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The paper addresses the system with the Serially Concate-
nated Coded CPM (SCCCPM) and the nonlinear limiter phase
discriminator receiver. We develop the FG framework allowing
the use of the SPA factor node marginalization rules involving
canonical distributions with finite number of parameters. We
show that the straightforward application of the traditional
constellation space approach is intractable. We also show that
the sampled signal space does not allow an application of
the parametrized canonical distributions for the variable nodes
densities. The solutions we suggest in the paper stands on using
the sampled parametric (phase) space of the CPM for all SPA
processing. We use the idea of the component modulo mean
approximation for the canonical signal phase distributions.
The modulo operations are applied only on component mean
values. This keeps the update rules simple by avoiding the
circular distortion of the Gaussian component densities while
still capturing the circular nature of the modulo operations on
the signal phase.

I. INTRODUCTION
A. Background

The SCCCPM has attracted recently attention as a a scheme
combining the excellent error performance with capability of
an iterative decoding with the ideal CPM resistance to the
nonlinear distortion due to its constant envelope [1]. The
suitability of SCCCPM for the iterative decoding is due to
the presence of the continuous phase encoder [2] in the CPM
having in fact a role of the inner recursive encoder of the
concatenated scheme. The Factor Graphs (FG) and the Sum-
Product Algorithm (SPA) ([3], [4]) is a general framework
able to capture a variety of the signal processing algorithms
including the iterative soft information passing turbo decoding
in the serially concatenated scenario [5], [6]. The FG/SPA
technique can be also used to inherently cope with the
parametric channel introducing nuisance channel parameters
of various forms (phase, channel transfer, etc.) [7], [8], [9],
[10]. One of the major problems arising from the inclusion of
continuous valued channel parameters is the fact that the SPA
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becomes practically difficult to implement. The SPA defines
the marginalization update rules for the factor node output
messages (see [3], [4]) where the continuous parameters with
general densities introduce the necessity to integrate when
calculating the factor node marginalization. This is of course
very impractical. Several solutions (approximations) solving
this problem appeared. They are centered around the idea
of using the approximation of the densities by the restricted
class of parameterizable canonical distributions [11], [12]. The
marginalization factor node update thus evaluates only the
new set of the density parameters. The excellent resistance
of the CPM to the nonlinear distortion also allows Limiter
Phase Discriminator (LPD) receiver processing where the
signal first passes through the limiter and then the instant
phase is observed. This approach has a substantial advantage
of allowing a very robust receiver design not requiring the gain
control otherwise needed for proper signal level adjustment at
the analog-digital conversion. Strictly speaking, the phase of
the signal itself does not provide a sufficient statistic for the
CPM modulation in AWGN. However, it is shown in [13] that
the mutual information loss is negligible.

B. The contribution of the paper

We develop the FG framework allowing the use of the SPA
factor node marginalization rules involving canonical distribu-
tions with finite number of parameters for the nonlinear limiter
phase discriminator receiver. We show that the straightforward
application of the traditional constellation space approach (as
it is used for linear modulations) is intractable. We also show
that the sampled signal space does not allow an application of
the parametrized canonical distributions for the variable nodes
densities. The solutions we suggest in the paper stands on the
usage of the sampled parametric (phase) space of the CPM for
all FG/SPA processing.

The core is in the efficient representation of the densities
passed over over the FG edges between Factor Nodes (FN)
and Variable Nodes (VN). These messages must cope with
the circular nature of the modulo 27 operations of the signal
phase processing. On the other side, the message update rules
must be simple enough. This would cause a problem if we
strictly apply all modulo operations on all random variables in
the FG. This would lead to non-Gaussian densities which are



difficult to cope with. We show the solution based on modulo
component mean approximation. This keeps the circular nature
of the phase modulo operations by applying them on variable
component means. The Gaussian tails are however allowed
to extend out of the [0,2n) range. It will keep the FG/SPA
update rules simple since all the densities keep to be Gaussian
ones. The canonical distributions in [11], [12] do not treat
the problem of modulo signal phase operations. They rather
operate on the sample or the constellation space domains where
this problem does not appear. The modulo circular operations
appear only for the direct signal phase space operations (i.e. the
phase discriminator receiver).

