recalculates its outputs, as a result of which both bleeding 

view and heart beat model are affected. Therefore the effect of the cutting is ultimately 

felt as visual fluctuations in the heart beat animation. 

3.7 Summary 

This chapter presented the general architecture of the proposed AVRA framework which 

uses XML technology for describing the model and view elements of VR-based 

simulations. Those systems that are built based on this proposed framework are highly 

customizable through their XML configuration files. In particular, the details of the 

model, graphics and animation can all be specified through these XML files. The generic 

simulators that use the proposed architecture will read these XML descriptions during 

their initialization and dynamically generate a functional and highly customizable 

simulation. 
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CHAPTER 4 - SIMULATION MODELS 

There are two common ways for modeling simulations: (1) through experimental data or 

(2) through mathematical formulas. Both options require storage of the model description 

in some standardized format and the ability to reliably share them so that a given 

simulation model generates a same numerical [and visual] output regardless of which 

simulation tool or platform is used. 

AVRA is designed to handle both data and mathematical models. Naturally, a different 

kind of model loaders and model objects are needed in order to successfully integrate 

different formats of simulations models. AVRA allows easy integration of custom 

designed model objects as long as they abide by the following rules: 

• A Model object should allow values for its input parameters to be set anytime 

during the simulation. 

• Given the current time and input parameters and the identity of an output 

parameter, the model should be able to compute and return the value of the output 

parameter anytime during the simulation. 

Most simulation models considered when designing AVRA are time-dependant; that is, 

their internal state and external outputs depend on the time as well as other possible 

inputs. However those models that do not depend on time may also use AVRA by simply 

ignoring the time parameter. 

As shown in Figure 30, in AVRA every simulation contains one or more Model objects. 

Each model has a VariableSet that contains a list of variables that represent the input and 

output parameters of that model. The Model class is an abstract class that needs to be 

implemented. AVRA includes two implementations of the Model: DataModel and 

MathModel. A DataModel has a DataTable which contains the simulation data sorted by 

time in an ascending order. The MathModel often has several Math Components, each 

with a variable set that consists of a subset of the complete list of input/output variables. 
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Due to the interface provided by the abstract class Model a wide range of simulation 

models can be represented in AVRA. If the structure provided by DataModel or 

MathModel is not sufficient for a particular simulation modeling format then new custom 

subclasses of the Model can address the additional requirements. For example if neural-

network [53] simulation models are to be loaded in AVRA then a new representative 

subclass of Model can be constructed to address the specific structure of neural-network 

models. 
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Figure 30 - The UML Diagram of Model hierarchy 

The task of loading model files and constructing simulation models is a responsibility of 

the model loaders. As shown in Figure 31 all model loaders inherit from ModelLoader 

which is an abstract class with an abstract load method that returns a new instance of 

Model upon successful loading. AVRA does not put any restrictions on how a model 

loader is implemented as long as it inherits from the ModelLoader. For convenience, 

there is an XMLModelLoader available that includes the implementations for loading any 

XML file and generates a DOM tree that is passed to the abstract method processXML. 
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This class provides much of the functionalities needed for loading XML-based models 

such as CellML; however using this class for loading XML models is optional and 

developers may directly inherit from the ModelLoader class when developing custom 

loaders for XML models. 

ExcellModelLoader 

+load(): Model 

ModelLoader 

+load(): Model 

7T 

«create» Model 

•name: string 

+step(in dt : long): void 
+getOutput(in param : string): double 

XMLModelLoader 

+load(): Model 
+processXML(in root): void 

ScriptModelLoader 

|+load(): Model 

XMLDataLoader 

+processXML(in root): void 

CellMLLoader 

+processXML(in root): void 

AnatML 

+processXML(in root): void 

Figure 31 - The UML Diagram of ModelLoader hierarchy 

4.1 Data Models 

Data models are passive simulation models with pre-generated simulation data. There are 

many applications to data models; for example, a data model can be used to store the 

results of an experiment, or it can be generated manually to describe the theoretical or 

expected results of an experiment that has not taken place yet. Regardless of the purpose, 

a data model typically consists of a simple or hierarchical data table with fields that 

represent the input and output values of the simulation at each instance of time. 

Table 2 is a sample data model that represents the simulation data of a neuron cell during 

action potential. The data starts from time zero and ends 10ms later. At time zero, the cell 

is at its rest with rest voltage of -75. Action potential is invoked by a stimulus at time 1ms 

resulting in an increase in the voltage with its peak at time 4ms after which the cell 

slowly returns to its resting state. 
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Time (ms) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

m_gate 

0.05 
0.051225 
0.129692 
0.547273 
0.996577 

0.96885 
0.719583 
0.043962 
0.015446 

0.01647 
0.017984 

i_Na (uA) 

-1.035 
-1.1167 

-15.6724 
-388.366 
-463.506 
-388.151 
-159.714 
-0.11764 
-0.01043 
-0.01812 
-0.02951 

V(mV) 

-75 
-75.3269 
-65.2911 
-6.65066 
15.01582 
-19.2617 
-51.8486 
-83.6873 

-84.949 
-84.3782 
-83.6696 

Table 2 - A sample data model that constains the measurements of the gate opening of Sodium 
channel (mgate), the current of Sodium channel (I_Na) and the Voltage (V) of a cell during action 
potential. 

Figure 32 shows the graphs that are extracted from a data table similar than that of Table 

2 but with a higher data resolution with data fields for every 0.01ms instead of every 1ms 

as is the case with of Table 2. Regardless of how high or low the resolution of a data 

model is, the model must be ready to supply output values even for those time values that 

do not have an exact match in the data table (i.e. smaller than the step size). For example, 

in order to generate a virtual reality application that visualizes a simulation based on the 

data of Table 2 over a period of 10 seconds we need a simulation step size of 0.02ms as 

calculated below: 

Actual Time of Simulation (ATS) = 10ms 

Visual Time of Simulation (VTS) = 20s 

Frame per Second (FPS) = 25 f/s 

Total Frames (TF) = VTS * FPS = 20s * 25 f/s = 500f 

Simulation Step Size per Frame = ATS / TF = 10ms / 500f = 0.02ms/f 
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Figure 32 - The graph of m_gate (top), i_Na (middle) and V (bottom) of the data in Table 2 

Since the data in Table 2 has a larger step size, the data model needs to interpolate the 

data in order to extract additional rows from the existing data whenever needed. Figure 

33 demonstrates the effects of some of the popular interpolation algorithms available. 

Naturally those interpolation algorithms that generate more accurate results are 

computationally more expensive. 
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Figure 33 - Given data points in (a) new points can be extracted using (b) Piece-wise interpolation (c) 
linear interpolation, and (d) Spline interpolation algorithms. 

In AVRA this issue is addressed in DataTable which is primarily responsible for storing 

the data but also have the responsibility of interpolating the data as needed. By default, 

the DataTable interpolates values linearly in order to balance between the quality of the 

extracted data and the computation cost. In addition, the DataTable is easily extendable 

and in effect implements the Bridge pattern [28] hence allowing custom interpolation 

algorithms to be implemented by the developers if the default interpolator is not 

sufficient. This task involves extending the DataTable class and overriding its interpolate 

method. 

4.2 Ma thema tical Models 

The mathematical aspects of the simulations are more difficult to be modeled as generic 

components since their internal structures are more complicated than the simple scheme 

of the tables as seen in the previous section. XML is the popular choice for encoding the 
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mathematical behavior of simulations. There are many XML-based markup languages 

that are developed for the purpose of encoding the mathematical nature of different 

scientific phenomena in various fields such as biology, chemistry, mechanics and 

electronics. AVRA takes advantage of the existing popularity and presents a flexible 

framework that can be extended to include support for any of the existing formats. 

At its simplest form, a mathematical model receives the simulation time as input, 

performs some mathematical operations and generates some outputs as shown in Figure 

34. However most scientific models are more complicated than that and need to break 

down a simulation into smaller sub-components. Each sub-component typically receives 

inputs from other sub-components or from the interface of the model, applies some 

mathematical function to those inputs, and sends the resulting output to the other sub­

components or makes them available to the outside world through the interface of the 

model. 

Model A 

N 
f(time) time 

» /(time)=100 *log(time) • > 

Figure 34 - A simple mathematical model that simulates a phenomenon as formulated by function f 

There are no unified standards that determine exactly how these sub-components must 

interact with each other; different modeling formats such as CellML and AnatML have 

different ways of representing the behavior of their models. The MathModel class in 

AVRA includes a default set of functionalities that presents a generic way of representing 

the mathematical models. When constructed by the model loaders, a MathModel object 

would typically contain several MathComponents each responsible for computing a 

smaller set of mathematical expressions and channeling the results to those components 

that need them. A sample mathematical model will be explored in the next section with 
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discussions of how it can be represented in AVRA. If the structure of the MathModel is 

not sufficient for representing a particular model format such as AnatML or FieldML 

then developers may extended it to address any extra structure that may be required. 

4.2.1 A Sample Mathematical Model 

To demonstrate how AVRA represents mathematical models we take the simple model of 

a neuron cell which was demonstrated in section 2.2.3 as example. This model consists of 

a simple cell that contains some pre-defined quantities of Na and Ca that flow in and out 

of the cell through the cell membrane. The model which is encoded in CellML format 

contains mathematical formulas that govern the rate at which Na and Ca ions move 

across the membrane. As it was discussed in section 2.2.3 CellML models typically 

consist of several components. These components translate to MathComponents in 

AVRA. In essence, upon loading the sample CellML model, AVRA generates an 

instance of Math Model (named Simple Cell Model in this case) as shown Figure 35. It 

contains three math components each of which consists of two mathematical formulas. 

Each of the three math components receives parameters as inputs from the other math 

components and, upon computing the results, sends some outputs to other math 

components. 

This complex system of interconnected components and differential equations is common 

among scientists especially those of biological fields; hence AVRA is designed to handle 

them as such. Figure 36 shows how instances of MathModel and MathComponent can be 

constructed in order to effectively represent the simple cell model. As it was shown in 

Figure 30 each instance of MathComponent is associated with a VariableSet which 

ultimately contains all the variables needed including the input and output parameters. 

For example, Extra Space which is a MathComponent has 4 variables, two of which are 

inputs and two of which are outputs. A same instance of VariableSet is used because 

unlike CellML, AVRA does not need to differentiate between inputs and outputs. As far 

as AVRA is concerned the task of forwarding outputs to inputs is automated once the 

components are properly connected together. The process of connecting the math 

components together is discussed in the next section. 
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Extracellular Subspace 

(a) 

(b) Simple Cell Model 

I Ca 
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I Na 
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I Ca 
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d(iVa) 
d(ti-me) 

d(Ca) 
d(tirne) 

= / JVo 

= IJJa 

Na 

Ca 

Membrane 

I-Na — v-Na * (NaJ — Ncue) 

IJJa = vJJa * (CaJ, — Ca.e) 

Ca_e 
w 
Na_e 
rt 
CaJ 
M 

Na_i 
^ 

Intra Space 

d(ATa) 

d(time) 

d(Ca) 
d(ttme) 

1.0*/JVa 

= -1.0*/_Ca 

Na 

Ca 

Na 

Ca 

Na 

Ca 

Figure 35 - The Math Components of a cell model (b) that represents flow of Na and Ca particles in 
and out of a neuron cell during action potential (a) 
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Cell Model 
(MathModel) 

Extra Space 
(MathComponent) 

vars 

Membrane 
(MathComponent) 

vars 

I_Ca 

I Na 

Na 

Ca 

Intra Space 
(MathComponent) 

vars 

I_Ca 

I_Na 

Na 

Ca 

C a e 

Na_e 

Ca i 

Na i 

I Na 

I Ca 

Figure 36 - The object diagram of a MathModel that is generated in AVRA in order to represent the 
Simple Cell Model of Figure 35 

In addition to the local parameters of the math components, the math model which acts as 

a container also has its own set of input/output parameters. A special input parameter is 

time which is distributed among all math components. Those which do not need the time 

parameter may simply ignore it. In this example, both extra space and intra space math 

components need the time whereas the membrane does not. For other parameters, they 

are typically directed to one or more math components selectively and the outputs are 

typically received from the outputs of the interior math components as well. As it is 

shown in Figure 35 our model has outputs of conflicting names. For instance, there are 

two Na outputs, one coming from the extra space and the other coming from the intra 

space. To address this, in AVRA the name of the interior component must be expressed 

as well as the name of the output variable when referring a particular input/output 

parameter. 
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4.2.2 Connecting Math Components 

Recall from the beginning of this chapter that each Model entity is associated with a 

variable set which consists of a list of unique Variable objects. Each variable references a 

Value object that may be shared with other variables; this is denoted by a white diamond 

(shared aggregation) in Figure 37. In AVRA this sharing of value objects allows the 

output and input variable to be conveniently and efficiently connected together. 

As it is shown in Figure 38, there is a clear separation between the variables and their 

corresponding values. For example, the intra component has an output variable named 

"Na" which according to the CellML connection configuration (see Figure 35) is to be 

linked to the input variable of membrane component named "Na_i". Even though the two 

variables are different in that they belong to different components and have different 

names, they are both linked to a same Value object as shown in Figure 38. 

Model 

•name: string 

+step(in dt : long): void 
+getOutput(in param : string): double 

M VariableSet 

+getVariable(in varName) 

1L 
Variable 

+getValueObj(): Value 
+getValue(): double 

1..* 

±. 
Value 

+getValue(): double 

Figure 37 - Class diagram of VeriableSet 

One might be concerned that such arrangement might be problematic when two or more 

components try to modify the content of a shared value object simultaneously. This 

however would never occur in a valid XML-base model description such as CellML 

because from the set of all variables that are pointing to a given Value object only one is 
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an output variable (this is a rule enforced by CellML specification). Therefore only one 

variable is capable of modifying the Value object; others are merely observers of its 

numerical content. The task of ensuring that this configuration holds true for all 

components of the model is a responsibility of the XML-based markup language 

specification. 

