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Abstract-In this paper, an analytical approach to performance 

analysis of vertical Bell laboratories layered space time (V-BLAST) 
detection with optimal ordering for systems with two transmit 
antennas is presented. The post-detection signal-to-noise-ratio 
(SNR) at each stage is derived and the symbol error probabilities 
(SEP) of the signals are then given in closed-form. The analysis 
takes into account the effects of optimal ordering, imperfect channel 
estimation and error propagation, which were rarely considered in 
the literature due to the difficulties in evaluation. The accuracy of 
the analysis is demonstrated by Monte-Carlo simulations.  
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I. INTRODUCTION 

The vertical Bell laboratories layered space time (V-BLAST) 
detection algorithm [1] is the first and still popular non-linear detection 
algorithm for multiple-input multiple-output (MIMO) receivers, due to 
its low implementation complexity. A number of studies on its 
performance analysis have been reported in [2 - 6]. The solutions found 
are limited in some way, since they are generally derived based on 
assumptions that decisions in previous stages are correct [2, 3], the 
channel is perfectly estimated [2 - 5] and/or no ordering is adopted [4], 
while the work in [6] uses an assumption that an error in one stage will 
cause an error in its following stage with probability one. However, 
these assumptions usually do not fit into the real situation. Furthermore, 
in order to mitigate the effect of error propagation, optimal ordering 
based on the post-detection signal-to-noise-ratio (SNR) is generally 
adopted. The presence of errors and the adoption of the optimal ordering 
would significantly affect the performance of V-BLAST detection. It is 
thus of great interest to analyze the performance of V-BLAST detection 
simultaneously taking into account the error propagation, channel 
estimation errors as well as the optimal ordering. Such analyses, 
especially optimal ordering, were rarely considered in the literature. 

In this paper, an analytical approach is presented to evaluate the 
symbol error probability (SEP) of V-BLAST detection with optimal 
ordering. The simplest system with two transmit antennas are 
considered. By modeling the channel estimation errors and the decision 
error as equivalent noises, the post-detection SNR at each detection 
stage is developed and the SEPs of the two transmitted signals after 
optimal ordering are then sequentially derived in closed-form. The 
accuracy of this analytical approach is finally demonstrated by Monte 
Carlo simulations.  

II. SYSTEM MODEL AND V-BLAST DETECTION 

A. System model with imperfect channel estimation 

For a MIMO system with two transmit and rN  receive 
antennas ( 2rN ≥ ), the base-band received signal vector is given 
by 

y = Hx + n , (1) 
where 1[ , , ]

r

T
Ny y=y  and 1 2[ , ]Tx x=x  are the received signal 

vector and the transmitted signal vector, respectively; superscript 
T  represents matrix transpose; H  is an 2rN ×  channel matrix, 
whose elements are independently and identically distributed 
(i.i.d.) complex Gaussian random variables with zero mean and 
unit variance ( 2 1hσ = ); 1[ , , ]

r

T
Nn n=n  is the noise vector with 

each element being i.i.d. complex Gaussian variable with zero 
mean and variance 2

nσ . Let C  represent the constellation of the 
transmitted signals. It is assumed that all the constellation 
symbols have equal probability. To simplify the derivation, 
quadrature phase shift keying (QPSK) modulation is assumed 
here and this analysis can be easily extended to the system using 
other modulation schemes.  

Denoting Ĥ  to be the estimated channel matrix, the elements 
of Ĥ  are i.i.d. complex Gaussian variables with zero mean and 
variance 2

ĥ
σ . H  can be written as [7] 

ˆ,
ˆ

h h
ρ= + ΔH H H , (2) 

where hhhhh c ˆˆ,ˆ, σρ = , hhc ˆ,  is the correlation coefficient 
between the corresponding elements of Ĥ  and H , ˆ,

0 1
h h

c< ≤ ; 
ΔH  represents the channel estimation error matrix and its 
elements are i.i.d. complex Gaussian variables with zero mean 
and variance 2 2

ˆ,1h h hcσ Δ = − . Under any given SNR, ˆ,h hρ  and 
hhc ˆ,  are assumed to be known at the receiver [8]. 