The presented framework for modulo mean canonical distri-
butions is developed as modular tool that allows to incorporate
the CPM and the phase discriminator receiver processing into
the complete FG with serially concatenated coding. This is
however outside of the scope of the paper.

II. SYSTEM MODEL AND DEFINITIONS

We consider a message of binary data symbols b =
[...,bn,...]T encoded by the outer encoder into the codeword
¢ =1[..,cy...]T passing through the interleaver IT having
at its output the interleaved codeword d = [...,d,,...]%.
This forms an input of the CPM modulator. It is modeled
using the Continuous Phase Encoder (CPE) with output M ary
symbols ¢, € {0,..., M, —1} and the Nonlinear Memoryless
Modulator (NMM) [2] with output signal s(t) = exp(jo(t)),
where ¢(t) = k), B(gn,t —nTs). The x is the modulation
index, [ is the nonlinear phase function of the NMM and Ts
is the symbol period. The channel transfer & = exp(j¢) is
assumed to be with the random phase rotation ¢ having uni-
form distribution. The AWGN is w(t). The received signal x(¢)
passes through the nonlinear LPD with the output 6 = £(x).
See Fig. 1.

ITII. FG FRAMEWORK FOR SCCCPM WITH LPD
A. Multidimensional Constellation Space

The first option for developing the FG representation of the
system is the one using the Multidimensional (mD) Constel-
lation Space (CS) (Fig. 2). The CS is multidimensional due to
the nonlinearity of the CPM. The CS approach is the dominant
one for linear modulations (like PSK, QAM) where, due to the
linearity, the space dimension is equal to one. Thus it is very
simple situation to handle with unlike for our case of CPM.

The CS representation of the transmitted signal, the channel
transfer, and the received signal are mD vectors s,,, h,,, x,, for
nth symbol ¢,. The messages associated with VN ¢,, and s,,
are the discrete probability mass functions. Those are easy to
handle within the SPA. The messages associated with u,,,x,,
are the Mixture Gaussian (MG) ones [11], i.e. the weighted
superposition of component Gaussian densities. Those are not
particularly easy to implement but still can be practically
handled using various approximations with good results (see
[11]) in the SPA. However the major problem of the mDCS
approach is the FN corresponding to the LPD. There is no
direct relation between the coefficients of the CS expansion

and the phase parameter 6, unless we reconstruct the signal
in time using the basis and the coefficients. This creates
a complicated input-output relation and makes the problem
intractable.

B. Sampled Signal Space

The Sampled Signal Space (SaSS) approach (Fig. 3) tries
to solve the problem of LPD FN by performing all pro-
cessing directly on complex samples. The signal must be
sampled Ng > 1 times per one ¢, symbol. We denote
the kth sample s, ; and similarly for other variables. This
makes the definition of the LPD FN relatively straightforward
p(Onk|Tn k) = 0(Onk — £(znk)). A formulation of other
factors is also easy. The CPM signal definition directly dictates
D(Sn.k|gn)- The channel transfer factor is p(wn ik |Pn i, Snk) =
0(tng — hnkSnk). The AWGN FN is easily defined by
the conditionally Gaussian PDF p(x,, i|un ). However the
easy situation with the definitions of the factors is badly
compensated by the fact that messages (PDF) at VN s,
and w,, ; has a complicated form of the continuous random
variable defined at the circle in the complex plane. This is
given by the form of the signal s(t) = exp(jo(t)) and
u(t) = s(t)h(t) = exp(ja(t)). At initial iteration, it can
be regarded as a uniform phase PDF, but with iterations
proceeding it becomes a complicated function with number of
local extremes around the circle in complex plane (see Fig. 3).
The situation becomes even worse at VN z,, ;, where this is
further convolved with complex Gaussian PDF of the AWGN
FN. Those PDF cannot be easily described by the finite set
of parameters and therefore this approach is very difficult for
implementation.