Figure 39 shows examples of legal and illegal connection configurations as per CellML 

specification. Note that a single output variable can be linked to as many inputs as you 

like, however two or more output variables cannot be linked to a single input channel as 

they would otherwise override each other and result in an incorrect behavior. 
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Figure 38 - The UML object diagram of instances that are automatically constructed when the 
bas icepmodel CellML model is parsed (note: some instances are omitted due to lack of space). 
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Figure 39 - Examples of legal and illegal connectivity configurations among input-output variables. 

4.2.3 Alternative Connection Linking 

There are two alternatives to the above design. Using the observer-observable design 

pattern [29], one can implement all of the components as observable entities that fire 

events when the values of one or more output variables are changed due to new incoming 

inputs or elapse of time. Those components that are interested in the outputs of a given 

observable component can register themselves in the observers list of that component and 

begin receiving update events. When such events are received by the listening component, 

it often uses the new input values to recalculate and update its own outputs for which it is 

obligated to fire update events if there is a sensible numerical change in the output 

amount. 

Figure 40 demonstrates the observer-observable design for our CellML model. The 

cascaded events shooting starts with the simulation engine as it notifies the Intra 

component (intra_cellular_space) of change in time. The Intra component would then 

recalculate Na_i based on the current time and fire an event to notify the membrane 

component of this. Membrane would then use the new Na_i along with the possibly 

outdated Na_e value to recalculate INa . Update events will then be fired and 

subsequently received by Intra and Extra components. 

71 



time 

Intra 
Component 

Simulation/ 
Engine 

Membrane 
Component 

Extra 
Component 

Figure 40 - Event driven simulation system using observer-observable design pattern. 

An obvious flaw with such event driven system is that the observer-observable pattern 

uses synchronized event notification. That is, once a component fires an event it will not 

get a hold of the CPU until all observers of that event process it. Since firing an event 

typically has a cascading effect there is a good chance that the control will never return 

and the program gets stuck in a loop until it runs out of memory. Therefore, if this design 

is to be implemented, a special mechanism must be used to avoid the infinite cascading 

problem. 

Another alternative is to employ even-driven design within a multi-threaded system [31]. 

In this case, each component is implemented as a thread that waits until it is notified that 

one of its input variables has changed. Upon this notification, the thread becomes 

activated and the values of the output variables are recomputed. The component would 

then issue a notification to point out this change of its output, after which those thread 

waiting for such notification wake up and proceed with their own computations. This 

alternative is especially attractive since today's multi-core processors can take full 

advantage of such multi-threaded systems for maximizing the performance. AVRA can 

be implemented to wrap each simulation model in a thread or create a thread for every 

component of every simulation model. Since there are over-heads associated with threads 

the developers must be careful not to overwhelm the system with too many simultaneous 

running threads. 
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Table 4 compares the pros and cons of the three alternatives. 

Pros 

Cons 

Shared Value Object 

-Fast 

-Avoids unnecessary 

computations: The output of 

all components is calculated 

only once per simulation 

cycle. 

-Extra care must be given to 

ensure that only output 

variable modify the content 

of value objects. 

Observer-Observable 

-Avoids sharing of value objects, 

allowing each component to 

maintain a local copy of their 

input/output values. 

-In certain models, avoid 

unnecessary computations: The 

output of any component is only 

calculated when one of its input 

values has changed. 

-Cascading effect often results in 

infinite loops. Special 

mechanism must be 

implemented to avoid it. 

-Unnecessary computation may 

result in slower simulation 

overall as some components may 

recalculate their outputs several 

times per simulation cycle (each 

time one of inputs are updated.) 

Multi-Threaded 

-Avoids sharing of value 

objects, allowing each 

component to maintain a local 

copy of their input/output 

values. 

-In certain models, avoid 

unnecessary computations: The 

output of any component is 

only calculated when one of its 

input values has changed. 

-Easily avoids cascading 

problem with Observer-

Observable alternative as firing 

event occur non-synchronously. 

-Added efficiency when 

running in a multi-core or 

multi-CPU systems. 

-In a simulation with hundreds 

of components, the overhead of 

switching between threads may 

be too much, resulting in a 

slower simulation overall. 

Table 3 - The pros and cons of three approaches toward connecting math components 
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4.3 Control Flow in Simulation Models 

In AVRA the simulation models are created by the model loaders which themselves are 

created by the simulation controller whenever the user loads a new model file into the 

system. This interaction is demonstrated in the sequence diagram of Figure 41. When the 

simulation controller receives a new model file it checks to see if a valid loader is 

available for that file. In the sequence diagram, the file being loaded is an Excel sheet 

which contains a table that represents the simulation data. If an Excel loader is available, 

the simulation controller will create an instance of it, otherwise an exception is thrown. 

A model is created by simply passing the model file to the load method of the 

corresponding model loader. In this case, our excelModelLoader instance creates 

instances of DataModel and TableModel and subsequently parses the content of the file 

extracting the relevant data and passing them to the dataTable. Once the model object is 

ready, it is returned back to the simulation controller at which point it will be assigned to 

a simulation instance. After the simulation is started, it periodically calls the step method 

of its models include our dataModel. As it was mentioned in section 4.1 the time received 

by the step method may not correspond to an exact match in the data table; therefore a 

call to the interpolate method is invoked to compute a linearly interpolated record. 
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Figure 41 - Sequence diagram of DataModel 
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simulation mathModel mathComponent 1 outputVariable mathComponent 2 inputVariable value 

step(time) 

compute() 

K~ 

computeOutput() 
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K--

computeQ 

setValue(-75.0) 

getValue() 

getValue() 

-75.0 

-75.0 

computeOutputQ 

Figure 42 - Sequence diagram of MathModel 

Loading a mathematical model is done similar to data model or any other model; it 

involves instantiating a proper loader and adding the model to the simulation when the 

loader returns it. However computing the outputs of the mathematical models during the 

simulation is more complex and involves a system of interconnected math components. 

As it was discussed in section 4.2.2, in AVRA the task of connecting the output of a 

component to the input of another is achieved by sharing the Value objects. Figure 42 

demonstrates a simple model consisting of two math components. The first component 

merely receives the time as its input and generates a single output (-75.0 in this example) 

stored in outputVariable. The second math component receives the inputVariable in 

addition to the time as its inputs. Earlier at the time of model construction, AVRA 

arranged it so that the outputVariable of mathComponent_l and the inputVariable of 

mathComponent_2 point to a same value object. Therefore when mathComponent_2 tries 
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to retrieve the current value of its input it would always get the most recently computed 

value as set by mathComponent_2. After retrieving its inputs, mathComponent_2 

computes its output values and subsequently updates its output variables which may or 

may not be connected to inputs of other components (not shown in the figure). 

77 



CHAPTER 5 - SIMULATION VIEWS 

The view component manages all those entities that contribute to the visualization of the 

simulation model. In general, the view is continuously observing the outputs of the model 

and adjusting its graphical visualization accordingly. As a result, a change in the 

numerical output of a model would result in changes in the 3D scene. Recall from the 

previous chapter that Model is an abstract class with data or mathematical models as its 

possible implementations. The view only uses the generic interface of the models as 

defined in the Model class, therefore as long as it is connected to a Model instance it does 

not care which concrete implementation it belongs to. From a high-level perspective, a 

view component simply receives numerical outputs of the model that it represents and 

translates those numerical values into some visual animations or interactions. 

5.1 View Components 

Figure 43 demonstrates the view and the components that it depend on. Just as with the 

models, a view is created by its loader which receives the view description from a file. 

The view loader parses the view description which is in an XML-based format named 

MVML. MVML will be discussed in length in chapter 8. Unlike the model loaders, the 

view loader is a concrete implementation which is specifically designed for loading 

MVML files; therefore in most cases there is no need for it to be extended to create 

customized loaders as this would generally convey changes in the underlying core 

structure of the MVML and the view system. Once the view is constructed and initialized 

with specified parameters it is added to the simulation that contains its target model. 

A view consists of three main types of elements: graphics, connectors and formulas. 

Since AVRA is designed to generate virtual environments that represent the simulation 

models, its view consists of numerous 3D models that are loaded and embedded into the 

virtual scene. These 3D models will move, deform, animate and interact based on the 

numerical output of the models that they are connected to. The graphics objects wrap 

these 3D models and provide an interface for recovering and manipulating them. The 

connectors are used for establishing an automated data connection between the output of 
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a simulation model and the input of the animation or visualization module that 

manipulates the graphics. The formulas are mathematical entities that are used for scaling 

the output values of the simulations models so that they are of acceptable range for the 

visualization modules. Both connectors and formulas will be discussed in detailed in 

chapter 7. 

Simulation 

+step(in dt: long): void 

ViewLoader 

+load(): View 

«create» 
±. 
View 

)|-modelName: string 

+update() 
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±. 
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- > : 

^L 
Model 

•name: string 
+step(in dt: long): void 
+getOutput(in param : string): double 

"TV 

^L 
Connector 

" ^ 
0..1 

1L 
Formula 

JL 
ViewPlugin 

Figure 43 - Class diagram of the view components 

5.2 3D Graphical Models 

AVRA implementation supports various 3D model formats such as VRML, X3D, 3DS, 

etc. In addition, AVRA architecture makes it easy to add support for other 3D formats by 

registering third-party loaders. The following code registers a new VRMLLoader for 

those 3D models whose filename has a .wrl or .vrml extension. 
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ViewLoader.register3DModelLoader(VRMLLoader.class, "wrl,vrml"); 

In the case above, the code would effectively disable the built-in VRML loader to allow 

for the third-party loader to load the VRML files instead. In general the latter calls to 

register3DModelLoader always replace the earlier loaders of a same filename extension. 

Sometimes the 3D models are simple and are used by the view as a whole. However 

often these 3D models are complex and may consist of tens or hundreds of smaller parts 

that are to be animated independently base on different outputs of the simulation model. 

For example the simulation model in Figure 44 has several output parameters that define 

a walking robot by generating values for its joint angles. Therefore when describing the 

view of this model we must connect these outputs to their corresponding graphical parts 

within the 3D model of the robot. For example in the figure the output out2 is connected 

to the left_arm_group; that is if the value of out2 is 90 the entire left arm which includes 

the lower arm and the hand will rotate 90 degrees around its joint. It is therefore crucial 

that the 3D models have unique names for all graphical parts of interest and that the view 

descriptions correctly identify those parts using their names. 

mit 
state 

t ime. 
Walking Robot Model 

outl 

out2 

out3 

left arm group 
• | 

torso group , ? 

out4 

\neck_group 

left knee group 

Figure 44 - The connections between the outputs of a simulation model and the named parts of a 
single 3D model 
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5.3 Model-View Associations 

Each instance of the view is associated with a single model (the model that it will 

visualize). A view cannot represent multiple models; that is for n models there must exist 

at least n unique views in order to visualize all of the models. It is however possible that 

multiple views point to the same model. This is particularly useful when several view 

components represent the various aspects of a complex model. For example Figure 45 

and Figure 46 demonstrate four different view components representing the same 

mathematical model of a simple cell but visualizing different aspects of the model. In 

particular, view #1 and #2 use the outputs of the intra and extra spaces of a neuron cell in 

order to visualize the local state of those champers at any give time. This is while view #3 

and #4 use a different combination of same outputs to animate the flow of Na and Ca 

particles in and out of those chambers through the membrane. Both views have practical 

applications and are deemed valuable to scientists who are observing the different aspects 

of a simulation, yet both visualize a same model with same numerical outputs. 
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Figure 45 - Two view configurations that visualize the local state of the extra and intra spaces. 
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Figure 46 - Two view configurations that visualize the inter-space dynamics across the membrane. 

This section presented a high-level overview of the mapping of view components to their 

target models. Due to decoupling and reusability issues view components are not directly 

connected to the model outputs. Instead this is achieved in AVRA through view plugins 

and connectors. The architecture of view plugins and connectors along with their various 

benefits are discussed in debt in chapter 6 and chapter 7. 
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CHAPTER 6 - VIEW PLUGINS 

In order to accurately visualize the output of a simulation model, the animation and 

interaction effects must be updated continuously as new data arrive from the model. As a 

result, the use of static pre-generated animation is not adequate for this type of problems. 

AVRA introduces reusable view plugins to address this issue. 

6.1 Behavior of View Plugins 

View plugins are compiled entities that take advantage of the functionalities of the 

embedded physics engine to produce highly customizable animations and interactions 

that truly reflect the state of the simulation models in real-time. In essence, a given view 

plugin programmatically generates a dynamic animation based on a pre-determined set of 

data that are received through its well-defined interface. For example, the interface of a 

view plugin that animates the heart-beats may provide methods for setting the rate and 

magnitude of the heart-beats. 

View plugins may be defined and implemented to be very specific or very generic. For 

example a view plugin that is used in visualizing the heart-beats may be an authentic 

heart-beat animator that accepts heart-specific parameters or a generic deformation 

module that simply deforms any set of 3D geometries based on some generic parameters. 

The choice of how specific or generic the implementation of a view plugin is depends on 

the requirements of the simulation that needs it. Naturally the more generic view plugins 

have the advantage of being reusable. Figure 48 shows two different plugins that can be 

used for visualizing the heart-beats. The HeartBeatAnimator simplifies the task as it only 

requires the rate attribute whereas the DeformationLaw requires additional attributes and 

instances. More on this will be discussed in section 6.3. 

The animation that is generated by a given view plugin may be anywhere from 

predictable to randomly variable. It is unlikely however that the generated animation is 

completely random; instead it is usually random within some pre-defined thresholds. For 

example in the simulation of a biological organ that generates some ions at a particular 
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rate it is generally preferred that the new ions be distributed randomly but within the 

boundaries of the organ. 

