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Abstract— In this paper, we derive closed-form symbol error
rate (SER) expressions for orthogonal frequency division multi-
plexing (OFDM) systems with residual carrier frequency offset
(CFO). We treat CFO/residual CFO as a random parameter
in this study. In particular, we consider channel-independent as
well as channel-dependent random residual CFOs. We derive
SER expressions for 4-quadrature amplitude modulation (4-
QAM) OFDM systems in the cases of additive white Gaussian
noise (AWGN) and frequency flat Rayleigh fading channels. The
simulation results are provided to verify the accuracy of the new
SER expressions.

I. INTRODUCTION

In the performance analysis of OFDM systems, one ap-
proach is to treat inrer carrier interference (ICI) as a Gaussian
process based on the central limit theorem [1] which does
not yield satisfactory results at high signal to noise ratios
(SNR) [2]. In contrast, the approach followed in [3] uses
the characteristic function and Beaulieu series to derive exact
BER expressions for AWGN channel in the presence of ICI
where the probability of error is expressed conditioned on the
normalized frequency offset. In [4], the authors have derived
exact BER/SER expressions for AWGN, frequency-flat and
frequency-selective channels with fixed CFO error. Recently,
[5] analyzed error performance of BPSK OFDM systems with
a uniform CFO which is assumed to be independent of the
channel. Generally, after CFO estimation and compensation,
the residual CFO becomes channel-dependent. Hence, error
performance of OFDM systems with channel-dependent ran-
dom residual CFO is of practical interest.

In this paper we present an approach for SER analysis
of 4-QAM OFDM systems with a random (residual) CFO.
Procedures discussed in [6] for M-QAM are adapted accord-
ingly for our derivations discussed here. We consider both
scenarios where the (residual) CFO is independent of the
channel and dependent on the channel. The technical contents
and the structure of this paper are as follows. In Section
II we present the system model. In Section III we derive
closed-form SER expressions for AWGN and frequency-
flat Rayleigh fading channels with a channel-independent
uniformly-distributed (residual) CFO. Section IV addresses
the channel-dependent CFO case where we obtain the SER
expression for a frequency-flat Rayleigh fading channel with
a random residual CFO which, conditioned on the channel,
is Gaussian-distributed. The SER analyses in Section III and
IV assume that the perfect channel knowledge is available at

the receiver. Section V provides simulation results to verify
our theoretical results. Maximum likelihood CFO estimators
are included in our simulation to evaluate the applicability of
our analytical results to practical systems. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL AND ANALYSIS

We assume quasi-static frequency selective fading channels.
We use the following notations. (.)H and (.)T denote the
Hermitian transpose and transpose operations respectively.
Further |z|, � z, �(z) and �(z) denote the absolute value,
angle, real and imaginary components of the complex quantity
z, respectively. In the presence of normalized (by the sub-
carrier spacing) CFO v, the received signal vector r is given
by [7]

r = Γ(v)Sh + w =
√
NΓ(v)FHHc + w (1)

where r = [r0 r1 · · · rN−1]T , c = [c0 c1 · · · cN−1]T ,
h = [h0 h1 · · · hL−1]T , w = [w0 w1 · · · wN−1]T ,
Γ(v) = diag[1 ej2πv/N · · · ej2π(N−1)v/N ] and H =
diag {FLh} = diag[H0 H1 · · · HN−1]T . The N -
point unitary discrete Fourier transform (DFT) matrix
is denoted by F = [f0f1 . . .fN−1] where fk =
[1, e−j2πk/N , · · · , e−j2π(N−1)/N ]T /

√
N . We define FL =

[f0f1 · · ·fL−1]. Here {hn} denote the channel impulse re-
sponse (CIR) coefficients and L is the number of CIR taps.
{wn} are independent and identically-distributed (i.i.d.) zero-
mean circularly-symmetric complex Gaussian noise samples
each having a variance of σ2 per dimension. {cn} are inde-
pendent equi-probable frequency domain transmit symbols and
the corresponding time-domain signal vector is given by s=
[s0 s1 · · · sN−1]

