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Abstract—Today's automotive sensor systems for in-vehicle based by obstacles is not mitigatable likewise. This problem can be traced
target tracking, i.e. radar, lidar, camera, are limited to a field of view pack to the fact that autonomous detection and ranging sensors rest

which is restricted by distance, angle and line-of-sight. Future driver 1 yhe direct reflection of microwave, laser or optical signals and
assistance systems such as predictive collision avoidance or situation-

aware adaptive cruise control require a more complete and accurate thus are limited to the Ii.ne-of-sight zone. _ N

situation awareness in order to detect hazardous and inefficient situations ~ We presented the fusion of autonomous relative position measure-
in time. ) ) o ] ] ) ments and position information provided by V2V communications
Therefore, we introduce multi-target tracking including Vehicle-2-Vehicle in [5] as a possible solution. While this approach is limited to the
communications as a complementing sensor for future driver assistance lative di . . .f inal hicle. thi il
systems. The paper presents first simulation results of our algorithm €lative distance estimation of a single target vehicle, this paper wi
which show promising outcomes. point out the applicability on a real traffic situation with multiple
vehicles in the vicinity.

This is especially important for future predictive driver assistance
systems which have to observe the situation with higher integrity in
Vehicle-2-Vehicle (V2V L I h h order to base the prediction on a sufficiently complete and accurate

ehicle-2-Vehicle ( ) communications allows the exchange Qe,jituation model. This approach will pave the way for situation-aware

information l_Jetween \_/eh'des (mter-_vehlcle commun!catlons) a'?ﬂiver assistance systems that enable a multitude of novel applications
between vehicles and infrastructure (infrastructure-vehicle commugis 4 improvements of already existing applications [6]

catipns). This information can then be ”SeF’ .for instance in driVerSection Il gives an overview on multi-target tracking. Section Il
ags!stance systems. to. improve safety, e”'c'e”CY qnd coqurt iffroduces the integration of V2V communications to multi-target
driving. Novel applications are for instance traffic jam warnin

. S . . . . racking. Section IV describes the implementation of the multi-sensor
cooperative collision detection or cooperative merging assistance

NN lti-target tracking based on a particle filter. A conclusion is given
On the other hand V2V communications allow the enhancementiﬂysectioi v g P g

already existing driver assistance systems. Examples are cooperative

navigation or cooperative adaptive cruise control. Conventional adap- T
tive cruise control works similar to cruise control with the difference

that the speed of the ego vehicle is decreased if another vehifie Target Tracking

is in the headway [2]. The detection and ranging of other vehiclesTarget tracking means detection and ranging of relevant objects
usually is based on radar, lidar or even optical camera sensors (in#@r time [4]. The only available information related to the target
following referred to asautonomous detection and ranging senyorsare noisy and incomplete sensor measurements including so-called
As long as the preceding vehicle is located within the detectigfhost vehicles. Thus, the objective of target tracking is the dynamic
zone and no obstacles such as other vehicles, buildings, guafte estimation of a target based on this set of noisy and incomplete
rails, etc. obstruct the line-of-sight, target detection and ranging Rfeasurements. For that purpose, dynamic state estimators make use
autonomous sensors is subject to conventional signal propagaligithe temporal correlation of the measurements to mitigate the
errors. These errors emerge due to: measurement noise in the state estimation. In order to quantify this
« environmental impact: optical systems (e.g. lidar, camera) sh@arrelation, a movement model of the target and an observation model
significant deterioration in fog, rain or snow causing noisyf the sensor are essential.
measurements If only the most recent hidden state is inferred given past measure-
« unintended reflections and scattering on guard rails, buildingaents, this is callediltering. Prominent algorithms, such as Kalman
secondary vehicles, etc. causing the occurrence of “ghost vefiiter or particle filter, exploit Bayesian theory for the state estimation.

I. INTRODUCTION

. MULTI-TARGET TRACKING

cles” An overview on Bayesian filtering can be found in [7].
* poor angular reso_lutlon of automotive radar sensors causingin principle, the dynamic state estimator filters the noisy sensor
undetection of vehicles [3] measurements'* over the time span to k£ and adequately infers

Some of these errors can be mitigated by using dynamic stdte posterior distribution of the state spagec®|z'*) at time k
estimation and sensor fusion (e.g. camera & radar) [4], e.g. hich will include at least the relative position of the target vehicle.
Kalman filters or particle filters. But the unavailability that ariseé\ccording to [7] filtering can be seen as an iteratprediction-
if the target vehicle is not located in the detection zone or shadedrrection processomprising the two recursive stegaedictionand



update(see fig. 1). The prediction step of the dynamic state estimatore N : T'with N > 1,7 > 1: T targets can caus¥ measurements

is defined by: For the tracking of multiple targets given noisy and incomplete
ki lik—1y by k1 k1) L1y g k1 1 measurements the last constellation is of main importance. To solve
p(x’|z )= [ P )p(x 2 Jdx @ the estimation and association problem different approaches have

The update step is defined by: been usgd. . . .
. P a) Single HypothesisOne approach for multi-target tracking
() = p(z"[x")p(x"z"" ) (2) s to consider each target separately from others and track it with a
p(zF|z k1) separate filter. Each filter thus handles a single hypothesis, i.e. the

To solve the equations, we prefer particle filtering over other fimost probable hypothesis given the observations. Single hypothesis
ter techniques such as Kalman filter because it allows the usajé used for example in [10], [11], [12]. These methods keep only
of non-Gaussian measurement and movement noise and non-lif@ig hypothesis of the tracking result which has the most probable
measurement and movement models [8], [9]. Especially for compmyasterior distribution based on current and previous observations.
non-linear driver behavior modeling and observation models this T§us they may fail with background clutter, occlusions and multi-
an essential requirement. object confusions.