6.2 View Plugins as Extensions of Physics Plug ins 

As it was discussed in section 3.2, the xPheve physics engine is used in this framework. 

The integrated physics engine serves two purposes: it generates physically realistic 

behaviors and more importantly, it is the basis of the view plugins in AVRA. The view 

plugins are in fact extensions of the law plugins as specified in xPheve. This architecture 

allows the physics engine to take control of the management of the 3D visualization 

hence avoiding possible conflicts between the physics engine and the simulation engine 

while conveniently reusing the visualization services that are already offered by xPheve. 

The separation of the visualization module (physics engine) and the simulation engine 

makes sense because the visualization updates generally occur at a slower rate (once per 

frame) than the numerical computations which may require several iterations per frame 

depending on the size of the simulation steps. 

Figure 47 shows a class diagram that demonstrates how view plugins are developed as 

law plugins in AVRA. As it was discussed earlier, each view component is typically 

associated with one or more view plugins through connectors. In the actual 

implementation though, the view components are associated with the super class 

PhysicalLaw whose subclasses may or may not be implementation of view plugins. This 

intentional abstraction allows view to access not only view plugins that are specifically 

developed for AVRA, but also the more generic physical laws that are available within 

xPheve libraries such as CollisionLaw, DeformationLaw, NewtonsLaw and more. 

In order to define a custom view plugin that addresses the specific needs of an AVRA 

application one needs to extend the PhysicalLaw and implement the enforce method. 

During the run-time, the enforce methods of law and view plugins are periodically called 

by the physics engine. For view plugins, the enforce method should contain codes that 

perform some animation or visualization based on the inputs received from the simulation 

model. The examples shown in Figure 47 show Colorlnterpolator, Gate Animator and 

ParticleAnimator which are used in our case study prototypes as discussed in section 9.2. 
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When a law or view plugin is constructed it must be added to the physics engine using 

the addLaw method. This assure that once the physics engine is started it periodically 

(usually once per frame) activates the view plugin giving it a chance to update its 

visualization. 

AVRAFramework 

View 
modelName: string 

•update() 

xpheve 
JL 

PhysicsEngine 

+step(): void 

• * 

PhysicalLaw 

+enforce(in dt: long): void 

NewtonsLaw 

viewplugins 

CollisionLaw ParticleLaw 

7 T 

ColorAnimLawl GateAnimLaw I ParticleAnimLaw 

Figure 47 - Class diagram of view plugins as extensions of physical laws 

6.3 Interfaces and Internal Structure 

From an implementation point of view, a view plugin must abide by three simple rules: 
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• it must inherit from the physics engine's PhysicalLaw; 

• it must have a default constructor; 

• and it must have a public interface for receiving the necessary attributes. 

Internally a view plugin typically has implementation codes for generating the 3D 

visualization based on the values of its attributes. 

The reason that we need a default constructor for each view plugin is that when the view 

loader is constructing an instance of the view plugin it cannot understand the conceptual 

meaning of the constructor parameters. For example, a view plugin that has age and id as 

its two integer attributes and receives them as parameters of its constructor does not leave 

any information for the view loader regarding which attributes is passed first and which is 

passed second. Therefore in AVRA attributes can only be set through the accessor 

methods or pubic properties which must abide by the standard naming conventions. 

Attributes are implemented through properties in some programming languages and 

through accessor methods (setter and getters) in others. As our implementation of AVRA 

is in Java we define and implement accessor methods for each attributes that must be 

accessible by its users. For example in Figure 48 the HeartBeatAnimator has setter and 

getter methods for both geometry and rate. It is important to follow the standard property 

format (such as JavaBeans' naming convention for setters and getters if a Java 

implementation of AVRA is used) because both view loader and connectors depend on it 

(more discussions in section 6.5). 

As it was discussed in section 6.1, Figure 48 shows two alternatives for visualizing heart­

beats. The DeformationLaw is more generic and as such requires extra attributes namely 

bounds and magnitude. The bounds attribute specifies the region for which deformation 

must take place and the magnitude reflects the scale of deformation. Additionally, using 

the more generic DeformationLaw requires four instances that contain four different 

bounds, one for each chamber of heart. 
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Figure 48 - Examples of specific view plugin and generic law plugin when animating heart-beats 

6.4 Construction and Initialization 

In AVRA, view plugins are dynamically constructed by the view loader as it parses the 

view description from MVML files (see chapter 8). In MVML, the view plugins are 

simply identified by their package names and class names. For example a view plugin 

with class name of HeartBeatAnimator and package name of discover.avra.views is 

identified by "discover, avra.views.HeartBeatAnimator". It is therefore important that no 

two view plugins in an AVRA application have same package and class name. 
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A view plugin typically goes through these steps: 

1. It is dynamically constructed by the view loader and attached to an instance of 

View. 

2. It receives values for its attributes. 

3. It is connected to one or more outputs of one or more simulation models. 

4. It is integrated with the physics engine. 

5. It is initialized during which the visualization (i.e. animation) components are 

constructed and initialized. 

6. It is periodically updated during which some parts of the visualization 

components are updated or rebuilt based on the new output(s) received from the 

simulation model. 

7. It is destroyed when the higher level application loads a new view configuration 

(new MVML description) or the application is terminated. 

Figure 49 demonstrates the activities within the view loader as it constructs a new view 

plugin and assigns values to its attributes. Upon receiving attributes the value description 

is parsed in order to identify what type of value is being assigned to the target attribute. 

There are three possible types of values: primitive values, graphics parts and model 

outputs. 

Primitive values are the simplest form of values; they convey constant values typically in 

the form of numbers, strings or boolean (true or false). The primitive values are initially 

parsed as strings then converted to either boolean or numerical value if possible. If the 

value is a number it is initially constructed with double precision. However before 

passing these double precision values to the setter methods of the view plugin they may 

be casted to less precise primitive types such as floats or integers depending on the type 

of parameter that the setter method accepts. Primitive values can also constitute a list that 
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consists of any combination of numbers, booleans and strings. This is necessary for those 

setter methods that receive multiple parameters. 

Figure 49 - Activity diagram of View Loader when constructing a View Plugin 
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Each view component is typically associated with one or more Graphics elements. These 

graphics that are typically loaded before instantiating the view plugin may be passed to 

setter methods of the view plugin in their entirely or partially. For example, in the case of 

a more complicated graphics model such as the robot shown in Figure 44, a given view 

plugin is typically responsible for animating specific parts of the model such rotating the 

left knee based on the output of the walking simulation model. If a part name is available 

in the view description of the simulation then the view loader extracts the scene graph 

node [and all its children] that has matching name. This scene graph branch is then sent 

to the view plugin as parameter of the setter method that represents the target attribute. 

The third type of attribute value is model output which represents continuous flow of 

numerical values from a specific output of a specific simulation model. In the view 

description, the model, its output and, if applicable, the math component that generates 

that output are identified by their names. The view loader extracts the target output 

variable and connects it to view plugin using a new instance of connector. Connectors are 

responsible for continuously feeding the view plugin with output data from models. The 

details of how this is done are discussed in the next chapter. 

Once a primitive value or a graphics part is extracted the corresponding setter method is 

invoked by the view loader in order to initialize the attributes of the view plugin. This 

step is not necessary for model output attributes as those attributes will be initialized and 

updated later by the connectors when output data from models become available. Instead 

the view loader adds the constructed connectors to the view component which is 

responsible for managing connectors as discussed in the next chapter. 

6.5 Reflection 

The procedure for dynamic construction of view plugins and assigning values to their 

attributes is achieved in AVRA through reflection. Reflection is the process by which a 

computer program is able to observe and control its own structure and behavior at run­

time [13], In AVRA two types of components use reflection, the view loaders and the 

connectors. View loaders use reflection for constructing view plugin dynamically and 

assigning attributes to them. The reason why view plugins need to be constructed 
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dynamically is that AVRA does not know ahead of time which classes of view plugin are 

available. These plugins may be attached to a given AVRA project as external libraries 

hence the need for view loaders to query available libraries and identify available view 

plugins. 

PhysicalLaw viewPlugin; 
try { 
// find and load plugin 
Class c = Class.foriVame("avra.viewplugins.HeartBeatAnimator"); 

// construct a new instance of the plugin 
Object plugin = c.newlnstancef); 

// check to see if it is a valid view plugin (extends PhysicalLaw) 
if (plugin instanceof xPheve.PhysicalLaw) 
viewPlugin = (PhysicalLaw) plugin; 

else 
throw new RuntimeExceptionf"Invalid View Plugin."); 

} catch (ClassNotFoundException e) { 
throw new RuntimeException("Could not find View Plugin."); 

} catch (InstantiationException e) { 
throw new RuntimeExceptionf"Could not instantiate View Plugin."); 

} catch (IllegalAccessException e) { 
throw new RuntimeException("Could not access the default 

constructor of the View Plugin."); 
} 

Figure 50 - Example of reflection in Java for loading and instantiating view plugins 

Once a requested view plugin is identified by the view loader, it is instantiated using its 

default constructor. An example of how this is done in AVRA is shown in Figure 50. In 

Java reflection revolves around a special class named Class. The static forName method 

of Class is used for loading any given library, driver or class. In the example, 

"avra.viewplugin.HeartBeatAnimator" which is the full package address of the 

HeartB eat Animator is passed to forName method. This will cause the Java Virtual 

Machine (JVM) to search for and load this class. If successful, the loaded class is 

returned and stored in variable c. ClassNotFoundException is thrown if JVM is unable to 

find the class. 
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The newlnstance method can be called on any concrete Class instance in order to 

dynamically instantiate the loaded class by calling its default constructor. If the class 

cannot be instantiated because it is an abstract class or an interface or it does not have a 

default constructor, then an InstantiationException is thrown. If the class is concrete and 

it has a default constructor, but it is not accessible (i.e. the constructor is defined private 

or protected) then an IllegalAccessException is thrown. If the instantiation is successful 

an instance of the plugin is returned in the form of the super-class Object. At this stage 

the validity of the view plugin is verified by making sure that it is a subclass of the 

xPheve's PhysicalLaw. If passed, then view loader type casts the plugin to PhysicalLaw 

and returns it as a verified view plugin. 

/ / Parameters extracted from the MVML description 
S t r i n g attName = "Rate"; 
S t r i n g a t tVa lue = "1 .25" ; 

/ / Search for the corresponding setter method 
S t r i n g methodName = "se t" + attName; 
Method[] methods = v i ewPlug in .ge tC las s ( ) . ge tMethods ( ) ; 
Method method; 
for ( int i=0; i<methods . length; i++) { 

i f (methods[i].getName().equalsIgnoreCase(methodName)) { 
method = me thods [ i ] ; 
break; 

} 
} 

// Prepare the method parameters 
ArrayList list = new ArrayList(); 
list.add(Double.valueOf(attValue)); 
Object[] params = list.toArray(); 

// Execute the method 
method.invoke(viewPlugin, params); 

Figure 51 - Example of reflection in Java for setting the value for an attribute 

The next major step is initializing the view plugin with values for its attributes. As it will 

be discussed in chapter 8, these values are embedded in the view description of MVML 

which are parsed and extracted by the view loader. Figure 51 assumes that attribute Rate 

and its corresponding value of 1.25 are already extracted from the MVML description by 
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the view loader. The example shows how reflection is used in AVRA to dynamically set 

the attribute of the view plugin by generating call to viewPlugin.setRate(1.25) where 

viewPlugin is the sample plugin that was instantiated in Figure 50. 

Extracting the method name in this example assumes Java conventions and is 

accomplished by simply inserting "set" before the attribute name; in this case setRate is 

the result. The same Class that was used previously to load and instantiate our view 

plugin is used in this example for retrieving the list of methods available in viewPlugin 

object. The getMethods() is used for this task; it returns an array of methods. A simple for 

loop is used for comparing the names of the methods in search of setRate. In our 

implementation the contents of MVML are not case sensitive hence the eqaulsIgnoreCase 

method is used for comparing method names. When the method is found it is assigned to 

the method variable and the loop ends. 

The next step involves preparing an array that contains values for the parameters that are 

passed to the target method. Even if a method accepts just one parameter, we still need to 

pass it as an array of one element as it is the case in this example. The example assumes 

that attValue must be passed as a double. When the params array is ready, we can 

execute the setter method by calling its invoke method. As its first parameter the invoke 

method receives the object whose method we are about to execute and as its second 

parameter it receives the params array. The call made at this point is equivalent to hard 

coding a call to viewPlugin.setRate(1.25). 

The view loader must also consider possibilities of setter methods with multiple 

parameters and multiple setter methods with same names but different parameters. Figure 

52 demonstrates how these cases are handled by the view loader in AVRA. Initially the 

primitive values are extracted from the XML description as strings and stored in an array 

of strings. Then the loader queries the methods available in the target view plugin using 

the reflection capabilities of its Class object. 
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Figure 52 - Activity diagram for invoking methods with multiple parameters 

Once a method with set[AttributeName] as its name is found, the view loader queries its 

list of parameters. If the number of parameters that the method takes is not equal to the 

number of the primitive values that were extracted from the MVML description, then the 

control is sent back to top of the loop in search of another method with same name. If the 

number of parameters does match, then for each parameter the corresponding primitive 
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value is converted from string to what the method accepts. Values may be converted to 

int, long, float, double or boolean, If the conversion fails then the control is sent back to 

top of the loop in search of another method; otherwise the converted value is added to the 

parameter list with is an array of Objects. Upon successful conversion of all parameter 

values, the method will be invoked and the control is returned. 
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CHAPTER 7 • MODEL-VIEW CONNECTORS 

Up to this point, both model and view components are constructed independently of each 

other without any sort of connection or awareness. A model-view connector allows the 

establishment of the much needed connection between model and view components 

without violating their independence. Connectors are constructed and initialized by the 

view loader at the time when a view description is being parsed. In particular, when the 

description of a view plugin is parsed, for each attribute of the view plugin that is 

dependant on an output of the simulation model, a model-view connector is automatically 

created. This connector allows the view plugin to continuously receive the current output 

value of the model to which it is attached. 