T = FHc. The time-domain signal matrix in
(1) is defined by [S]k,n=sk−n, 0 ≤ k ≤ N−1, 0 ≤ n ≤ L−1
with sk= 1√

N

∑N−1
n=0 cne

j2πnk/N for k = L− 1, · · · , N − 1.
Let v̂ be the estimated frequency offset, where v̂=v+vΔ. We

denote the residual CFO as vΔ. So we can write the received
symbol for the kth sub-carrier with the transmitted symbol ck
as [5]

Rk =
√
NckHkI

′
0 +

√
N

∑N−1
l=0,l �=k clHlI

′
l−k + n′k

k = 0, 1, . . . , N − 1
(2)

where {n′k} are i.i.d. random variables having the same
statistical properties as {wn} and
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I ′l−k ≈
{

πvΔ
N [− cot(π(l−k)

N ) + j] if l �= k
1 − jπN−1

N vΔ if l = k.
(3)

III. PERFORMANCE ANALYSIS WITH

CHANNEL-INDEPENDENT RESIDUAL CFO/CFO

For the channel-independent (residual) CFO case, SER on
a particular (say 0th) sub-carier of the ith OFDM symbol
conditioned on the other N−1 sub-carrier symbols is obtained
by solving the following

Ps (ξ|ai) =
∫ ∫

Ps (ξ|vΔ,h,ai) fv(vΔ)f(h)dvΔdh (4)

where fv(vΔ) and f(h) are pdfs of residual CFO/CFO
and channel respectively, and Ps (ξ|vΔ,h,ai) represents
the SER conditioned on vΔ, h and ai. Here ai =
[c1,i c2,i · · · cN−1,i]T . In the following sections A and
B, we consider the uniformly distributed CFO, while in the
section C we address a Gaussian-distributed CFO. A square
M -QAM modulation can be considered as a combination of
two quadrature (say I and Q)

√
M -PAM (pulse amplitude

modulaion) schemes, each with half the total power. Since a
correct QAM decision is made only when a correct decision
is independently made on each of these PAM modulations,
then the symbol error probability for a square QAM can be
expressed as [6]

Ps (error)|M−QAM,Es
= PI√M,Es

2
+ PQ√

M,Es
2−PI√M,Es

2
× PQ√

M,Es
2
,

(5)

where PIM,Es
= [Ps (error)|M−PAM,Es

]I and PQ =
[Ps (error)|M−PAM,Es

]Q. This holds true even for the case
when the symbol error probability is conditioned on some
random parameters. Writing the equation (2) with some slight
modifications to the symbols ck’s, we can express the received
symbol on the kth sub-carrier for M -PAM OFDM as

Rk =
√
εsNAkHkI

′
0 +

√
εsN

∑N−1
l=0,l �=k AlHlI

′
l−k

+n′k; k = 0, 1, . . . , N − 1,
(6)

where εs = 3Es

M2−1 , Am ∈ {−(M − 1)..− 1, 1..(M − 1)}
and Es is the symbol energy. Now consider the M -QAM
OFDM signal with the signal points ck = cIk + jcQk with
cIk, cQk ∈ {−(M − 1)..− 1, 1..(M − 1)}. Thus we can write
the equivalent two quadrature components of M -QAM signal
on the I and Q-axis of the complex plane for the zeroth sub-
carrier as

YI =
√
εs|α0|�(c0I ′0) +

√
εsN

∑N−1
l=1 �(ζclHlI

′
l) + nI

YQ =
√
εs|α0|�(c0I ′0) +

√
εsN

∑N−1
l=1 �(ζclHlI

′
l) + nQ,

(7)

where YI = �(R0), YQ = �(R0), α0 =
√
NH0, ζ = e−j � α0

and nI , nQ are i.i.d. real Gaussian random variables with zero
mean and variance σ2.