C. Sampled Phase Space

The solution of the all above stated problems is the Sampled
Phase Space (SaPS) (Fig. 4). This approach is motivated by
the Information Waveform Manifold (IWM) approach of [13]
where the IWM is used in a more general setup of CPM in
MIMO channel. The idea we use here stands on the step where
we move the whole processing into the parametric space of the
CPM signal, i.e. its phase parametric space. This is the space
spanned by the ¢ phase of the signal s(t) = exp(j¢(t)) and
similarly for u(t) = s(t)h(t) = exp(ja).

The factors p(¢n, 1|gn) are directly given by the functions (3
and form the discrete probability mass functions of VN ¢,, j.
The factor of the channel transfer FN is p(a, k|@n ks On k) =
d(ank — (Pnk + ¢nk)). The densities at VN c, ) start
at initial iteration as the uniform ones and with the itera-
tions proceeding they become of the mixture Gaussian type.
The AWGN channel FN factor p(0,, x|an, k), where 6,, ), =
L(exp(jan k) + wnp k), can be approximated by the Gaussian
density for moderate signal-to-noise ratios. This approximation
effectively transfers the case of CPM with LPD demodulation
treated in SaPS into the system similar to the traditional case of
linear modulation in AWGN channel. We can use the message
update rules similar to [11] (the approximations) applicable to
the mixture Gaussian densities. This means that only a finite set
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Figure 1. The system model.

of density parameters is calculated at each update. The update
rules will use the modulo component mean approximation.
The FN update will not involve any integration. Moreover,
all mixture Gaussian densities are real-valued unlike for the
SaSS case.

IV. MESSAGE TYPES

The messages passed in the FG (Fig. 4) can be modeled
by two basic message types. The first is a traditional discrete
probability mass function for the integer valued random vari-
able. The second message type must be capable of describing
real mixture Gaussian random variable (i.e. superposition of
real valued discrete and real Gaussian random variable).

A. Discrete message type

The discrete message type is associated with VN gq,.
The backward message (a priori probability mass func-
tion) is Mg{g.} = {p(q(i))}i]\i“(;1 and the forward mes-
sage (a posteriori probability for a given observation) is
Me{gn} = {p(6°]¢)}Me~" The decision measure is
M{qn} = Me{qg}Mzs{qn}. A generic message, that can
become any of M{q,}, Ms{qn}, Ms{g,}, will be denoted
by 1{gn}-

B. Mixture Gaussian modulo mean message type

All remaining messages can be modeled/approximated by
Mixture Gaussian Modulo Mean (MGMM) messages. Here
we extend the ideas similar to [11], [12] for the case of
variables having interpretation of the phase of the signal.
All signal processing operations are modulo 27 operations.
A straightforward application of the principles used in [11],
[12] on the mixture Gaussian densities defined over the unity
circle (to reflect mod 5, phase operations) does not lead to the
tractable solution. The circularly overlapping tails of individual
Gaussian PDFs cause the loss of the simplicity of the manipu-
lation with Gaussian densities as we are used to for real valued
linear axis. We propose a solution combining the simplicity of
the manipulation of the Gaussian messages with the attributes
reflecting the circular nature of the mods, phase operations.
It a MGMM mods,; solution.

The MGMM mod27m messages are formed by parametric
class of the densities

M,
p(z) = ZP(I(i))PN(ag)(IE —z() )
=1

where par(o2)(2) is the PDF of zero-mean, o2 variance real-

valued Gaussian random variable, and p(x(?)) is the probability

Y.

0 zM
("E@) + (L) mod 27

2m
(m(l) + (L) mod 27

0 2@

Figure 5. An example of the modulo mean equivalence.

of the ¢th component. The generic messages are
plat = {1, (201,02}, 20 € 0,2m). @)

All operations with MGMM type variables are performed with
mod 27 restriction only applied on the set of component mean
values {x;};. The tails of the component Gaussian densities
are allowed to go outside the [0,27) range. The support of
the MGMM PDF is the complete real axis, however the main
probability mass lies within the [0,27) range. This approxi-
mates the circular nature of the true mod2m arithmetics but
keeps the composite densities Gaussian and therefore easily
tractable. The resulting equivalent (approximate) density will
be called Modulo Mean Equivalent Density (MMED).