7.1 Conceptual Connections 

The ultimate objective is to connect the outputs of a model to some 3D graphics in such a 

way that a change in the output of model would result in changes/animations in the 3D 

graphics. For example, in Figure 53 the outputs of a model are connected to two view 

plugins that generate particular animations. The model in this example is that of a neuron 

cell with two outputs: gateM which represents the state of the gate that controls Sodium 

flow and i_K which represents the rate of Sodium flow from outside of the cell to inside 

of it. The output gate_M is connected to a view plugin that controls the 3D model of a 

cylindrical gate and i_K is connected to a particular generator view plugin that generates 

and moves 3D models of a Sodium ion. With this configuration, a change in gate_M 

causes a change in angle • of the virtual gate and the value of i_K is interpreted as the 

rate at which particles from the top region moves to the bottom region through a virtual 

opening. As the simulation engine is running the values of gate_M and i_K are 

continuously recomputed by the model and eventually make their way to the view 

plugins to which they are connected. 

If the model is a DataModel these values are retrieved from a data table and if the model 

is a MathModel they are calculated at run-time. Regardless of how these outputs are 

generated they are available to any entity that requires them. In AVRA the view plugins 
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are the entities that are most interested in capturing these values however they cannot 

access them directly. The reason for this is that view plugins are generic entities that are 

not aware of the interface nor the existence of the model components. View plugins 

simply modify, animate or interact with their target 3D graphics in the virtual 

environments based on their current parameters. The question is which components are 

responsible for setting those parameters. As it was discussed in section 6.4, the view 

loader is responsible for initializing the parameters of the view plugins using their setter 

methods but only those parameters that will not change during the course of the 

simulation. For those parameters that need to be continuously updated this is achieved 

through connectors. 

Figure 53 - A conceptual connection between a model and its views. 

7.2 Data Flow 

Figure 54 shows the conceptual diagram of a connector as it bridges between the model 

and the view plugin. In particle this figure demonstrates that the value of gateM is 

received from the simulation model and then forwarded to the view plugin as an angle 

causing the view plugin to rotate its target geometry by that angle. 

When the view loader realizes that an attribute of a view plugin depends on the output of 

a model, it creates an instance of a connector. Each connector is associated with four 

other components: a view plugin, a setter method, an output variable and a function. Each 

connector instance belongs to one and only one view component. During the simulation, 
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the view periodically calls the update method of all its connectors causing the connectors 

to invoke calls to the setter method of their target view plugin passing the value of their 

output variable as the method parameter. 

Model gate M 

View. 

i ' 

Connector 
e 

Plugin 

Figure 54 - A connector allows one of the outputs of a model to transmit its data to a view plugin. 

7.3 Intercommunication in Simulation and Visualization Threads 

Figure 55 demonstrates how a connector is used for retrieving an output value from a 

model and making it available to its target view plugin. As it was discussed earlier, 

AVRA is designed to handle numerical simulation and visual updates in two different 

threads. These threads are represents by loop tags in the sequence diagram. The 

numerical simulation is controlled by the simulationEngine which causes the model to 

recompute its outputs and the view to update its connectors. In this example the 

connector is connected to the value instance which holds the target output of the model. 

At each update cycle the connector retrieve the current value of this output and sends it to 

the target viewPlugin as a parameter of the setValue method in this case. This method 

invocation is done dynamically through use of reflection as will be explained in the next 

section. 

In the visualization thread, the physicsEngine is in control of updating the scene by 

periodically activating its Law components some of which are the view Plugins that 

models are connected to. In this example physicsEngine activates the viewPlugin by 

calling its enforce method causing the viewPlugin to generate/update its animation based 

on the latest output received from the connector, in this case -75. 
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Figure 55 - Sequence diagram of View Plugin as it receives outputs of model and generates an 
animation accordingly in the next physics engine update. 

7.4 Scaling Functions 

In the above example the output value of the model is sent to the view plugin as is; 

however in most cases the value needs to be scaled or otherwise translated to a value that 

is adequate for the view plugin. For example, the value -75 may represent a low voltage 

in a neuron cell and the viewPlugin may be a colorlnterpolator that visually changes the 

color of the cell in order to visualize the change in voltage. In neuron cells the voltage 

typically ranges from -75 to +35. In this case a voltage of -75 should be translated to 0 

which +35 should be translated to 1 so there the color interpolator can interpolate 
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between the start and end colors according to this value. This translation is another 

responsibility of the connectors. Each instance of the Connector is associated with a 

Function object that is extracted from the MVML description by the view loader and 

(more on the XML format of Function element is discussed in 8.1.3). Figure 56 

summarizes the data flow and its evolution from the time is generated in the Model until 

the time it arrives at the View Plugin. 

Formula 1 

S\— 
(2)X (3)Y 

X 
^ Connector 1-

J mx V / 
Model | ^ Connector ^ ViewPlugin 

(1)X \ / (4)Y 

Figure 56 - Data flow from model to view plugin as it is translated from X to Y 

7.5 System of Connectors 

Each view may contain several connectors however since any instance of view represents 

only one model these connectors are all connected to the various outputs of a same model. 

Their outputs on the other hand can be channeled to several instances of view plugins. 

Each connector is typically associated with a different view plugin although it is possible 

that two connectors point to different inputs of a same view plugin; this is useful when 

multiple parameters of a same view plugin depend on multiple outputs of the model as is 

the case with View Plugin #2 in Figure 57. At each simulation step the view invokes the 

update method of all its connectors causing new values to be fetched from the model and 

sent to view plugins. 

In AVRA, the connectors are updated by the view at each simulation update cycle. The 

updating order is as followings: first the update methods of all active simulation models 

are invoked. Then the update calls to connectors are executed in order to supply the view 

plugins with the new values. 
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View 

Figure 57 - A view component owns a collection of one or more connectors which receive data from 
the various outputs of a single model and direct them to their corresponding view plugin. 

7.6 Implementation with Reflection 

In section 6.5 details of how reflection is used in AVRA for dynamic instantiation and 

initialization of view plugins were discussed. In addition to the view loader, connectors 

also take advantage of reflection. This is necessary because connectors do not have 

compile-time awareness of the interface of the view plugins to which they will be 

connected. For connectors the reflection is used in two phases. First during their 

construction in view loader, reflection is used to query the interface and find the 

corresponding setter methods. Second during the simulation run-time the connectors use 

reflection to dynamically invoke those methods and pass the parameters as they are made 

available by the model. 

It is possible that there may be conflicts of data types between what the view plugin 

receives and what the model sends. Although all values are typically numerical, these 

components may use any combination of int, float, double and long primitive types. This 

is particularly true because most simulation models compute more precise values (i.e. 

long and double) where as most view plugin do not need such precisions because they are 

bound by the pixel limitations and rendering delays; hence they use lower precision data 

types. It is therefore one of the responsibilities of the model-view connectors to perform 

such conversions between the incoming and outgoing data. This data conversion in 

connectors is done similarly than that in the view loader as explained in section 6.5. 

101 



CHAPTER 8 - MODEL-VIEW MARKUP LANGUAGE 

AVRA introduces MVML, an XML-based markup language for describing the view of a 

simulation. As it was discussed earlier, in the context of this thesis the view describes 

how the numerical outputs of a simulation are visualized in a virtual environment. 

MVML is generic and flexible; it can be used to describe the visualization of a wide 

variety of simulations. 

8.1 MVML Specification 

Any given MVML file consists of a single view tag that is considered the root of the view 

description hierarchy. The view tag has a model attribute which should reference the 

model for which this view provides visualization. The model is presumably loaded in 

AVRA within a hash table that uses the model names as its keys. Therefore in a given 

AVRA application no two models should have a same name. Current specification of 

AVRA requires that models be loaded before the views. If a view is loaded before the 

model that it represents then an exception is thrown. The reason for this is that at the time 

of loading a view the view loader creates instances of connector and connectors depend 

on the output variables of models, variables that are unavailable if the model is not 

constructed yet. Example below shows an empty view that references "Hodgkin-Huxley-

cell" model [32] (see section 2.2.3 to see the explanation of a simplified version of 

Hodgkin-Huxley mode): 

<view model_name="hodgkin_huxley_squid_axon_1952"> 

</view> 

Within the view tags, the markup contents of MVML can be divided in three categories 

of tags: 
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• Graphics: The graphics tag contains such information of the filename, initial 

visibility state and initial position and orientation. Upon initialization of the 

framework, a complete VR scene is built based on this description. 

• Plugin: For those 3D graphics that have a dynamic state, view plugins are used to 

connect their visual state with the numerical state of some simulation model. 

• Function: Sometimes there is no direct relation between the numerical output of a 

simulation model and the graphical state of a 3D model and the value needs to be 

scaled by some function. Such functions may be defined here in the form of 

MathML syntax [23]. 

The following section will describe the various elements of MVML in more details. The 

DTD specification of MVML is available in Appendix D. 

8.1.1 Graphics Markup 

When the view loader parses a given MVML description, it first constructs a 3D scene by 

loading the 3D files using appropriate loaders. For example if the filename attribute of 

the graphics tag reads "cell.wrl" then the VRML loader is used to load the 3D model of 

the cell and if it read "cell.x3d" then the X3D Loader is used instead. During the 

initialization phase, only those 3D models with their visibility set to true will be added to 

scene. 

<graphics name="cell" 

file="models\\cell.x3d" visible="true" 

position="0 0 0" rotation="0 0 10" 

/> 

Some graphics such as the body of the cell in the above example always exist in the scene. 

However sometimes the existence of a given graphics geometry depends on the 

numerical output of a simulation model. That is, if the output of the model is within a 

certain range the graphics object may either be invisible, visible or duplicated into several 
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instances. For example the view description in Figure 58 consists of a cell body that is 

initially visible and two particle graphics that are initially invisible because later with the 

help of view plugins they will be duplicated into many visible particles as the simulation 

runs. 

<view model_name=" hodgkin_huxley_squid_axon_1952"> 

<graphics name="cell" file=".\\models\\Cell.x3d" 

visible="true" position="0 0 0" rotation="0 0 10" /> 

<graphics name="Na" file=".\\models\\Na.x3d" 

visible="false" /> 

<graphics name="K" file=".\\models\\K.x3d" 

visible="false" /> 

</view> 

Figure 58 - A MVML description of virtual scene that consists of a cell at origin and Na and K 
particles that are initially invisible. 

8.1.2 View Plugin Markup 

The next step is to create instances of the view plugins, initialize their attributes and 

connect them to the corresponding simulation models. The class attribute of the view tag 

is used to identify the plugin resource (see Figure 59). Our example used Java packaging 

notations such as "xpheve.view.Rotation" to identify the Rotation class as the plugin of 

interest. 

Inside the view tag there may be one more instances of attribute tags each with a name 

that identifies which attribute of the view plugin we are referring to. The value of this 

attribute shall be extracted by parsing the text string child of the attribute tag. For 

example the notation below sets 0.6 as the value of the Max Value attribute: 

<attribute name="MaxValue"> 

0.6 

</attribute> 
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When the view loader parses the above attribute, it invokes a call to setMaxValue of the 

view plugin, passing 0.6 as its argument. While most attributes accept simple data such as 

numbers, there are two special types of attributes that almost always must be set: the 

graphics and the model output. Since view plugins ultimately visualize particular aspects 

of a model, they must have reference to the graphics or part of graphics that needs to be 

updated as the simulation progresses. The target graphics can be identified by the use tag 

which takes graphics and part names as it attributes: 

o t t r i b u t e name=" Graphics "> 

<use g raph ic s="ce l l " part="GateH" /> 

< / a t t r i b u t e > 

In order to establish correspondence between the behavior of the view plugin and the 

numerical output(s) of a model, one or more attributes of the view plugin must be 

assigned the valueof tag element. Valueof allows identifying a particular output of a 

model through its component name and variable name. When parsing the XML portion 

below, the view parser will create a model-view connector that connects this view plugin 

to the output h of sodium_channel_h_gate component of cell_membrane model: 

<valueof component="sodium_channel_h_gate" variable="h" /> 

8.1.3 Function Markup 

There is not always a direct correspondence between an output of a model and an 

attribute of a view plugin. Keep in mind that view plugin are generic entities that are 

designed to be reusable components. As such their parameters are not implemented based 

of a specific model. 

As we saw earlier the voltage output of a neuron cell is typically in the range of -75 to 

+35. If this variation is to be visualized using the Colorhiterpolator then the values must 

be rescaled to generate a number in the range of 0.0 to 1.0; this can be accomplished 

using functions. 
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MVML uses MathML notations (see section 2.2.2) for representing mathematical 

expression. For example the code below in MVML represents a function named negate 

which takes x as parameter and returns -x: 

<function name="negate" > 

<math xmlns='http://www.w3.org/1998/Math/MathML'> 

<apply> 

<times/> 

<cn type='real'>-l.</cn> 

<ci>x</ci> 

</apply> 

</math> 

</function> 

In the context of MVML, variable x has special meaning within functions; it always 

refers to the parameter of the function. This also conveys that in MVML functions can 

receive one and only one parameter. This is not a limitation as functions are mean to be 

simple means of scaling single values. 

Figure 59 shows a complete MVML description for creating a single view plugin and 

assigning attributes to it. Note that it uses function negate to negate the output of 

simulation model before sending it to view plugin. 