A. AWGN Channel with Uniformly Distributed CFO

For the AWGN channel, (7) reduces to

YI =
√
εs�(c0I ′0) +

√
εs

∑N−1
l=1 �(clI ′l) + nI

YQ =
√
εs�(c0I ′0) +

√
εs

∑N−1
l=1 �(clI ′l) + nQ.

(8)

For an M-QAM OFDM system with M = 4 and a
particular symbol c∗0 on the zero-th sub-carrier, we have
PIM,Es

|ai, vΔ, c∗0 = PIM,Es
|ai, vΔ and PQM,Es

|ai, vΔ, c∗0
= PQM,Es

|ai, vΔ. Then we can derive PIM,Es
|ai, vΔ and

PQM,Es
|ai, vΔ using (8) as follows [6, eq.(8.3)]:

PIM,Es
|ai, vΔ = M−1

M Q
(√

εs
[�(c∗0I

′
0)−πvΔ

N �(Xi)]

σ

)
+M−1

M Q
(√

εs
[�(c∗0I

′
0)+

πvΔ
N �(Xi)]

σ

)
.

(9)

PQM,Es
|ai, vΔ = M−1

M Q
(√

εs
[�(c∗0I

′
0)−πvΔ

N �(Xi)]

σ

)
+M−1

M Q
(√

εs
[�(c∗0I

′
0)+

πvΔ
N �(Xi)]

σ

)
.

(10)
Here Xi=

∑N−1
l=1 cl,i[− cot(πlN ) + j]. Without loss of gen-

erality, for the 4-QAM case c∗0 is taken to be equal to
(1+ j). Using (5), (9) and (10), we can derive the conditional
SER for 4-QAM OFDM as given in (11) where αIi =
π
[
N−1
N − �(Xi)

N

]
, βIi = π

[
N−1
N + �(Xi)

N

]
, αQi = π

[
N−1
N −

�(Xi)
N

]
, βQi = π

[
N−1
N + �(Xi)

N

]
and 2γ = 2Eb

N0
= Es

N0
.

Eb and Es represent bit energy and symbol energy, respec-
tively, and the complex noise variance is denoted by N0 =
2σ2. Now we define I1(μ, λ) =

∫
Q (μ+ λvΔ) fv(vΔ)dvΔ,

I2(μ, λ1, λ2) =
∫
Q (μ+ λ1vΔ)Q (μ+ λ2vΔ) fv(vΔ)dvΔ

and I3(μ, λ, ω1, ω2) =
∫ ω2

ω1
Q (μ+ λx) e−x

2/2dx where
fv(vΔ) is considered to be a uniform distribution over [−b, b]
and μ is non-zero. Then we can derive

I1(μ, λ) =

⎧⎪⎪⎨
⎪⎪⎩

Q (μ) if λ = 0
1

2bλ

[
(μ+ λx)Q (μ+ λx)

− 1√
2π
e−

(μ+λx)2

2

]b
−b

if λ �= 0

(12)

I2(μ, λ1, λ1) =

⎧⎨
⎩

[
gI2(x, μ, λ1, λ2)

]b
−b

+I3 if λ1, λ2 �= 0
I1(μ, λ1).I1(μ, λ2) else

(13)

where I3 = μ(λ1−λ2)√
8πλ1λ2b

I3

(
μ(λ1−λ2)

λ1
, λ2
λ1
, μ − λ1b, μ + λ1b

)
,

[
g(x)

]b
−b = g(b) − g(−b) and g is any arbitrary function

Ps (ξ|ai, vΔ) = 1
2Q

(√
2γ[1 + αIivΔ]

)
+ 1

2Q
(√

2γ[1 + βIivΔ]
)

+ 1
2Q

(√
2γ[1 − αQivΔ]

)
+ 1

2Q
(√

2γ[1 − βQivΔ]
)