The MGMM messages can easily model (as a special case)
discrete valued variables by simply setting the component
variance to zero 0> — 0. The uniform density (e.g. for initial
iteration) can be approximated by setting large o2.

C. Example of the modulo mean equivalence

Let us consider a simple example of the operation y =
(z + a) mod 5. The PDFs are all of the MGMM type and
a is a constant. The example demonstrates how the modulo
operation is performed only on the component mean values
keeping the result as a sum of Gaussian components but still
reflecting the nature of the circular operation. See Fig. 5 for the
resulting equivalent density p(z) (in the sense of the modulo
mean equivalence).

V. MESSAGE UPDATE RULES

Here, we derive the message update rules for the FNs
and VNs used in SaPS processing FG/SPA. All messages are
assumed to be the MGMM ones (1). We concentrate only on
those particular FN and VN relevant to the CPM and the phase
discriminator processing used in our system model (Fig. 4).
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A. (q,w,x) FN 2 = (¢ + w) mod o for MGMM messages

We assume FN performing an operation = (¢+w) mod 2,
and having 3 edges (¢, w, z) (Fig. 6). The associated FN PDF
factor is

p(z|g,w) = §(z — (¢ + w) mod o). 3)

The message p{w} is assumed to have only a single com-
ponent, i.e. M,, = 1. The message u{q} is assumed to be a
discrete one, i.e. ¢ — 0. The number of components in z{x}
and p{q} is equal M, = M,. This FN is applicable for f, in
Fig. 4. The sampled phase values ¢,, , are discrete ones with
the set of values given by the particular CPM phase function
B(.). The channel transfer phase ¢, ; is on the other side a
single value with Gaussian perturbations.

1) pu{x} message: The FN message to the z VN has
generally the PDF

= Z/p(ﬂc\q(“,w
— Zp(q(i)) /(5(35 — (¢ + w) mod o )p(w) dw.

q(i))p(w) dw

“
For 02, < 2, we can approximate
§(z — (g+w) mod 27) ~ 8(z — (¢ +w™) mod 2, — Aw)
&)

where w = w® + Aw, w») being the mean value. Then the
update rule for p{z} message is

p(x) = p(g™), (6)
2@ = (¢ +w®) mod o, )
o2 = o2, @®)

2) p{w} message:
generally the PDF

w) = Z/p(xlq(i),w)p(q(”)p(w) da
= rla) / 3
= Z ZP

The FN message to the w VN has

(¢ + w) mod o )p(x) dx

(@9)par(o2) (¢ + w) mod o7 — 29).

€))

This is a weighted sum of shifted Gaussian densities. The
u{w} message is assumed to be a single component one. The
assumption of a single component p1{w} message requires the
ambiguity resolution. We adopt a simple ambiguity resolution
strategy based on selecting the most probable components in
the messages u{q} and u{x}. The update rule is

plw) =1, (10)
w®) = p(argmax; p(a)) _ glare max; p(q(")))7 (11)
o2 = o2, (12)

Figure 6. (q,w,z) FN z = (¢ + w) mod 2.

3) n{q} message: The FN message to the ¢ VN has
generally the probabilities of the values

p(q") = / / p(xlg"™), w)p(a)p(w) drdw

://6(:13 — (¢ + w) mod o )p(z)p(w) dedw
=3 pe) [

(02)((¢") + w) mod 25 — 29))p(w) dw.
(13)

For 02, < 2, we can approximate (similarly as for p{z})

N(o2) (@7 +w) mod 5 — 29)

~ Pa(o2) (Aw + (¢ + w(l)) mod o — x(j)) (14)
where w = w") + Aw. This is Gaussian PDF w.rt. Aw with
the mean a = 2 — (¢ + w™) mod o, and the variance
o2, Similarly, p(w) = PN (2 2y (w—wM) = pr(pz)(Aw) has
the zero mean and the variance or . Then