Substituting (2) into (1) yields  

( )ˆ ˆ, ,
ˆ ˆ

h h h h
ρ ρ= + Δ + = +y H H x n Hx u , (3) 

where = Δ +u Hx n . It is clear that given x , the elements of u  
are complex Gaussian variables [9] with zero mean and variance 

( )2 2 2
ˆ,1u s nh hE cσ σ= − + , where 2 2

1s ii
E x

=
= ∑  denotes the total 

transmit power. 

B. V-BLAST detection with optimal ordering 

It is shown in [10] that the optimal ordering rule is to detect 
the transmitted signals according to the energy at the receiver in 
decreasing order. Here we adopt this ordering rule and the 
detection order is accordingly determined by the norm of each 
column of the estimated channel matrix. Let ˆ

ih  represent the thi  
column of Ĥ  and ˆ

ih  represent the norm of ˆ
ih . Assume that 

( ) ( )1 2
ˆ ˆ

r r≤h h , where ( )2r  is the index of the column vector 
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with larger norm while ( )1r  is the index of the column vector 
with smaller norm. Following the optimal ordering, the detection 
should be performed first on signal ( )2rx  and then on signal 

( )1rx . 
V-BLAST detection can be realized with the aid of QR 

decomposition. Reordering the transmit signals as 
( ) ( )1 2

T

r rx x⎡ ⎤= ⎣ ⎦x , the received signal vector in (3) is rewritten 
as  

( ) ( )

( ) ( )

( )

( )

1, 1 , 1 1
ˆ,

21, 2 , 2

ˆ,

ˆ ˆ

ˆ ˆ
r

r

T

r N r r

h h
rr N r

h h

h h x

xh h
ρ

ρ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

= +

y u

Hx u

, (4) 

where 
( ) ( )

( ) ( )

1, 1 , 1

1, 2 , 2

ˆ ˆ

ˆ ˆ
r

r

T

r N r

r N r

h h

h h

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

H . Let =H QR  where Q  is a 

unitary matrix and R  is an upper triangular matrix. For the 
purpose of detection, a signal vector can be formed as  

( )ˆ ˆ, ,
H H

h h h h
ρ ρ= = + = +z Q y Q Hx u Rx g , (5) 

where H=g Q u  is the noise vector after the matrix 
multiplication. Apparently, each element of g  is independent 
complex Gaussian variable with zero mean and variance 

2 2
g uσ σ=  [11] because that the unitary transform will not change 

the statistic of the noise vector u . By expanding (5), we can get  
( ) ( )

( )

ˆ ˆ1,1 1,2 1 11 2, ,

ˆ 2,2 2 22,

r rh h h h

rh h

r x r x g z

r x g z

ρ ρ

ρ

+ + =

+ =
, (6) 

where ,j ir  is the ( ), thj i  element of R , jz  and jg  are 
respectively the thj  element of z  and g . Given (6), V-BLAST 
detection will be carried out sequentially in two stages as 
follows. At the 1st stage, signal ( )2rx  is detected as  

( ) ( )( )2 2ˆr rx slice x= , (7) 
where ( ) ˆ2 2,22 ,

ˆ
r h h

x z rρ=  and ( )2rx  stands for the decision of 
( )2rx ; symbol ( )slice ⋅  represents the operation to map ( )2

ˆ
rx  to 

the nearest symbol in the constellation. Then at the 2nd stage, the 
interference from ( )2rx  is subtracted from 1z  using the decision 

( )2rx  and the signal ( )1rx  will be detected as 

( ) ( )( )1 1ˆr rx slice x= , (8) 
where ( ) ( )( )ˆ ˆ1 1,2 1,11 2, ,

ˆr rh h h h
x z r x rρ ρ= − . 

C. Statistics of the upper triangular matrix R  

The statistics of the elements in the upper triangular matrix R  
is essential to the SEP analysis. Previous studies have evaluated 
the statistics in [3, 12]. Useful results for the analysis are 
summarized as follows. 1) When no ordering is performed, the 
( ) ( ), thj i j i<  element of R  is complex Gaussian variable with 
zero mean and variance 2

ĥ
σ ; while the squares of the normalized 

diagonal elements, defined as ( )2 2
ˆ, , 1,2i i i h

r iω σ= = , follow the 
central chi-square distribution with the degrees of freedom 
equals to ( )2 1rN i− + . 2) The optimal ordering will mainly 

change the statistics of the diagonal elements. The probability 
density function (p.d.f) of 1ω  and 2ω  after optimal ordering are 
respectively given by [3] 

( ) ( )
( )