<plugin class="xpheve 

<attribute name= 

150 

</attribute> 

<attribute name= 

laws.AnimatedParticleLaw"> 

="NumOfSourceParticles"> 

="rate"> 

<valueof function="negate" 

component="sodium_channel" 

variable="i_Na" /> 

</attribute> 

</plugin> 

Figure 59 - A MVML description of a view plugin that generates and moves particles based on the 
output i_Na of the model. 
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8.2 View Loader 

In chapters 5, 6 and 7 there have been discussions on how the view loader handles 

specific tasks. This section completes the discussion on the process of parsing MVML 

files and generating views, view plugins and connectors. 

8.2.1 Extracting the DOM Structure 

Figure 60 shows a high-level perspective of the view loader and various failures that the 

view loader detects when loading a given MVML file. When it comes to parsing XML-

based files there are two possible standardized ways: using SAX and using DOM. SAX 

(Simple API for XML) is a memory efficient technique that uses call backs as it reads the 

XML contents [33]. DOM (Document Object Model) on the other hand generates a 

detailed tree structure that gives the application a complete snap shot of the entire XML 

file [34]. This tree structure is easy to traverse and is the most popular choice for small 

and medium XML files. In AVRA, we use DOM trees because MVML generally do not 

grow very large and the implementation of the view loader is made easier with DOM 

trees. 

The DOM tree construction will fail if there are severe structural problems with the XML 

content of the MVML. If this happens the view loading is aborted. If the DOM tree is 

successfully generated, the model name is extracted from the tree. At this point the view 

loader expects that the corresponding model is already loaded. It tries to find it using a 

simple hash table which, given a name, quickly returns the corresponding model. If 

model is not found the view loading is aborted. If the model is available, it is retrieved 

and the traversal of the DOM tree commences. 

During this traversal the view loader may face problems with loading plugins, finding 

setter methods that corresponding to given attributes or being unable to properly match 

data types of the parameters. Any of these issues results in immediate abortion as the 

view loader cannot proceed without resolving them. If successful, the resulting view is 

constructed and returned along with the graphics and connectors that it contains. 
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Figure 60 - High-level activity diagram of View Loader with possible Exceptions 
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8.2.2 Generating AVRA Components 

In section 6.4, we saw how the view loader retrieves the primitive values and invokes the 

setter methods of a view plugin, passing these values as its parameters. Figure 61 is the 

complete activity diagram of view loader that outlines the construction of connectors, 

graphics, and functions in addition to that of primitive values. 

As the highest level of the DOM tree the view loaders identifies whether a function or 

graphics or view plugin tag is currently being processed. For each of these three, the 

corresponding tag is processed and the control is returned to top of the activity diagram to 

process the next MVML tag. When processing graphics tags, the corresponding graphics 

loader is instantiated and is used to load the graphics file. If visible the 3D graphics is 

then added to the scene immediately, otherwise it is saved in memory within a hash data 

structure. 

Functions are extracted by MathMLLoader into a data structure that allows quick 

evaluations and substitutions during the simulation run-time. The evaluations and 

substitutions of functions are often triggered by the connectors for the purpose rescaling 

the outputs of the simulation models. 

If a view plugin is in construction, then all its child attributes must be processed one at a 

time until no more attributes is left at which point control is passed to the higher tree 

branch for processing the next MVML tag. This process continues until all children of 

MVML DOM tree are served. 
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Figure 61 - Complete activity diagram of view loader when parsing MVML 
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CHAPTER 9 - APPLICATIONS & RESULTS 

9.1 AVRA Implementation 

We implemented a prototype of AVRA which includes most of the features discussed in 

the previous chapters. The implementation is on a Java platform and uses Java3D for its 

3D graphics rendering and JNI (Java Native Invocation) for haptic support. 

The current implementation of ModelLoader accepts CellML models as input and 

dynamically constructs internal simulation components. Upon starting the simulation 

engine the output of those models are continuously calculated. Figure 62 shows a sample 

numerical output that the system generates when a simple action potential model of a 

neuron is loaded. The initial state of intra and extra sub spaces are set as follows: 

Component 

IntraSubSpace 

ExtraSubSpace 

Variable 

Na 

Ca 

Na 

Ca 

Initial Value 

10 

20 

30 

40 

Appendices Bl, B2 and B3 show snap shots of the numerical simulation of a cell with the 

above initial state, at time 0, at 1 second and at 1 minute time. 

A complete view loader according to the MVML specification is also implemented. It is 

capable of loading X3D and VRML graphical models and generating a dynamic 

visualization of the model. The rest of this chapter will demonstrate how this 

implementation of AVRA can be used in the development of several simulation case 

studies. 

I l l 



Model = basic_ep_ 
Component 
Local: 
Inputs: 
Outputs: 

model 
= environment ************************* 

time =0.0 
Component 
Local: 
Ca = 40.0 
Na = 30.0 
Inputs: 
I_Ca = -3 

= extra 

0E-7 
time =0.0 
I_Na = -2 
Outputs: 
Ca = 40.0 
Na = 30.0 
Component 
Local: 
Ca = 2 0.0 
Na = 10.0 
Inputs: 
I_Ca = -3 

0E-7 

= intra 

0E-7 
time =0.0 
I_Na = -2 
Outputs: 
Ca = 2 0.0 
Na = 10.0 
Component 
Local: 

OE-7 

= cell_ 

v_Na = 1.0E-8 
v_Ca = 1.5E-8 
Inputs: 
Ca_e = 4 0 
Na_e = 3 0 
Na_i = 1 0 
Ca_i = 2 0 
Outputs: 
I_Ca = -3 
I_Na = -2 

0 
0 
0 
0 

OE-7 
OE-7 

_cellular_ 

_cellular_ 

SD3C6 * ************************ 

space* ************************ 

membrane ************************* 

Figure 62 - Sample numerical output of the simulator when receiving basicepmodel as its input 
model. 
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9.2 Case Study 1: Action Potential Simulation 

This section discusses how AVRA can be used to construct a VR application that 

simulates action potential, a common biological phenomena that causes electrical charges 

to travel within neurons of humans and animals. 

Without getting into details, action potential is a direct result of the movement of ions 

across the membrane of a neuron cell. At rest, a neuron cell has a negative charge. Upon 

occurrence of a stimulus, ion gates open and the positive ions rush into the cell, make it 

positively charged. This is called action-potential. 

Potassium Channel 

Sodium Channel 
Leakage Current 

M gat 

Ngate 

Figure 63 - The diagram of the membrane and intra and extra spaces connected through ionic gates 

Since the 1950s, there have been many biological experiments that resulted in 

mathematical formulas that describe the nature of ionic movements in and out of the cells. 

These mathematical formulas describe such attributes as the energy, voltage, rate of ionic 

movements, density of ions and state of the ionic gates at any given time. AVRA allows 

users to selectively connect the outputs of a model to the inputs of some visual animation. 

In this particular example, the goal is to load the hudgin-huxley model of action potential 

in order to visualize the ionic state of a cell in 3D during action potential. The 

mathematical model of hudgin-huxley is conveniently available in CellML format 

(www.cellml.org). Figure 63 shows the various components involves in the hudgin-
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huxley model. Based on the values of time and stimulus as input, this model provides the 

outputs listed in Table 4. 

Output 

m 

h 

n 

i_Na 

LK 

i_L 

V 

Description 

Activation coefficient of Na channel 

Inactivation coefficient of Na channel 

Activation coefficient of K channel 

Sodium current. 

Potassium current. 

Leakage current. 

Membrane voltage. 

Table 4 - The main outputs of Hudgin-Huxley model 

The 3D models are created using FluxStudio and exported to X3D format. They consist 

of three files: Na.x3d which is the 3d model of a single Sodium ion, K.x3d which is the 

3D model of a single Potassium ion, and Cell.x3d which is the 3D model of a cell 

consisting of seven parts as shown in Figure 64. To bring this 3D model to life, all we 

need to do is to create a MVML description of the simulation and load it in the 

framework. In our example, the objective is to connect the model outputs as outlined in 

Table 4 to the animation of the various parts of the 3D scene. Figure 65 shows example 

of a MVML that connects V, m and i_Na to their corresponding animation modules. The 

resulting simulation is shown in Figure 66 and Figure 67. As the outputs of the hudgin-

huxley model changes, the gates of Na and K channels open and close and the Na and K 

particles move back and forth across the membrane of the cell through these gates. 
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Sodium Potassium Leakage 
GateM Channel Channel Channel 

GateH GateN 

CellBody 

Figure 64 - The 7 named body parts of the 3D model of a cell membrane (cell.x3d). These part names 
must be referenced by their exact names in MVML description of the scene. 

CellML — 

MVML 

Hudgin-Huxley 
Model 

m 

V 
• • 

i Na 

•0--6-O 
o 
u 
u 
60 

V • • 

Figure 65 - Example of MVML 
description which connects the V, m, 
and i_Na outputs of the model to the 
three view plugins responsible for 
controlling the rotation, color and 
particle movements of the 3D model 
parts. 

<view model_name="hudgin_huxley"> 
<graphics name="cell" file="Cell.x3d" 
visible="true" position="0 0 0" 
rotation="0 0 1 0" /> 

<graphics name="Na" file="Na.x3d" 
visible="false" /> 

<plugin class="xpheve.laws.RotationLaw"> 
<attribute name="Graphics"> 

<use graphics="cell" part="GateM" /> 
</attribute> 
ottribute name="value" > 

<valueof 
component="sodium_channel_m_gate" 
variable="m" /> 

</attribute> 
</plugin > 

<plugin class="xpheve.laws.ColorLaw"> 
ottribute name="Graphics"> 

<use graphics="cell" part="CellBox" /> 
</attribute> 
ottribute name="value"> 

<valueof component="membrane" 
variable="V" /> 

</attribute> 
ottribute name="MaxColor"> 1 1 0 
</attribute> 

</plugin> 

<plugin class="xpheve.laws.AnimParticleLaw" > 
ottribute name="NumOfSourceParticles"> 

150 
</attribute> 
<attribute name="rate"> 

<valueof component="sodium_channel" 
variable="i_Na" /> 

</attribute> 
</plugin> 

</view> 
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Figure 66 - Screenshots of the simulations during occurrence of action potential. The color of cell 
body changes to yellow to denote proportional increase in Voltage (V). Particles move in and out to 

denote Sodium (red) and Potassium (blue) currents (i_Na, IK) . 

Figure 67 - The generated simulation from alternative perspective. 

9.3 Case Study 2: Neuron Simulation with Multiple Graphics 

This case study is an extension of the previous case study to demonstrate the reusability 

and extensibility that AVRA provides for VR simulations. In this case study, the axon of 

a neuron is modeled by constructing a VR simulation that contains a system of multiple 

action potential chambers as implemented in the previous case study. Neurons and in 

particular axons function by transmitting electricity through a sequence of action 

potentials that is triggered on one side and eventually arrives on the other side of the axon. 

Figure 68 demonstrates how the physiology of axon can be simulated using a system of 

multiple action potential chambers. Case study 1 presented the simulation of a single 
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action potential chamber with a membrane and interior and exterior spaces. In Figure 68, 

six instances of this model is replicated to transfer electrical signals over a longer 

distance. In this scenario an external stimulus triggers the action potential in the left 

chamber. This would result in a sequence of five additional action potentials that ends 

with the right-most chamber. Within a neuron this set of five chambers could resemble 

the axon which although behaves as a set of discrete chambers but is in fact a single 

entity. This is where AVRA can be conveniently configured to display the desired 

visualization. Since the view description and the simulation models are independent of 

each other in AVRA, we can visualize axon as a single entity or a set of multiple 

chambers regardless of the simulation model structure. 

System of 
multiple 
chambers 

Soma (Body) 

Figure 68 - Simulating axon with a system of multiple action potential chambers 
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<mode1 name="axon_mode1"> 

<import xlink:href="hodgkin_huxley.xml"> 
<units name="millisecond" units_ref="millisecond" /> 

<component name="membrane_l" component_ref="membrane" /> 
<component name="sodium_channel_l" component_ref="sodium_channel" /> 
<component name="sodium_channel_m_gate_l" component__ref="sodium_channel_m_gate" /> 
<component name="sodium_channel_h_gate_l" component_ref="sodium_channel_h_gate" /> 
<component name="potassium_channel_l" component_ref="potassium_channel" /> 
<component name="potassium_channel_h_gate_l" 

component_ref="sodium_channel_h_gate" /> 
</import> 

<import xlink:href="hodgkin_huxley.xml"> 
<units name="millisecond" units_ref="millisecond" /> 

<component name="membrane_2" component_ref="membrane" /> 
<component name="sodium_channel_2" component_ref="sodium_channel" /> 
<component name="sodium_channel_m_gate_2" component_ref="sodium_channel_m_gate" /> 
<component name="sodium_channel_h_gate_2" component_ref="sodium_channel_h_gate" /> 
<component name="potassium_channel_2" component_ref="potassium_channel" /> 
<component name="potassium_channel_h_gate_2" 

component_ref="sodium_channel_h_gate" /> 
</import> 

<connection> 
<map_components component_l="membrane_l" coitponent_2="membrane_2" /> 
<map_variables variable_l="V" variable_2="I_stim" /> 

</connection> 

</model> 

Figure 69 - The CellML code for importing two instances of Hodgkin-Huxley and connecting them 
together through V (voltage) and Istim (stimulus current) variables. 

Figure 69 demonstrates how CellML allows reusing of the models by importing them 

into new models. In this example the simulation model is that of an axon that contains 

several action potential chambers. The import tags are used to import and reuse the 

hodgk-huxley model for action potential seen in the previous case study. This mode is 

imported twice in order to create two instances of it. The current specification of CellML 

does not allow importing an entire model; rather it allows importing components 

selectively. This is convenient if only some of the components need to be reusable but 

inconvenient if duplicating an entire model is desired. For the latter, one needs to import 

all components one by one as shown in Figure 69 demonstrates. The final task is to 

mathematically connect the output V of the first model to the input I_stim of the second 

model. This would allow an action potential in the first model to stimulate the second 
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model and therefore trigger a cascading effect. The remaining four action potential 

chambers can be added in a similar manner in order to complete our model of axon with 

six chambers. 