− 1
4Q

(√
2γ[1 + αIivΔ]

) ·Q (√
2γ[1 − αQivΔ]

) − 1
4Q

(√
2γ[1 + αIivΔ]

) ·Q (√
2γ[1 − βQivΔ]

)
− 1

4Q
(√

2γ[1 + βIivΔ]
) ·Q (√

2γ[1 − αQivΔ]
) − 1

4Q
(√

2γ[1 + βIivΔ]
) ·Q (√

2γ[1 − βQivΔ]
)

(11)
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defined over [−b, b]. gI2(x, μ, λ1, λ2) is given by (14). Using
(12) and (13), we can obtain the SER conditioned on ai as
given in (15). Averaging over all ai combinations leads to the
SER

Ps (ξ) = 1
22(N−1)

∑
i Ps (ξ|ai) , (16)

where
∑
i ≡ ∑

c1∈A
∑
c2∈A ....

∑
cN−1∈A and A =

{
1 +

j, 1 − j,−1 + j,−1 − j
}

.

B. Frequency-Flat Rayleigh Fading Channel with Uniformly
Distributed CFO

When the frequency flat Raleigh fading is concerned, the
equivalent quadrature components in (7) reduce to

YI =
√
εs|α0|�(c0I ′0) +

√
εs|α0|

∑N−1
l=0 �(ζclI ′l) + nI

YQ =
√
εs|α0|�(c0I ′0) +

√
εs|α0|

∑N−1
l=0 �(ζclI ′l) + nQ.

(17)
Following the same set of arguments we can easily de-
rive the conditional SER, Ps (ξ|ai, vΔ, |α0|), replacing

√
2γ

in (11) with
√

2γ|α0|. Here we use the distribution of
|α0|, fα0(|α0|) = |α0|

σ2
R

exp
( − |α0|2

2σ2
R

)
where α0 is a

zero-mean complex Gaussian random variable with a vari-
ance of σ2

R per dimension. Now we define the integrals
T1(β) =

∫ b
−b

∫ ∞
0
Q

(
a(β, vΔ)|α0|

)
fα0(|α0|)fv(vΔ)d|α0|dvΔ

and T2(α, β, vΔ) =
∫ ∞
0
Q

(
a(α, vΔ)|α0|

)
Q

(
a(β, vΔ)|α0|

) ×
fα0(|α0|)d|α0| where a(β, vΔ) =

√
2γ(1 + βvΔ). Then we

can solve the above integrations to obtain

T1(β) =

⎧⎪⎨
⎪⎩

1
2 −

√
2γσR

2
√

1+2γσ2
R

if β = 0

1
2 −

[√
1+2γσ2

Rx
2
]1+βb

1−βb

4
√

2γβσRb
if β �= 0

(18)

and T2(α, β, vΔ) is given by (19) with the function
m(α, vΔ) = σR√

1+σ2
Ra

2(α,vΔ)
. Now we want to find T2(α, β)

which is given by T2(α, β) =
∫ b
−b T2(α, β, vΔ)fv(vΔ)dvΔ.

For notational simplicity, we denote T2(α, β) as

T2(α, β) = 0.25 − T2′(α) − T2′(β) + T2′(α, β) + T2′(β, α)
(20)

where T2′(α) =
∫ b
−b

a(α,vΔ)m(α,vΔ)
8b dvΔ, T2′(α, β) =∫ b

−b
a(α,vΔ)m(α,vΔ)

4πb cot−1
[

1
a(β,vΔ)m(α,vΔ)

]
dvΔ and fv(vΔ) =

1
2b : vΔ ∈ [−b, b]. After some mathematical manipulations it
can be easily shown that T2′(α) = 1

4 − T1(α)
2 and

T2′(α, β) =

⎧⎪⎨
⎪⎩

[
g1T2′ (x, α, β)