1
11 1

1 10

2 exp 2 1
1 ! !

r
r

N
N k
k

r

p
N k

ω ω
ω ω

−
−

=

− ⎛ ⎞= ⎜ ⎟− ⎝ ⎠
∑  (9) 

and 
( )

( )

( )

( )

2

22
2 1

2 21
0 0

exp
2

1 11 ! exp 2 2
!2

r

r

N
N k

m m
r k

k m

p

N
m

ω

ω
ω

ω ω

−
−

+
= =

⎡ ⎤−
⎢ ⎥= ⎢ ⎥− − −⎢ ⎥⎣ ⎦

∑ ∑
. (10) 

III. SEP ANALYSIS 

A. SEP of signal ( )2rx   in the 1st stage: ( ) ( )( )2 2r rP x x≠   

At the 1st detection stage, signal ( )2rx  is detected as 
( ) ( )( )2 2ˆr rx slice x= . The post-detection SNR can be calculated by 

( ) ( )
2 2

2 2 2 2 2
ˆ ˆ2 2,2 22 2, ,g ur rh h h h
r x c xγ ρ σ ω σ= = . (11) 

It follows that given ( )2rx  and 2ω , the SEP for QPSK is written 
as [9] 

( ) ( ) ( )( ) ( )

( ) ( )
( )

2 22 2 2

2
2 2

23 4 2 2 2
ˆ 2 2,0

,

2

1 exp 2 sin

r r r

urh h

p x x x G

Q Q

c x d
π

ω γ

γ γ

ω σ θ θ
π

≠ =

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫

, (12) 

where ( ) ( )21 2 exp 2
A

Q A t dtπ
∞

= −∫ . Equation 
( ) ( ) ( )3 42 2

0
2 1 exp 2sinQ A Q A A d

π
π θ θ− = ⋅ −∫  [13] is used in (12). It 

should be noted that the function ( )G ⋅  depends on the 
modulation scheme. It is straight forward to apply this method to 
the system using other modulation schemes by altering ( )G ⋅ . By 
averaging (12) with respect to the statistics of ( )2rx  and 2ω , the 
average SEP can be numerically evaluated as 

( ) ( )( )
( )( ) ( ) ( ) ( )( ) ( )

( )2

2 2

2 2 22 2 2 20
,

r

r r

r r r r
x C

P x x

p x p x x x p dω ω ω
∞

∈

≠

= ≠∑ ∫
. (13) 

Applying (10) and (12) into (13), the SEP of the signal in the 
1st stage will be obtained. 

B. SEP of the signal ( )1rx  in the 2nd stage: ( ) ( )( )1 1r rP x x≠  

At the 2nd detection stage, the SEP ( ) ( )( )1 1r rP x x≠  can be 
expressed as 

( ) ( )( )
( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

1 1

1 1 2 2 2 2

1 1 2 2 2 2

1

r r

r r r r r r

r r r r r r

P x x

P x x x x P x x

P x x x x P x x

≠

⎡ ⎤= ≠ = − ≠⎢ ⎥⎣ ⎦

+ ≠ ≠ ≠

, (14) 
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where 
( ) ( ) ( ) ( )( )1 1 2 2r r r rP x x x x≠ =  and 

( ) ( ) ( ) ( )( )1 1 2 2r r r rP x x x x≠ ≠  represent the 

SEP of  ( )1rx  under the condition of ( ) ( )2 2r rx x=  and ( ) ( )2 2r rx x≠  
respectively. Here the error propagation is effectively modeled 
by introducing conditional SEPs. Next, the conditional SEPs will 
be derived. 

B.1 The conditional SEP ( ) ( ) ( ) ( )( )1 1 2 2r r r rP x x x x≠ =  

Recall 
( ) ( )( )1 1ˆr rx slice x=  in (8), where 

( ) ( )( )ˆ ˆ1 1,2 1,11 2, ,
ˆr rh h h h
x z r x rρ ρ= − . 