Now that the mathematical model of the axon is ready, we can create its MVML 

description for specifying how the axon is to be visualized. Figure 70 highlights a partial 

MVML description that visualizes three state variables of the action potential model in 

two of the axon chambers. As it can be seen in the figure the only difference between this 

MVML and that of the previous case study is the duplicate of view plugins that account 

for outputs of two different model entities, hi particular there are two view plugins for 

visualizing the M gates, two view plugins for visualizing the voltage and two view 

plugins for generating particles for sodium ions. These duplicated view plugins received 

their inputs from different model entities. 

There are also two separate instances of Cell.x3d graphics namely Chamber_l and 

Chamber_2. The view plugin that receives its input from the components of model_l 

always reflects the result into the graphics parts of Chamber_l. Similarly model_2 is 

visualized within the boundaries of Chamber_2. Note that the AnimParticleLaw plugins 

do not reference Chamber_l nor Chamber_2. Instead they both reference Na which the 

graphical representation of Sodium. This is because this view plugin generates its own 

duplication of the graphical models; therefore both chambers can share a same graphics 

for that. 
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<view model_name="axon_model"> 
<graphics name="Chamber_l" file="Cell.x3d" visible="true" position="0 0 0" /> 
<graphics name="Chamber_2" file="Cell.x3d" visible="true" position="l 0 0" /> 

<graphics name="Na" file="Na.x3d" visible="false" /> 

<!-- Chamber 1 Visualization --> 
<plugin class="xpheve.laws.RotationLaw"> 

<attribute name="Graphics"> 
<use graphics="Chairiber_l" part="GateM" /> 

< / a t t r i b u t e > 
< a t t r i b u t e name="value"> 

<valueof component="sodium_ohannel_m_gate_l" variable="m" /> 
</attribute> 

</plugin > 

<plugin class="xpheve.laws.ColorLaw"> 
<attribute name="Graphics"> 

<use graphics="Chamber_l" part="CellBox" /> 
< / a t t r i b u t e > 
o t t r i b u t e name="value"> 

<valueof component="membrane_l" variable="V" /> 
</attribute> 
<attribute name="MaxColor"> 1 1 0 </attribute> 

</plugin> 

<plugin class="xpheve.laws.AnimParticleLaw"> 
<attribute name="Graphics"> 

<use graphics="Na" /> 
</attribute> 
<attribute name="NumOfSourceParticles"> 150 </attribute> 
<attribute name="rate"> 

<valueof component="sodium_ohannel_l" variable="i_Na" /> 
</attribute> 

</plugin> 

<!-- Chamber 1 Visualization --> 
<plugin class="xpheve.laws.RotationLaw"> 

ottribute name="Graphics"> 
<use graphics="Chamber_2" part="GateM" /> 

</attribute> 
ottribute name="value"> 

<valueof component="sodium_ohannel_m_gate_2" variable="m" /> 
</attribute> 

</plugin > 

<plugin class="xpheve.laws.ColorLaw"> 
<attribute name="Graphics"> 

<use graphics="Chamber_2" part="CellBox" /> 
< / a t t r i b u t e > 
o t t r i b u t e name="value"> 

<valueof component="membrano_2" variable="V" /> 
</attribute> 
<attribute name="MaxColor"> 1 1 0 </attribute> 

</plugin> 

<plugin class="xpheve.laws.AnimParticleLaw"> 
o t t r i b u t e name="Graphics"> 

<use graphics="Na" /> 
</attribute> 
<attribute name="NumOfSourceParticles"> 150 </attribute> 
<attribute name="rate"> 

<valueof component="sodium_ohannel_2" variable="i_Na" /> 
</attribute> 

</plugin> 
</view> 

Figure 70 - The MVML description for visualizing the change in sodium gate, sodium current and 
voltage of an axon that consists of two chambers 
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Figure 71 demonstrates the resulting infrastructure that is generated by AVRA upon 

loading the axon model and its view description. The axon model conceptually contains 

two internal models (all its sub-components are duplicated). AVRA generates a single 

view component with six view plugins for this simulation. The view plugins 1.1 through 

1.3 represent RotationLaw, ColorLaw and AnimParticleLaw in that order. They visualize 

the various outputs of Model_l (Chamber_l components) that is reflected on the graphics 

of the first chamber (from left). 

MODEL 

Model 1 Model 2 

r VIEW 

Plugin_l 

^ 

Plugin_2.1 

WPlugin l i M Plugin_2.2 

M Plugin_1.3 Plugin_2.3 

* o°o o ° o -

°o° °o° J 

CellML 

MVML 

Figure 71 - The system of interconnected components that is automatically generated and 
maintained by AVRA when CellML and MVML files of case study 2 is loaded 
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9.4 Case Study 3: Neuron Simulation with Unified Graphics 

The problem with the resulting simulation in the previous case study is that although it is 

an effective visualization which displays the detailed physiological phases within 

chambers of axon, it is not visually realistic. In neurons, the axon is not a set of separate 

chambers that are attached to each other. It is rather a unified entity that only behaves as 

if it is consisted of separate chambers. Physiologically the axon is a long segment that 

allows action potential at particular points where its surface is not covered by Myelin 

Sheath (see Figure 68). In addition, the axon membrane gates look nothing like the 

mechanical rotating door that was used in the previous case studies. 

Gate_2 Myelin_2 

Figure 72 - The visualization of neuron that uses a single 3D model of a neuron and changes the 
colors of its Myelin Sheath to visualize change in the voltage and animates the Na particles to 
visualize change in Sodium concentration. 

This case study visualizes multiple instances of a simulation model within a same 

graphical model. That is instead of loading multiple graphics to represent the chambers a 

single graphics of a neuron will be loaded in the scene. Since in reality the membrane 

gates are too small to be visible at this scale we choose to omit them in this case study. 

There the resulting simulation will merely show the visualization of voltage and those 
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sodium particles that are outside of the axon. Figure 72 shows the desired visualization 

for this case study. Note that the sodium ion particles are made abnormally large for 

easier visualization. 

<view model_name="axon_model"> 
<graphics name="Neuron" file="neuron.x3d" visible="true" position="0 0 0" /> 
<graphics name="Na" file="Na.x3d" visible="false" /> 

<!-- Chamber 1 Visualization --> 
<plugin class="xpheve.laws.ColorLaw"> 

<attribute name="Graphics"> 
<use graphics="Neuron" part="Myelin_l" /> 

</attribute> 
<attribute name="value"> 

<valueof component="msmbrane_l" variable="V" /> 
</attribute> 
<attribute name="MaxColor"> 1 1 0 </attribute> 

</plugin> 

<plugin class="xpheve.laws.AnimParticleLaw"> 
<attribute name="Graphics"> 

<use graphics="Na" /> 
</attribute> 
<attribute name="NumOfSourceParticles"> 150 </attribute> 
<attribute name="rate"> 

<valueof component="sodium_channel_l" variable="i_Na" /> 
</attribute> 
o t t r i b u t e name="intermediatePoint"> 1 1 0 < / a t t r i b u t e > 

</plugin> 

<!-- Chamber 2 Visualization --> 
<plugin class="xpheve.laws.ColorLaw"> 
ottribute name="Graphics"> 

<use graphics="Neuron" part="Myelin_2" /> 
</attribute> 
ottribute name="value"> 

<valueof component="mambrane_2" variable="V" /> 
</attribute> 
o t t r i b u t e name="MaxColor"> 1 1 0 < / a t t r i b u t e > 

</plugin> 

<plugin class="xpheve.laws.AnimParticleLaw"> 
<attribute name="Graphics"> 

<use graphics="Na" /> 
</attribute> 
< a t t r i b u t e name="NumOfSourceParticles"> 150 < / a t t r i b u t e > 
o t t r i b u t e name="rate"> 

<valueof component="sodium_ohannel_2" variable="i_Na" /> 
< / a t t r i b u t e > 
o t t r i b u t e name="intermediatePoint"> 1 1 0 < / a t t r i b u t e > 

</plugin> 
</view> 

Figure 73 - The MVML description for visualizing the change in sodium current and voltage of an 
axon that consists of a unified graphical model 

The MVML description for achieving the above is shown in Figure 73. This version of 

MVML references a single 3D model of a neuron (neuron.x3d). The two ColorLaw 
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instances changes the color of different parts of a same graphical model namely 

Myleinl and Mylein_2. The AnimParticleLaw directs particles in and out of the sodium 

gates. Although the gates themselves are invisible in this case study, the 

AnimParticleLaw still needs to know about its whereabouts in order to animate the 

particles accordingly. In this case the first AnimParticleLaw receives the coordinates of 

Gate_l (1, 1, 0) and the second one receives the coordinates of the Gate_2 (2, 2, 0) as 

their intermediate points. 

MODEL 

V\ 
Model 1 Model 2 

r 
< ^ 

VIEW 

Pluginl . 

^ V 

Plugin_1.2 

Ui Plugin_2.1 

u— Plugin_2.2 

<=1 

AVRA 

c CellML 

MVML 

Figure 74 - The system of interconnected components that is automatically generated and 
maintained by AVRA when CellML and MVML files of case study 2 is loaded 
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Figure 74 demonstrate how AVRA constructs model and view components when loading 

the above MVML description. The main different between this structure and that of the 

previous case study is that we have only four view plugins and they control the visual 

attributes of a single unified model although different parts of it. 

9.5 Case Study 4: Simulation of Unhealthy Neuron 

Up until now we used a single simulation model (although several instances of it) in 

order to simulated a neuron axon that is consisted of five healthy segments (chambers) 

that are exact mathematical duplicate of each other. In this case study we will see how 

AVRA allows multiple simulation models to work in harmony with each other. 

Healthy 
Chamber 
CellML 

Sick 
Chamber 
CellML 

Figure 75 - Using multiple simulation models to visualize healthy and sick segments of 
a neuron axon 
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<model name="axon_model"> 

<import xlink:href="hodgkin_huxley.xml"> 
<units name="millisecond" units_ref="millisecond" /> 

<component name="membrane_2" component_ref="membrane" /> 
<component name="sodium_channel_2" component_ref="sodium_channel" /> 
<component name="sodium_channel_m_gate_2" component_ref="sodium_channel_m_gate'' /> 
<component name="sodium_channel_h_gate_2" component_ref="sodium_channel_h_gate" /> 
<component name="potassium_channel_2" component_ref="potassium_channel" /> 
<component name="potassium_channel_h_gate_2" 

component_ref="sodium_channel_h_gate" /> 
</import> 

<import xlink:href="sick_chamber.xml"> 
<units name="millisecond" units_ref="millisecond" /> 

<component name="membrane_3" component_ref="membrane" /> 
<component name="sodium_channel_3" component_ref="sodium_channel" /> 
<component name="sodium_channel_m_gate_3" component_ref="sodium_channel_m_gate" /> 
<component name="sodium_channel_h_gate_3" component_ref="sodium_channel_h_gate" /> 
<component name="potassium_channel_3" component_ref="potassium_channel" /> 
<component name="potassium_channel_h_gate_3" 

component_ref="sodium_channel_h_gate" /> 
</import> 

<connection> 
<map_components component_l="membrane_2" component_2="membrane_3" /> 
<map_variables variable_l="V" variable_2="I_stim" /> 

</connection> 

</model> 

Figure 76 - The CellML code for importing one instances of Hodgkin-Huxley model and one instance 
of Sick-Chamber model and connecting them together through V (voltage) and Istim. 

In this case study an axon chamber is considered sick if it has a different underlying 

mathematics than that of Hodgin-Huxley model as used in the previous case studies. For 

example if the rate of change in sodium density is calculated differently or if some gates 

do not open, the axon segment is considered abnormal or sick. These malfunctions may 

result in action potentials being fired irregularly or not at all. Figure 76 demonstrates the 

desired configuration in which different simulation models are connected to different 

graphical parts of a neuron. 

Figure 76 demonstrate a new version of our axonmodel in CellML which is 

reconfigured to import two different models: a healthy Hudgkin-Huxley model as model 

#2 and an arbitrary sick chamber model as model #3. In this case study we created the 
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sick_chamber.xml as a duplicate of hudgkinhuxley except the sodium gate M does not 

open in this model. Since the interface of these two models (i.e. the variables and 

components names) is exactly the same, we can reuse the MVML descriptions created in 

the previous case studies exactly as is and without any modifications. This is because the 

view plugin of the 3rd chamber receives the output of model #3 from its various 

components and model #3 happened to be our sick model as per Figure 76. 

MODEL 

V\ 
Model 3 Model 2 

r 
< ^ 

VIEW I 
^ \ 

\M Plugin_3.1 Ui Plugin_2.1 

W Plugin_3.2 N Plugin_2.2 

<=i 

AVRA 

< ^ 

CellML 
(Healthy) 

CellML 
(Sick) 

< = ^ 

MVML 

Figure 77 - The system of interconnected components that is automatically generated and 
maintained by AVRA when the simulation model that contains healthy and sick CellML is loaded 
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Figure 77 shows the result infrastructure that is similar than the previous study but 

present a different visualization due to the changes in the underlying simulation models 

that are loaded as CellML files. In this structure the view plugins that control the 

appearance of the 3rd axon segment does not lid up the corresponding graphics because 

the corresponding model computes zero as the current voltage no matter how much 

stimulus it receives from the previous chamber. In addition since this particular chamber 

does not generate action potential it will not stimulate the next healthy chamber hence the 

communication link in the axon is mathematically and visually cut off. 

9.6 Case Study 5: Interactive Simulation of a Neuron 

Interactive simulations can take advantage of the various features in AVRA but they 

require direct manipulation of view plugins from the higher level applications. This case 

study demonstrates how applications that are built on top of AVRA can add haptic 

interaction to the neuron simulation as generated in the case study 4. 