]1+αb
1−αb if α �= 0[

g2T2′ (x, α, β)
]b
−b if α = 0, β �= 0

1
2πρ cot−1(ρ) if α = 0, β = 0

(21)

where g1T2′ (x, α, β) and g1T2′ (x, α, β) are defined in (22)

and (23), respectively, η = β
α , γ̄ =

√
2γσR, ρ =

√
1+γ̄2

γ̄ ,

Q = η(1−η)
1+η2 and R =

√
1+η2+γ̄2(1−η)2
γ̄(1+η2) . Now we have derived

the expressions for T1(β) and T2(α, β), and using (18) and
(20) we can easily write the SER conditioned on ai, Ps (ξ|ai),
as given in (24). Averaging over all ai combinations leads to
the SER which is given in (16).

C. AWGN and Frequency-Flat Rayleigh Fading Channels with
Perfect Power Control

To evaluate (4), we should know the pdf of vΔ. As far as
maximum likelihood (ML) estimators are concerned, we can
observe the nature of the pdf of vΔ conditioned on the channel.
Asymptotic properties of the maximum likelihood estimate
(MLE) indicate that if the regularity conditions are satisfied,
then the MLE of the unknown parameter θ is asymptotically
Gaussian-distributed as θ̂ ∼ N (θ, I−1(θ)) where I(θ) is

gI2(x, μ, λ1, λ2) = 1
2bλ2

(
μ+ λ2x

)
Q

(
μ+ λ2x

)
Q

(
μ+ λ1x

) − 1√
8πλ2b

Q
(
μ+ λ1x

)
exp

(
−(μ+λ2x)

2

2

)

− 1√
8πλ1b

Q
(
μ+ λ2x

)
exp

(
−(μ+λ2x)

2

2

)
+ (λ1+λ2)√

8π(λ2
1+λ

2
2)λ1λ2b

exp
(

−μ2(λ1−λ2)
2

2(λ2
1+λ

2
2)

)
Q

(
μ(λ1+λ2)√
λ2

1+λ
2
2

+
√
λ2

1 + λ2
2x

)
.

(14)

Ps (ξ|ai) = 1
2I1(

√
2γ,

√
2γαIi) + 1

2I1(
√

2γ,
√

2γβIi) + 1
2I1(

√
2γ,−√

2γαQi) + 1
2I1(

√
2γ,−√

2γβQi)
− 1

4I2(
√

2γ,
√

2γαIi,−
√

2γαQi) − 1
4I2(

√
2γ,

√
2γαIi,−

√
2γβQi) − 1

4I2(
√

2γ,
√

2γβIi,−
√

2γαQi)
− 1

4I2(
√

2γ,
√

2γβIi,−
√

2γβQi).
(15)

T2(α, β, vΔ) = 1
4 − a(α,vΔ)m(α,vΔ)

2π

(
π
2 − cot−1

[
1

a(β,vΔ)m(α,vΔ)

])
− a(β,vΔ)m(β,vΔ)

2π

(
π
2 − cot−1

[
1

a(α,vΔ)m(β,vΔ)

])

(19)

g1T2′ (x, α, β) = 1
4παbγ̄

√
1 + γ̄2x2 cot−1

[ √
1+γ̄2x2

γ̄(ηx+1−η)

]
− η

√
1+η2+γ̄2(1−η)2
4παbγ̄(1+η2) tan−1

[
x+Q
R

]

+ 1−η
4παb(1+η2) ln

[√
γ̄2(1 + η2)x2 + 2ηγ̄2(1 − η)x+ γ̄2(1 − η)2 + 1

] (22)

g2T2′ (x, α, β) = 1
4πρb

(
x cot−1

[
ρ

1+βx

]
− ρ

β ln
[√

(1 + βx)2 + ρ2

]
+ 1

β tan−1

[
1+βx
ρ

])
(23)