Under the condition of ( ) ( )2 2r rx x= , it follows from (6) that 

( )
( )ˆ 1,1 11,

1
ˆ 1,1,

rh h
r

h h

r x g
x slice

r

ρ
ρ

⎛ ⎞+
⎜ ⎟=
⎜ ⎟
⎝ ⎠

. (15) 

Given (15), the post-detection SNR can be evaluated as 

( ) ( ) ( ) ( )2 2

2 2
2 2 2 2 2

ˆ ˆ1, 1,1 11 1, ,r rx x g ur rh h h h
r x c xγ ρ σ ω σ= = = . (16) 

It follows that the SEP conditioned on ( )1rx , 1ω  and ( ) ( )2 2r rx x=  
is given as 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( )

2 21 1,1 1 1 2 2

23 4 2 2 2
ˆ 1 1,0

, ,

1 exp 2 sin

r rx xr r r r r

urh h

p x x x x x G

c x d
π

ω γ

ω σ θ θ
π

=≠ = =

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫

. (17) 

By averaging (17) with respect to the statistics of ( )1rx  and 1ω , 
the average conditional SEP ( ) ( ) ( ) ( )( )1 1 2 2r r r rP x x x x≠ =  is then 
obtained using (9) and (17) as 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )1

1 1 2 2

1 1 11 1 1 1 2 20
, ,

r

r r r r

r r r r r r
x C

P x x x x

p x p x x x x x p dω ω ω
∞

∈

≠ =

= ≠ =∑ ∫
. (18) 

B.2 The conditional SEP ( ) ( ) ( ) ( )( )1 1 2 2r r r rP x x x x≠ ≠  

According to (6) and (8), under the condition ( ) ( )2 2r rx x≠ , the 
decision for ( )1rx  is made as 

( )
( ) ( )

( )

ˆ ˆ1,1 1,2 11 2, ,
1

ˆ 1,1,

ˆ 1,1 11,

ˆ 1,1,

r rh h h h
r

h h

rh h

h h

r x r x g
x slice

r

r x v
slice

r

ρ ρ
ρ

ρ
ρ

⎛ ⎞+ Δ +
⎜ ⎟=
⎜ ⎟
⎝ ⎠
⎛ ⎞+
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, (19) 

where ( ) ( ) ( )2 2 2r r rx x xΔ = −  and ( )ˆ1 1,2 12, rh h
v r x gρ= Δ + . It follows 

that given ( )2rxΔ , 1v  is a complex Gaussian variable with zero 
mean and variance 

( )
2

2 2 2
ˆ 2,v urh h

c xσ σ= Δ + . Since the error occurs in 
adjacent points in the constellation with highest probability, 

( )
2

2rxΔ  can be approximated as 
( ) ( )( ) ( ){ }2 2

2
2 2 , 2minr r c rx d E xαΔ ≈ =  

where 
( )

2
2 ,r cd  represents the minimum square Euclidean distance 

(SED) between ( )2rx  and its constellation neighbors and 
( ){ }2

2rE x  
stands for the average symbol energy of ( )2rx . α  varies with the 
modulation scheme. For QPSK modulation, 2α = .  

From (19), the post-detection SNR under the condition of 
( ) ( )2 2r rx x≠  becomes 

( ) ( ) ( ) ( )2 2

2 2
2 2 2 2 2

ˆ ˆ1, 1,1 11 1, ,r rx x v vr rh h h h
r x c xγ ρ σ ω σ≠ = = . (20) 

Accordingly, the SEP conditioned on ( )1rx , 1ω  and ( ) ( )2 2r rx x≠  
is expressed as 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( )

2 21 1,1 1 1 2 2

23 4 2 2 2
ˆ 1 1,0

, ,

1 exp 2 sin

r rx xr r r r r

vrh h

p x x x x x G

c x d
π

ω γ

ω σ θ θ
π

≠≠ ≠ =

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫

. (21) 

It follows from (9) and (21) that the average conditional SEP 
( ) ( ) ( ) ( )( )1 1 2 2r r r rP x x x x≠ ≠  is equal to 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( )1

1 1 2 2

1 1 11 1 1 1 2 20
, ,

r

r r r r

r r r r r r
x C

P x x x x

p x p x x x x x p dω ω ω
∞

∈

≠ ≠

= ≠ ≠∑ ∫
. (22) 

Now, the SEP 
( ) ( )( )1 1r rP x x≠  can be obtained by substituting (13), 

(18) and (22) into (14). 