@) = Zp(l"(j)) /pN(gg)(Aw — a)pn(o2) (Aw) dAw

_ZP @) ;

S (15)
277(02 +02)
The update rule for sample probabilities is

( 2@ (¢ 4w ™) mod 5, )
2(02+02)

( ) :U(J - ) 16
Pla Zp 2n(02 4+ 02) (10)

The set of values {¢(}; is defined a priori. The variance for

. . 2
the discrete message type is o,

B. (z,y) FN y = (x + w) mod o for MGMM messages

We assume FN with 2 edges (Fig. 7). The = edge has mul-
ticomponent MGMM messages p{x}. The y edge is assumed
to be connected to the observation VN. Therefore its input
message is a 1-component MGMM message p{y} with Dirac
delta PDF. The associated operation is y = (z + w) mod o,
where w is zero-mean Gaussian noise with the variance o2 .
In the sense of the equivalent modulo mean messages, it can
be replaced by y = = + w since w is the zero-mean variable
and z and y are having component means in the range [0, 27)
anyway.

The factor is then simply

P(ylz) = Proz) (y — ). (17)
This FN is applicable to fp in Fig. 4.

— 0.
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Figure 7. (z,y) FN y = (z + w) mod 2.

1) p{y} message: The FN message to y VN has PDF

p@%=/pwﬁﬂy—wW@ﬁm
= o) [ o3ty (0= 2w (o~ o) do
ya(i))2
—E:p() b ey
(024702)
=§:pﬂ”pmﬁ+ﬁxy—w@) (18)
The update rules are
(y?) = p(="), (19)
y =2, (20)
o =024o0.. 1)

2) p{x} message: The p{y} message is assumed to stem

from the observation VN, thus p(y) = 6(y — y)). Then
o) = [ puloln(v)
:/M%M*m@ym@- (22)
The update rules are
y={b =t 23)
0, otherwise

2@ =y, (24)
o2 =0. (25)

C. (wy,wq,w3)VN for 1-component MGMM messages

We assume VN with 3 connected edges with the messages
p{w b, p{ws}, p{ws}. All messages are assumed to be 1-
component MGMM ones. This is applicable to the VN ¢, 1.
in Fig. 4.

The general update rule for PDF associated with ws is (the
VN is completely symmetric)

(1)

p(ws) = Apn(oz, ) (ws — wy ")par(oz, ) (ws — wi)  (26)

where A is a normalization scaling factor set to have
J p(ws3) dws = 1. The PDF p(ws3) can be easily interpreted as
a cut over the line w; = w» in a 2-dimensional Gaussian PDF

with the mean [w%l),wém] and variances in the first and the
second dimension 0’,3)1, , respectively. The resulting PDF is

1
032+W§ 102 )/(02,+

,)- The update

again Gaussian and has the mean (w, )
2 2

oz, ) and the variance (owagjl)/( on, + o,

equation is then
(1) o2, +w(1) 2

w g,
w) = ATz T @7
, T 00,
2 2
g,,. 0
aizggﬁ%. (28)
UJQ wq

VI. CONCLUSIONS

We have developed a framework for FG/SPA algorithm for
the CPM class of modulations with the phase discriminator
receiver. We have found canonical distributions for mixture
discrete/continuous variables that allow efficient construction
of the messages and the corresponding FN and VN update
rules. The idea heavily stands on the usage of the compo-
nent modulo mean approximation of the true distributions. It
overcomes the problem of the circular modulo 27 operations
by applying the modulo operation only on the variable means
while leaving the Gaussian tails to extend out of the [0, 2m)
range in a linear manner. This keeps the update rules simple
(due to the Gaussian variables not distorted by the circular
operations). The presented framework allows the incorporation
of the CPM modulation and the phase discriminator receiver
processing as a part of overall FG comprising also the serially
concatenated code. The evaluation of this overall system is
outside of the scope of this paper.
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