Ps (ξ|ai) = 1
2T1(αIi) + 1

2T1(βIi) + 1
2T1(−αQi) + 1

2T1(−βQi) − 1
4T2(αIi,−αQi) − 1

4T2(αIi,−βQi)
−1

4T2(βIi,−αQi) − 1
4T2(βIi,−βQi) (24)

3



the Fisher information matrix evaluated at the true value of
the unknown parameter [8]. Hence, it is reasonable to use
the conditional pdf of vΔ as f(vΔ|h) = N (0, I−1(θ)) =
N (0, CRB|h) where CRB|h is the Cramer-Rao lower bound
conditioned on the CIR. If we assume perfect power control,
we can say hHSHSh is constant and hence for a receiver
with a CFO estimator, the pdf of the residual CFO can be
considered as a Gaussian pdf independent of the channel
resulting simply f(vΔ|h) = f(vΔ). If we consider arbitrary
training signal samples {sk}, the CRB for v derived for the
ML joint estimation of v and h is given by [9] CRB|h =

N2σ2

4π2hHSHΛ(IN−B)ΛSh
where B=S(SHS)−1SH and Λ =

diag{0, 1, . . . , N −1}. We use this CRB|h in our subsequent
derivations for flat fading Raleigh fading channel.

1) AWGN Channel: For the AWGN channel, (4) simply
reduces to a single integral evaluation and the signal model for
AWGN channel can be obtained from (1) as, r = Γ(v)s+w
where s = [s0s1 . . . sN−1]T is the training signal vector. The
CRB of the CFO estimation for the aforementioned signal
model is given by [10], CRB = N2σ2

4π2sHΛ2s
= Ω. Hence using

the definition of I1(μ, λ) we can easily show that I1(μ, λ) =
Q( μ

1+Ωλ2 ) as fv(vΔ) = N (0,Ω), [11, eq 3.66] and

I2(μ, λ1, λ2) = 1
2π

∫ π
2 −φ1

0
exp

(
−μ2

2b12 sin2 φ

)
dφ

+ 1
2π

∫ π
2 −φ2

0
exp

(
−μ2

2b22 sin2 φ

)
dφ.

(25)

I2(μ, λ1, λ2) cannot be evaluated in closed-form and it shows
similarities to the well known Craig’s formula. For sim-
plicity, define λ1Ω =

√
Ωλ1 and λ2Ω =

√
Ωλ2. So that

b1 =
√
λ2

1Ω + 1, b2 =
√
λ2

2Ω + 1, φ1 = tan−1(a1b1),
φ2 = tan−1(a2b2), a1 = λ2

1Ω−λ1Ωλ2Ω+1√
(λ2

1Ω+1)(λ2
1Ω+λ2

2Ω+1)
and a2 =

λ2
2Ω−λ1Ωλ2Ω+1√

(λ2
2Ω+1)(λ2

1Ω+λ2
2Ω+1)

. Then with some mathematical manip-

ulations we obtain the SER conditioned on ai, Ps (ξ|ai) as
given in (15). Averaging over all ai combinations gives the
SER which is given by (16).

2) Frequency-Flat Rayleigh Fading Channel: When the
frequency-flat fading channel is considered, the CRB|h which
was mentioned previously can be reduced to CRB|α0 =

2N2(
8π2sHΛ(IN−B)Λs

) σ2

|α0|2 = Λ
|α0|2 where α0 is a zero-mean

complex Gaussian random variable with a variance of σ2
R

per dimension. Under the perfect power control, we can
consider that |α0|2 is constant while fixing s. Here Λ was
introduced for simplicity. Thus we have the pdf of residual
CFO f(vΔ|α0) = fv(vΔ) = N (0,Λ). So that using the

conditional SER Ps (ξ|ai, vΔ, |α0|) derived in section B,
CRB|α0 , aforementioned fv(vΔ) and (4), we can derive the
SER, following almost the same set of arguments which were
used in the derivation of SER in Section C-1. The following
parameter changes should be noticed carefully: I1(μ, λ) =
Q( μ