IV. NUMERICAL AND SIMULATION RESULTS 

A system with two transmit antennas and four receive 
antennas ( 4rN = ) is taken as an example. Unit power is 
allocated to both transmit antennas ( { } { }2 2

1 2 1E x E x= = ). The 
channel gains are randomly generated complex Gaussian 
variables with zero mean and unit variance. Perfect channel state 
information (CSI) and imperfect CSI at the receiver are assumed 
respectively. To study the effects of ordering, the results for the 
V-BLAST detection without ordering will also be shown for 
comparison (the performance analysis for V-BLAST detection 
without ordering is carried out but not presented for brevity). 
Since there is no direct mapping from the stage index to the 
transmit antennas when optimal ordering is adopted, the overall 
SEP performance (an average performance of the transmitted 
signals) is also meaningful. In the following, the SEP results will 
be given in terms of the average transmit power to the average 
noise power ratio ( 21 nSNR σ= ). The simulation results are 
obtained by averaging over 610  Monte Carlo realizations. 

A. Comparisons between the analytical and simulation results 

The analytical and simulation SEPs under perfect CSI and 
imperfect CSI are shown in Fig. 1 and Fig. 2, respectively. Note 
that for the situation with perfect CSI, 2

ˆ,
1

h h
c = . It is observed that 

the analytical results are very close to the simulation ones. It is 
demonstrated that the proposed analysis can yield accurate 
results.  
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Fig. 1 Analytical and simulation SEPs under perfect CSI. 
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Fig. 2 Analytical and simulation SEPs under imperfect CSI. 

B. The effects of optimal ordering 

The effects of optimal ordering on the cumulative density 
functions (c.d.f) of 2ω   and 1ω  (recall that 2ω  and 1ω  are the 
squares of the normalized diagonal elements 2,2r  and 1,1r  
respectively) are shown in Fig. 3. It is shown that by adopting 
the optimal ordering, the distribution of 2ω  has been right 
shifted while on the contrary, the distribution of 1ω  has been left 
shifted. It means that, from the statistical point of view, the 
optimal ordering will increase the post-detection SNR at the 1st 
stage (see (11)), but decrease the post-detection SNR at the 2nd 
stage (see (16) and (20)). Therefore, from (12), it is expected that 
the performance at the 1st stage will be improved. However, the 
performance at the 2nd stage is not such straight-forward. 
Equation (14) implies that, on one hand, the SEP at the 2nd stage 
will be degraded because of the decrease of post-detection SNR; 
on the other hand, it will be improved by the mitigation of the 
error propagation from the 1st stage. 

0 2 4 6 8 10
0

0.5

1

ω
2

c.
d.

f

Without ordering
With ordering

0 2 4 6 8 10
0

0.5

1

ω
1

c.
d.

f

Without ordering
With ordering

 
Fig. 3 The effects of ordering on the c.d.f of 2ω  and 1ω . 

The effects of ordering on the SEP performance of the 1st and 
2nd stages are shown in Fig. 4 and Fig. 5 respectively. And the 
effect of ordering on the overall SEP performance is then 
presented in Fig. 6. Since the analytical results are very close to 
the simulation ones, here only the analytical results are shown 
for both detections without and with ordering.  

It is observed that: 1) as expected, the SEP performance at the 
1st stage is improved by optimal ordering irrespective of SNR; 2) 
the effect of ordering on the SEP at the 2nd stage varies with 
SNR. The ordering degrades the SEP performance at the 2nd 
stage under low SNR, while it improves the performance when 
SNR is high. It is inferred that under low SNR, the decrease of 
the post-detection SNR dominates the effect of ordering and thus 
the SEP performance is degraded, whereas the mitigation of 
error propagation dominates under high SNR and thus the SEP 
performance is improved; 3) the overall SEP performance is 
improved by the ordering procedure. The improvement is not 
significant in low SNR region, but it is considerable in high SNR 
region. 
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Fig. 4 Effect of ordering on the SEP performance at the 1st stage. 
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Fig. 5 Effect of ordering on the SEP performance at the 2nd stage. 
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Fig. 6 Effect of ordering on the overall SEP performance. 

V.  CONCLUSIONS 

This paper has presented the SEP analysis of the V-BLAST 
detection with optimal ordering for systems with two transmitted 
antennas. The post-detection SNR at each detection stage has 
been derived and the SEPs of the two stages have been given in 
closed-form. The paper has modeled the effect of imperfect 
channel estimation as well as the effect of error propagation 
whereas the existing methods have difficulty in obtaining a 
solution. Monte-Carlo simulations have demonstrated that the 
proposed analysis yield accurate results. 
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