Figure 78 - Interaction with the model of a neuron with three probes to stimulate action potential 
and measure voltage 
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The desired scenarios of this application include manually triggering action potential 

through electrical shocks and measuring the voltage across the membrane of an axon 

through a specialized mulitmeter. Figure 78 demonstrates the desired interaction with the 

model of neuron as planned for this case study. In particular, whenever the probe 1 

collides with the neuron, the nearest axon chamber receives an stimulus that subsequently 

results in an action potential. In the figure, the probe collides with the nucleus of the 

neuron which is closes to axon chamber #1, therefore that chamber will receive an 

stimulus. Measuring the voltage across a membrane is achieved by placing one probe of 

multimeter inside and the other outside of the chamber as shown in the figure with probes. 

In this case study haptic devices are used to control the three probes of the multimeter 

and the power source. The challenge of this scenario is that the simulation model inputs 

and the visual output depend on a more complex dynamic than what can be specified in 

MVML. For example, the numerical input value for stimulus in the axonjnodel depends 

on the visual location of the probe 1. Also the visual state of the multimeter depends on 

which axon chamber is pinned by probe 2 and the whereabouts of probe 3. AVRA allows 

the higher level applications to define such complex behaviors and conveniently integrate 

them with the rest of the simulation. 

<view model_name="axon_model" > 

<graphics name="Multimeter" file="multmtr.x3d" visible= 

<!-- Multimeter --> 
<plugin class="xpheve.laws.RotationLaw"> 

ottribute name="Graphics"> 
<use graphics="Multimeter" part="handle" /> 

</attribute> 
ottribute name="value"> 

<valueof component="membrane_x" variable="V" /> 
</attribute> 
ottribute name="minValue"> -100 </attribute> 
ottribute name="maxValue"> +100 </attribute> 

</plugin> 

</view> 

"true" position="5 5 0" /> 

Figure 79 - The MVML description for visualizing the change in sodium current and voltage of an 
axon that consists of a unified graphical model 
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Figure 80 - The inter-communication between AVRA and high-level applications to account for 
interactions. 
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Figure 79 shows the MVML code for inserting a 3D multimeter in the virtual scene and 

creating a view plugin and rotate the voltmeter handle based on the voltage amount 

received from component membranex which should be changed at run-time to 

membrane_l.. .membrane_5 by the high-level application depending on which membrane 

the probe is colliding with. 

Figure 80 demonstrates a possible infrastructure that enables the high-level application to 

implement the above scenario using the existing AVRA capabilities as used in the 

previous case study. In effect the application adds three additional view plugins for the 

purpose of detecting collisions between the probes that are controlled by haptic devices 

and the 3D model of a neuron. When CollisionLaw_l detects a collision, it identifies the 

nearest axon chamber and directly manipulates the input value of the stimulus variable in 

its model_l or model_2. CollisionLaw_2 and CollisionLaw_3 track the position of 

multimeter probes. They also detect the nearest axon chamber but in this case they 

control the inputs of the RotationPlugin based on that. Essentially they tell the 

RotationPlugin to base the rotation angle on V values receives from membrane_l or 

membrane_2, whichever is closer. 

In the above scenario, the haptic interaction can be implemented directly by the higher-

level applications; or alternative it can be achieved with a 3rd party library such as HAML 

[54] that is configured on top of the AVAR architecture. 

9.7 Results 

9.7.1 Key Advantages 

The case studies in this chapter outlined some of the key advantages that AVRA has 

when developing VR applications that visualize the conceptual outcomes of their target 

simulations. This section summarizes the key novelties and advantages that were verified 

by these case studies and then compares them with the existing frameworks. 

The key advantages of AVRA as verified by the case studies are: 
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• Model-View Mapping in Virtual Environments: AVRA provides a 

comprehensive infrastructure that dynamically constructs numerical and graphical 

models and automatically connects them together based on the contents of the 

MVML descriptions. 

• Model Update: The simulation models that are loaded in AVRA can be 

conveniently updated with updated mathematical specifications or numerical data 

without any changes in the view description or the application. The simulation 

models can also be replaced with other models with minor changes in the MVML 

description of the view if the component and variable names are different. 

• View Update: After the first construction of MVML, its view description 

contents can be conveniently reconfigured with new parameters or updated with 

new graphics and view plugins without changes in the simulation model or the 

application. 

• Multi-Model Visualization: AVRA supports visualization for multiple models 

including models that are different than each other and those that are duplicates of 

each other. Each model instance may affect the visual aspect of its dedicated 

graphics or contribute to a unified share graphics. 

• Multi-View Visualization: In AVRA, a single simulation model can be 

associated with several graphics. This is useful when visualizing several aspects 

of a same simulation model. For example the visualization of a neuron cell can 

include both graphics of the neuron and a multimeter than measures its voltage. 

• Dynamic Model-View Mapping for High-Level Applications: AVRA allows 

applications that are built on top of it to access the internal model and view 

components that are automatically generated upon loading MVML files. In 

particular AVRA allows these applications to dynamically reconfigure the model-

view mapping. This allows more complex visualization including those that are 

affected by the user interactions. 
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Table 5 outlines the case-study coverage of the above 6 features. As it was shown the 

previous sections, the presented case studies reused much of elements from the previous 

case studies hence demonstrating the benefits of using AVRA. For example the case 

study 3 simply updates the view description of case study 2 hence demonstrating that the 

view can be updated in AVRA without affecting the model or the application. 
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Table 5 - The case-study feature coverage matrix 

9.7.2 Comparisons with Other Frameworks 

In section 2.3 the most popular frameworks for VR applications were discussed. When 

considering how the case studies of this chapter can be implemented in these frameworks 

it is apparent that the heavier burden of the development is on the shoulder of the higher-

level applications. In essence these frameworks do not contribute directly to the 

visualization of simulation models. Instead they provide a rich set of libraries that offer a 

wide variety of services that while valuable in other aspects of VR application, do not 

make the task of simulation development any easier. 

Although VirtualExplorer is explicitly designed for simulation and visualization purposes 

its approach to this issue is not fundamental. VirtualExplorer simply offers utilities and 
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device interfaces through plugins and allows the simulations to be implemented within 

applications plugins. These application plugins typically contain all of the high level 

infrastructure and the low-level implementations for simulation calculation and 

visualization. 

The only existing framework that provides an infrastructure that can be of use in 

implementing simulations is SCF/E [6]. Similarly to AVRA, SCF/E uses a mapping 

schema that connects models, graphics, animation, physics and possibly many other 

components together. In SCIVE this is done through a central knowledge layer which 

contains all the data that is needed by the components. While this design allows reuse and 

sharing of data it is merely a managed data sharing infrastructure and leaves the 

applications with the low level tasks of populating the shared data and mapping them to 

high-level behaviors such graphical behaviors and visualizations. 
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CHAPTER 10 - CONCLUSION 

As the software technology in any field advances and overcomes its primitive challenges, 

it is desirable to utilize highly reusable and flexible architectures and frameworks as to 

avoid redundancies and maximize flexibility and reusability. We have seen this 

happening in the IT field with the introduction of enterprise technologies such as XML, 

J2EE, .NET, Ruby on the Rails and others. While all these technologies are different 

nature, they share a same goal of providing developers with rich frameworks and libraries 

that support dynamic change in data and view with minimum code change requirements. 

The field of VR has fallen behind in this respect and the proposed architecture is one that 

utilizes the lessons learned and applied in IT sector to address the very same problems 

that VR is facing today. 

This thesis presents a novel framework that applies the most fundamental concepts of 

software engineering in order to decouple the model and view components and take 

advantage of the resulting flexibility, extensibility and reusability. AVRA is capable of 

accepting many types of simulation models and generating virtual environments that 

effectively visualize those simulations. The scene construction is based on a flexible 

model-view scheme that uses MVML for describing how the targeted simulation is to be 

visualized. With MVML description, the outputs of the simulation models can be 

connected to inputs of view plugins that ultimately generate animations and dynamic 

behaviors in a virtual environment. Since these animations are directly the result of 

precise mathematical calculations or data repository, the generated visual effects can 

sever as a convenient mean of observing simulation result by scientists and engineers. In 

addition, it can be used as the basis of more complex VR applications including those that 

require interactions. 

From a higher point of view, the proposed architecture allows development of VR-based 

simulations that allow frequent and dynamic changes in their simulation model and view. 

This is of great significance as the aforementioned two are the most common elements 
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that are subject to frequent changes during the lifetime of the VR-based simulations. The 

reason for changes in models is that the data and mathematics of the simulation models 

evolve as new experimental data arrives or the theoretical simulation environment 

changes. The changes in view is often linked to what is perceived as effective 

visualization of the simulation and it depends on (1) the aspect of interest, that is which 

part of the simulation is most important to observe, and (2) the abstract level of interest, 

that is how high-level or detailed the visualization must be. 

AVRA is a framework that utilizes various techniques to allow the implementation of 

VR-based simulations that are highly flexible in term of their model, view and interaction 

contents. For this purpose AVRA introduce two novel concepts: viewplugin and MVML. 

AVRA depends on view plugins to address flexibility, reusability and extensibility of VR 

simulation, hi AVRA, it is understood that the visual behavior of VR application should 

be customizable without recoding or even recompiling the project. It is also understood 

that there should be no limitations in implementing new visualization behaviours. As 

such view plugins are introduced to provide a unified structure for defining modules that 

contain compiled codes for specific visualization tasks to be added to a simulation 

application upon request. 

While XML-based languages already exist for defining the underlying data and/or 

mathematics of the simulations, there are no standards for defining the view and 

interaction aspects of such applications. As such MVML, a novel XML-based 

specification, is proposed to address the aforementioned shortcomings. With MVML 

developers can specify which simulation model to visualize, which view plugins are to be 

used for the visualization and which parameters to pass to the various modules involved. 

The combination of the above contributions ensures that AVRA architecture is one that 

overcomes the most significant problems that VR-based simulations are facing today. 

In addition to its various benefits, AVRA presents challenging opportunities for future 

developments. In particular AVRA architecture can be expanded to cover the interaction 

aspects of simulation applications, therefore further reducing the weight of low-level 
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responsibilities in the higher level applications. Another challenging future work will be 

to expand AVRA in order to step beyond simulation applications, covering other VR-

based applications such as those in gaming, training and artificial intelligence. 
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APPENDICES 

Appendix A 

A complete CellML File 

<model name="basic_ep_model" xmlns="http://www.eellml.org/eellml/l.0#" 
xmlns:cellml="http://www.eellml.org/eellml/l.0#" 
xmlns:cmeta="http://www.eellml.org/metadata/1.0#"> 

<units name="concentration_units"> 
<unit prefix="milli" units="mole" /> 
<unit units="litre" exponent="-l" /> 

</units> 

<units name="flux_units"> 
<unit units="concentration_units" /> 
<unit units="second" exponent="-l" /> 

</units> 

<units name="rate_constant"> 
<unit units="second" exponent="-l" /> 

</units> 

<component name="environment"> 
<variable name="time" public_interface="out" units="second" /> 

</component> 

<component name="intra_cellular_space"> 
<!-- the following variables are used in other components --> 
<variable name="Na" public_interface="out" units="concentration_units" /> 
<variable name="Ca" public_interface="out" units="concentration_units" /> 

<!-- the following variables are imported from other components --> 
<variable name="time" public_interface="in" units="second" /> 
<variable name="I_Na" public_interface="in" units="flux_units" /> 
<variable name="I_Ca" public_interface="in" units="flux_units" /> 

<math xmlns="http://www.w3.org/1998/Math/MathML"> 
opplyxeq /> 

<applyxdiff /> 
<bvarxci> time </cix/bvar> 
<ci> Na </ci> 

</apply> 
<ci> I_Na </ci> 

</apply> 

opplyxeq /> 
<applyxdiff /> 

<bvarxci> time </cix/bvar> 
<ci> Ca </ci> 

</apply> 
<ci> I_Ca </ci> 

</apply> 
</math> 

</component> 

[CONTINUED NEXT PAGE...] 
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<component name="extra_cellular_space"> 
<!-- the following variables are used in other components --> 
<variable name="Na" public_interface="out" units="concentration_units" /> 
<variable name="Ca" public_interface="out" units="concentration_units" /> 
<!-- the following variables 
<variable name="time" 
<variable name="I_Na" 
<variable name="I_Ca" 

public. 
public. 
public. 

are imported from other components --> 
_interface= 
_interface= 
_interface= 

"in" units= 
"in" units= 
"in" units= 

<math xmlns=''http://www.w3.org/1998/Math/MathML"> 
opplyxeq /> 

opplyxdiff /> 
<bvarxci> time 
<ci> Na </ci> 

</apply> 
opplyxtimes /> 

</cix/bvar> 

<cn eel1ml:units="dimensionless"> 
<ci> I_Na </ci> 

</apply> 
</apply> 
opplyxeq /> 

<applyxdiff /> 
<bvarxci> time 
<ci> Ca </ci> 

</apply> 
<applyxtimes /> 

</ci></bvar> 

<cn eel1ml:units="dimensionless"> 
<ci> I_Ca </ci> 

</apply> 
</apply> 

</math> 
</component> 

<component name="cell_membrane 
<!-- the following variables 
<variable name="I_Na" 
<variable name="I_Ca" 

public. 
public. 

<!-- the following variables 
<variable name="Na_i" 
<variable name="Na_e" 
<variable name="Ca_i" 
<variable name="Ca_e" 

public. 
public. 
public. 
public. 

<!-- the following variables 
<variable name="v_Na" 
<variable name="v_Ca" 

> 

-1.0 </cn> 

-1.0 </cn> 

second" /> 
flux_units" /> 
flux_units" /> 

are used in other components --> 
_interface= 
_interface= 

"out" units 
"out" units 

="flux_units" /> 
="flux_units" /> 

are imported from other components --> 
_interface= 
_interface= 
_interface= 
_interface= 
are only u 

initial_value="l. 
initial_value="1. 