1+Λλ2 ) and parameters in I2(μ, λ1, λ2); b1 =
√
λ2

1Λ + 1,
b2 =

√
λ2

2Λ + 1, φ1 = tan−1(a1b1), φ2 = tan−1(a2b2),
a1 = λ2

1Λ−λ1Λλ2Λ+1√
(λ2

1Λ+1)(λ2
1Λ+λ2

2Λ+1)
, a2 = λ2

2Λ−λ1Λλ2Λ+1√
(λ2

2Λ+1)(λ2
1Λ+λ2

2Λ+1)

where λ1Λ =
√

Λλ1 and λ2Λ =
√

Λλ2. Hence the SER and
the corresponding conditional SER are given by (16) and (15)
respectively.

IV. PERFORMANCE ANALYSIS WITH

CHANNEL-DEPENDENT RESIDUAL CFO

For the channel-dependent residual CFO scenario, the sym-
bol error probability can be expressed as

Ps (ξ) =
∫ ∫

Ps (ξ|vΔ,h) fv(vΔ|h)f(h)dvΔdh. (26)

The closed-form solution to (26) for the frequency-flat
Rayleigh fading channel is presented in the following. How-
ever, solving the above problem for the frequency-selective
case appears to be intractable. The variance of the condi-
tional Gaussian random variable vΔ|α0 for the frequency-flat
Rayleigh fading channel is given by CRB|α0 = Λ

|α0|2 for the
MLE estimator [9] as mentioned before. Then averaging the
conditional SER Ps (ξ|ai, vΔ, |α0|) using fv(vΔ|h) we can
obtain Ps (ξ|ai, |α0|) which is given in (27) where E

{
.
}

is
the statistical expectation with respect to the random variable
X = vΔ|α0|√

Λ
and X ∼ N (0, 1). It is obvious that by observing

the functions I1(μ, λ) and I2(μ, λ1, λ2) in Section C-2, we
can write

Ps (ξ|ai, |α0|) = 1
2I1(

√
2γ|α0|,

√
2γαIi) + ....

....− 1
4I2(

√
2γ|α0|,

√
2γβIi,−

√
2γβQi).

(28)
Next, after integrating Ps (ξ|ai, |α0|) with fα0(|α0|) to
remove the dependency of |α0|, we obtain the condi-
tional SER Ps (ξ|ai) as given in (29). We will de-
fine now I∗1 (t0, t1)=

∫ ∞
0
I1(t0|α0|, t1)fα0(|α0|)d|α0| and

I∗2 (t0, t1, t2)=
∫ ∞
0
I2(t0|α0|, t1, t2)fα0(|α0|)d|α0|. It can be

shown that I∗1 (t0, t1) = [1/2 − t0σR/
√

1 + t20σ
2
R + Λt21]

and with, ε1 = t0σR

b1
, ε2 = t0σR

b2
, ψ1 = tan−1(a1b1), ψ2

= tan−1(a2b2), b1 =
√
t21Λ + 1, b2 =

√
t22Λ + 1, a1 =

t21Λ−t1Λt2Λ+1√
(t21Λ+1)(t21Λ+t22Λ+1)

, a2 = t22Λ−t1Λt2Λ+1√
(t22Λ+1)(t21Λ+t22Λ+1)

where t1Λ

Ps (ξ|ai, |α0|) = 1
2E

{
Q

(√
2γ

[|α0| +
√

ΛαIiX
])}

+ 1
2E

{
Q

(√
2γ

[|α0| +
√

ΛβIiX
])}

........

........− 1
4E

{
Q

(√
2γ

[|α0| +
√

ΛβIiX
])
Q

(√
2γ

[|α0| −
√

ΛβQiX
]) } (27)

Ps (ξ|ai) = 1
2I

∗
1 (
√

2γ,
√

2γαIi) + 1
2I

∗
1 (
√

2γ,
√

2γβIi) + 1
2I

∗
1 (
√

2γ,−√
2γαQi) + 1

2I
∗
1 (
√

2γ,−√
2γβQi)

− 1
4I

∗
2 (
√

2γ,
√

2γαIi,−
√

2γαQi) − 1
4I

∗
2 (
√

2γ,
√

2γαIi,−
√

2γβQi) − 1
4I

∗
2 (
√

2γ,
√

2γβIi,−
√

2γαQi)
− 1

4I
∗
2 (
√

2γ,
√

2γβIi,−
√

2γβQi).
(29)
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=
√

Λt1 and t2Λ =
√

Λt2, I∗2 (t0, t1, t2) given in (30). Sub-
stituting the conditional SER in (29) into (16) will give the
corresponding SER.

V. SIMULATION RESULTS AND DISCUSSION

SER curves when the normalized (residual) CFO is uni-
formly distributed over [−b, b] with b = 0.05 and b = 0.1 are
shown in Fig. 1 for both AWGN and frequency-flat Rayleigh
fading channels. The simulation results for b = 0.05 case
match well with those calculated in (15)and (16), but there
is a slight discrepancy for b = 0.1 case especially at low SER
values. This discrepancy is simply due to the fact that the
small (residual) CFO assumption in the analytical development
is not closely matched by the uniform (residual) CFO with
b = 0.1, and at these low SER values CFO has a more
dominant effect on SER than the noise does. Note that at high
SNR, residual CFO would typically be quite small and hence
the above discrepancy is less likely to happen in practice. As
long as the (residual) CFO is considerably small, our analytical
expressions yield highly accurate results. For flat-fading case,
simulation results agree well with our analytical results for
both b = 0.05 and b = 0.1.

We apply CFO estimation and compensation at the receiver
to show the accuracy of our analytical results for practical
systems. For AWGN channel, we can derive the ML CFO
estimator based on the signal model in [10, eq. 1] and the
ML CFO estimator based on this signal model is used in
the simulation. We use an OFDM system with N = 16
in a quasi-static channel. In our simulation we have one
OFDM preamble/training symbol followed by only one OFDM
data symbol. In our analytical derivation we did not con-
sider the CFO-induced, symbol-index-dependent phase shift of
exp(j2πvΔm(N + Ng)/N) where m is the OFDM symbol
index and Ng is the number of guard samples. We simply
assume that every symbol is phase synchronized so that we
can neglect the above phase shift. The simulation results are
shown in the same Fig. 1 and we observe an excellent match
between the analytical and simulation results.

The results for the frequency-flat Rayleigh fading channel
are shown in Fig. 3 for both channel-independent and channel-
dependent residual CFO cases. We use the CFO estimator
(MLE1) from [9] in this case. The analytical results match
very well with the simulation results.

VI. CONCLUSION

In this paper we have presented SER expressions for 4-
QAM OFDM systems with random (residual) CFO. We have
derived SER expressions of OFDM systems over AWGN and
frequency-flat Rayleigh fading channels for both cases of
channel-independent and channel-dependent random (residual)
CFO. Simulations show how close our analytical results with
the exact results.
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Fig. 1. SER curves for AWGN/frequency-flat Rayleigh fading channel:
subcarriers (N)=8, b=0.1, b=0.05 and SER curves for AWGN channel with
channel-independent (power controlled) residual CFO/CFO: N=16.
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Fig. 2. SER curves for the frequency-flat Rayleigh fading channel with
channel-independent (power controlled) residual CFO/CFO: N=52, and
channel-dependent (no power controlled) residual CFO/CFO: N=32.
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I∗2 (t0, t1, t2) = 1
2 − ψ1+ψ2

2π − ε1
2π
√

1+ε21

(
π
2 − tan−1

[
t0σRa1√

1+ε21

])
− ε2

2π
√

1+ε22

(
π
2 − tan−1

[
t0σRa2√

1+ε22

])
. (30)
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