"in" units= 
"in" units= 
"in" units= 
"in" units= 

'concentration_units" /> 
'concentration_units" /> 
'concentration_units" /> 
'concentration_units" /> 

sed internally --> 
Oe-8" units 
5e-8" units 

<math xmlns="http://www.w3.org/19 9 8/Math/MathML"> 
<applyxeq /> 

<ci> I_Na </ci> 
opplyxtimes /> 

<ci> v_Na </ci> 
<applyxminus / > 

<ci> Na_i </ci> 
<ci> Na_e </ci> 

</apply> 
</apply> 

</apply> 
opplyxeq /> 

<ci> I_Ca </ci> 
<applyxtimes /> 

<ci> v_Ca </ci> 
opplyxminus / > 

<ci> Ca_i </ci> 
<ci> Ca_e </ci> 

</apply> 
</apply> 

</apply> 
</math> 

</component> 

[CONTINUED NEXT PAGE. . . ] 

="rate_constant" /> 
="rate_constant" /> 
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<connection> 
<map_components component_l="intra_cellular_space" component. 
<map_variables variable_l="Na" variable_2="Na_i" /> 
<map_variables variable_l="Ca" variable_2="Ca_i" /> 
<map_variables variable_l="I_Na" variable_2="I_Na" /> 
<map_variables variable_l="I_Ca" variable_2="I_Ca" /> 

</connection> 

<connection> 
<map_components component_l="extra_cellular_space" component. 
<map_variables variable_l="Na" variable_2="Na_e" /> 
<map_variables variable_l="Ca" variable_2="Ca_e" /> 
<map_variables variable_l="I_Na" variable_2="I_Na" /> 
<map_variables variable_l="I_Ca" variable_2="I_Ca" /> 

</connection> 

<connection> 
<map_components component_l="environment" component_2="intra. 
<map_variables variable_l="time" variable_2="time" /> 

</connection> 

<connection> 
<map_components component_l="environment" component_2="extra. 
<map_variables variable_l="time" variable_2="time" /> 

</connection> 

</model> 

_2="cell_membrane" /> 

_2="cell_membrane" /> 

_cellular_space" /> 

_cellular_space" /> 
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Appendix B1 

Numerical Output of a CellML Model 

Model = basic_ep_ 
Component 
Local: 
Inputs: 
Outputs: 

model 
= environment************************* 

time =0.0 
Component 
Local: 
Ca = 40.0 
Na = 30.0 
Inputs: 
I_Ca = -3. 

= extra 

OE-7 
time =0.0 
I_Na = -2 
Outputs: 
Ca = 40.0 
Na = 30.0 
Component 
Local: 
Ca = 20.0 
Na = 10.0 
Inputs: 
I_Ca = -3 

OE-7 

= intra 

OE-7 
time =0.0 
I_Na = -2 
Outputs: 
Ca = 20.0 
Na = 10.0 
Component 
Local: 

OE-7 

= cell_ 

v_Na = 1.0E-8 
v_Ca = 1.5E-8 
Inputs: 
Ca_e = 4 0 
Na_e = 3 0 
Na_i = 1 0 
Ca_i = 2 0 
Outputs: 
I_Ca = -3 
I_Na = -2 

0 
0 
0 
0 

OE-7 
OE-7 

_cellular_ 

_cellular_ 

SDSCS************************* 

space* ************************ 

membrane ************************* 
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Appendix B2 

Model = ba s i c_ep_mo del 
Component 
Local: 
Inputs: 
Outputs 
time = 

— environment ************************* 

1000.0 
Component 
Local: 
Ca = 40 
Na = 30 
Inputs: 
I_Ca = 
time = 
I_Na = 
Outputs 
Ca = 40 
Na = 30 

.0 

.0 

-3 

= extra_cellular_space* * *********************** 

000090000027E-
1000.0 
-2 000040000008E-

.00030000009 

.00020000004 
Component 
Local: 
Ca = 20 
Na = 10 
Inputs: 
I_Ca = 
time = 
I_Na = 
Outputs 
Ca = 19 
Na = 9. 

.0 

.0 

-3 

-7 

-7 

= intra_cellular_space* * *********************** 

000090000027E-
1000.0 
-2 000040000008E-

.99969999991 
99979999996 

Component 
Local: 
v_Na = 
v_Ca = 
Inputs: 
Ca_e = 
Na_e = 
Na_i = 
Ca_i = 
Outputs 
I_Ca = 
I_Na = 

l.( 

-7 

-7 

— cell iuemfoira.ne ************************* 

DE-8 
1.5E-8 

40 
30 
9.i 
19 
: 
-3 
-2 

00030000009 
.00020000004 
39979999996 
99969999991 

000090000027E-
000040000008E-

-7 
-7 
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Appendix B3 

Model = 
basic_ep_mode <import xlink:href = "httpsnt************************* 
Local: 
Inputs: 
Outputs 
time = 60000.0 
Component 
Local: 
Ca = 40 
Na = 30 
Inputs: 
I_Ca = 
time = 
I_Na = 
Outputs 
Ca = 40 
Na = 30 

.0 

.0 

-3 

= extra_cellular_ 

005400162E-7 
60000.0 
-2 
: 

0024000479999997E 

.01800054 

.01200024 
Component 
Local: 
Ca = 20 
Na = 10 
Inputs: 
I_Ca = 
time = 
I_Na = 
Outputs 
Ca = 19 
Na = 9. 

.0 

.0 

-3 

= intra_cellular_ 

005400162E-7 
60000.0 
-2 0024000479999997E 

.98199946 
98799976 

Component 
Local: 
v_Na = 
v_Ca = 
Inputs: 
Ca_e = 
Na_e = 
Na_i = 
Ca_i = 
Outputs 
I_Ca = 
I_Na = 

l.( 
1.. 

40 
30 
9.. 
19 
: 
-3 
-2 

qr^a p p 'k-k'k'k'k-k-k'kic'kic'kic'k'kitit'k'k'k'kiciclcit 

-1 

3Da.ce* ************************ 

-7 

= cell memfc)ITsns************************* 

3E-8 
5E-8 

.01800054 

.01200024 
38799976 
.98199946 

.005400162E-7 

.0024000479999997E -7 
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Appendix C 

A complete MVML File 

<view model_name="hodgkin_huxley_1952_version05"> 
<graphics name="cell" file=".Wmodels\\Cell.x3d" visible= 

position="0 0 0" rotation="0 0 1 0 " /> 
<graphics name="Na" f ile=". Wmodels\\Na.x3d" visible="fal 
<graphics name="K" file=". Wmodels\\K.x3d" visible="false 
<function name="negate" > 

<math xmlns='http://www.w3.org/1998/Math/MathML'> 
<apply> 
<times/> 
<cn type='real'>-l.</cn> 
<ci>x</ci> 
</apply> 
</math> 

</function> 
<function name="add" > 

<math xmlns='http://www.w3.org/1998/Math/MathML'> 
<apply> 
<plus/> 
<ci>x</ci> 
<cn type='real'>50.</cn> 
</apply> 
</math> 

</function> 
<function name="sub" > 

<math xmlns='http://www.w3.org/1998/Math/MathML'> 
<apply> 
<plus/> 
<cn type='real'>3 00.</cn> 
<apply> 
<times/> 
<cn type='real'>-l</cn> 
<ci>x</ci> 
</apply> 
</apply> 
</math> 

</function> 

<plugin class="xpheve.laws.RotationLaw"> 
<attribute name="TransformGroup"> 

<use graphics="cell" part="GateM" /> 
</attribute> 
<attribute name="value"> 

<valueof components"sodium_channel_m_gate" 
</attribute> 

</plugin> 
<plugin class="xpheve.laws.RotationLaw"> 

<attribute name="MinValue"> 0 </attribute> 
<attribute name="MaxValue"> 0.6 </attribute> 
<attribute name="Trans formGroup"> 

<use graphics="cell" part="GateH" /> 
</attribute> 
<attribute name="value"> 

<valueof component="sodium_channel_h_gate" 
</attribute> 

</plugin> 

[CONTINUED NEXT PAGE...] 

'true" 

=e" /> 
' /> 

variable="m" 

variable="h" 

/> 

/> 
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<plugin class="xpheve.laws.RotationLaw"> 
ottribute name="MinValue"> 0.3 </attribute> 
<attribute name="MaxValue"> 0.7 </attribute> 
<attribute name="TransformGroup"> 

<use graphics="cell" part="GateN" /> 
</attribute> 
<attribute name="value"> 

<valueof component="potassium_channel_n_gate" variable="n" /> 
</attribute> 

</plugin > 
<plugin class="xpheve.laws.ColorLaw"> 

ottribute name="Shape"> 
<use graphics="cell" part="CellBox" /> 

</attribute> 
<attribute name="value"> 

<valueof component="membrane" variable="V" /> 
</attribute> 
ottribute name="MaxColor">l 1 0</attribute> 

</plugin > 
<plugin class="xpheve.laws.AnimatedParticleLaw"> 

<attribute name="NumOfSourceParticles"> 150 </attribute> 
<attribute name="NumOfDestinationParticles"> 0 </attribute> 
ottribute name="Scale"> 0.001 </attribute> 
<attribute name="SourceSpaceMin"> -1.4 1.6 -0.9 </attribute> 
ottribute name="SourceSpaceMax"> 1.4 2.3 0.9 </attribute> 
<attribute name="DestinationSpaceMin"> -1.4 -0.6 -0.6 </attribute> 
ottribute name="DestinationSpaceMax"> 1.4 0.4 0.6 </attribute> 
ottribute name="ParticleModel"> <use graphics="Na" /> </attribute> 
<attribute name="rate"> 

<valueof formula="negate" component="sodium_channel" 
variable="i_Na" /> 

</attribute> 
ottribute name="IntermediatePoint"> - 1 1 0 </attribute> 

</plugin > 
<plugin class="xpheve.laws.SharedAnimatedParticleLaw"> 

o t t r i b u t e name="NumOfSourceParticles"> 100 < / a t t r i b u t e > 
o t t r i b u t e name="NumOfDestinationParticles"> 0 < / a t t r i b u t e > 
o t t r i b u t e name="Scale"> 0.001 < / a t t r i b u t e > 
o t t r i b u t e name="SourceSpaceMin"> -1.4 -0 .6 -0 .6 < / a t t r i b u t e > 
o t t r i b u t e name="SourceSpaceMax"> 1.4 0.4 0.6 < / a t t r i b u t e > 
< a t t r i b u t e name="DestinationSpaceMin"> -1.4 1.6 -0 .9 < / a t t r i b u t e > 
o t t r i b u t e name="DestinationSpaceMax"> 1.4 2.3 0.9 < / a t t r i b u t e > 
< a t t r i b u t e name="ParticleModel"> 

<use graphics="K" /> 
< / a t t r i b u t e > 
< a t t r i b u t e name="rate"> 

<valueof component="potassium_channel" variable="i_K" /> 
< / a t t r i b u t e > 
o t t r i b u t e name="IntermediatePoint"> 0 1 0 < / a t t r i b u t e > 

</plugin > 
<plugin name class="xpheve.laws.SharedAnimatedParticleLaw"> 

ottribute name="NumOfSourceParticles"> 100 </attribute> 
ottribute name="NumOfDestinationParticles"> 0 </attribute> 
ottribute name="Scale"> 0.001 </attribute> 
<attribute name="SourceSpaceMin"> -1.4 -0.6 -0.6 </attribute> 
ottribute name="SourceSpaceMax"> 1.4 0.4 0.6 </attribute> 
ottribute name="DestinationSpaceMin"> -1.4 1.6 -0.9 </attribute> 
<attribute name="DestinationSpaceMax"> 1.4 2.3 0.9 </attribute> 
<attribute name="ParticleModel"> 

<use graphics="K" /> 
</attribute> 
ottribute name="rate"> 

<valueof component="leakage_current" variable="i_L" /> 
</attribute> 
ottribute name="IntermediatePoint"> 1 1 0 </attribute> 

</plugin > 
</view> 
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Appendix D 

TheDTDofMVML 

<?xml version="l.0"?> 
<!DOCTYPE 

<!ELEMENT 
<!ATTLIST 

<!ELEMENT 
<!ATTLIST 
<!ATTLIST 
<!ATTLIST 
<!ATTLIST 
<!ATTLIST 

<!ELEMENT 
<!ATTLIST 
<!ELEMENT 
<!ATTLIST 
<!ELEMENT 
<!ATTLIST 
<!ATTLIST 
<!ELEMENT 
<!ATTLIST 
<!ATTLIST 

<!ELEMENT 
<!ATTLIST 
<!DOCTYPE 

]> 

view [ 

view 
view 

(graphics*, plugin*, function*)> 
model_name #PCDATA #REQUIRED> 

graphics EMPTY> 
graphics 
graphics 
graphics 
graphics 
graphics 

plugin 
plugin 
attributes 
attributes 

name #PCDATA #REQUIRED> 
file #PCDATA #REQUIRED> 
visible (true | false) #IMPLIED> 
position #PCDATA #IMPLIED> 
rotation #PCDATA #IMPLIED> 

(attributes)*> 
class #PCDATA #REQUIRED> 
(#PCDATA| valueof | use)> 
name #PCDATA #REQUIRED> 

valueof EMPTY> 
valueof 
valueof 
use EMPTY> 
use 
use 

function 
function 
math PUBLIC " 
http://www.w3 

component #PCDATA #REQUIRED> 
variable #PCDATA #REQUIRED> 

graphics #PCDATA #REQUIRED> 
part #PCDATA #IMPLIED> 

(math)> 
name #PCDATA #REQUIRED> 
-//W3C//DTD MathML 2.0//EN" 
.org/Math/DTD/mathml2/mathml2.dtd > 
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