The key idea of particle filters is to represent the posterior b) Multiple Hypothesesinstead of making the decision on the
distribution by a set of discrete samples, so calpedticles These most probable posterior distribution, i.e. target constellation, at each
particles are used in a sequential Monte Carlo method for Bayeskine step, the multiple hypotheses approach takes into account several
inference to predict and update the estimated state of the target bgsesbible target constellations and infers these hypotheses so that the
on the observations. As derived from the general rule for Monte Catiicertainty in the correct target constellation can be reduced on
sampling, the accuracy of the state estimation strongly dependstbe arrival of subsequent observations. Multiple hypotheses methods

the number of particles used. are more robust because the tracking result corresponds to the state
sequence which maximizes the joint state-observation probability.
E k-1 The multi-target tracking problem has been traditionally addressed
with techniques such anultiple hypotheses tracking (MHT)3] and
K joint probabilistic data association (JPDA)L4] which is a special
Sensor 1 Z case of MHT. Both techniques work by translating a measurement
p(z* | X*) into a_set of _targe_ts_by thresholding. The detections are then either
b (x“ IX-2) associated with existing targets, used to create new targets, or deemed
LA AN =/;(D false alarms.
! N In the work of Orton and Fitzgerald in [15] which was based on
| p(z; [X) [10] and [16] the authors represented each hypothesis subdivided in
P a set ofn partitions. The objects to track are seen as elements of a
S 2 Z, random set, i.e. a set of random variables, for which the cardinality
is itself a random variable. This is strongly related to the theory
Prediction Update Predicion Update of finite set statistics (FISSTL7] andjoint multi-target probability
POt 22 POt |2 P | 24 PO | 2%) density (JMPD)[18]. This can be seen as purely Bayesian perspec-
[Jp(xk ) }[pa“\xk’1)p(x“’1|x“ﬂ[j DOt [x) Mp(zklx*)p(xklx“ 1)} tive. Measurement-to-target associations are not done explicitly e.g.
PO %A pE@ D) )| p( e [ p pE ) by thresholding; the association is performed implicit within the

Bayesian framework.

Fig. 1. Predication and Update on the state space® with two sensors
providing sequential observatiods¥, 25} at time stepk C. Multi-Vehicle Tracking

The multi-target tracking with multiple hypotheses allows the
dynamic tracking of an unknown and changing number of vehicles
which cause a set of noisy and incomplete measurements. These

In application environments, such as road traffic, usually multipleasurement are the only evidence which can de facto be exploited
moving targets with unknown and changing quantity are presepksides a priori knowledge such as movement models and sensor
Measurements are anonymous and cannot directly be associafiggracteristics. Based on this information the tracking algorithm has
with the targets. Thus, dynamic state estimation becomes meseguarantee a high grade of completeness and accuracy. This is
complex due to the additional problem of associating measuremegépecially important in the application area of vehicle detection in
to targets, sometimes also callegport-to-track object-dataor state-  future situation-aware driver assistance systems which, instead of
observationassociation. The problem even gets more complicatedgkrforming actions directly on the occurrence of evidence, attempt to
there is no one-to-one relation between measuren€éhtafid target estimate the causative situation, i.e. the causes of evidence. Although
(T)). Hence, the following constellations may occur: we inspect merely vehicle tracking in this paper, we do not limit the

« 1:1: a single measurement is caused by exactly one target ahgiorithm to this application area. Other examples, where multi-target

this is the only measurement caused by this target tracking can be applied, are environmental phenomena, such as wet,

e« N : 1 with N > 1: a single target can cause more than oniey or oily road conditions, traffic phenomena, such as traffic jams

measurement (e.g. due to signal scattering) or traffic hold-ups, or any other situational information.

« 1:T with T > 1: a single measurement can be related to more As an example, the detection of a new vehicle which comes into

than one target (e.g. no target separation due to limited angutlae field of view of the ego vehicle’s radar is depicted in fig. 2. The
resolution [3]) simulation is based on the implementation described in section IV.

B. Tracking Multiple Targets



depends on the penetration rate of V2V communication equipment,
) we consider cooperative detection and ranging not as substitute for
) . autonomous methods but as a promising complementation which will
m d e 1 unfold its potential with increasing penetration rate.

ﬁ ’ [ °] In order to detect and range target vehicles the V2V message has to
include information regarding the position of the target vehicle. This
. - information can for instance be obtained by the global navigation
t=0.5s e - satellite system (GNSS). There are different concepts to express
' ’ position relevant data obtained by GNSS:

« Absolute position based relative positioningby differencing
of two absolute positions. This method may be influenced by
the whole set of GNSS measurement errors (satellite clock
offset, satellite orbit dislocation, ionospheric and tropospheric
refraction, receiver clock offset and multipath propagation).
« Code based relative positioninguses alime Difference of Ar-
N ! ) rival (TDoA) method with several simultaneous measurements of
. . different satellites on a code basis. Ego vehicle and target vehicle
W I* ) have to use identical satellites at the same time. Depending on
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the algorithm the following errors can be eliminated:

ﬁ — Single differencing between receivers eliminates pseudo-
range errors emerging from satellite clock bias, satellite

T
]

=

Fig. 2. Target Vehicle Detection with standalone radar:

t=0s The particle filter tracks 2 vehicles which are in the field of view of
the autonomous detection and ranging sensor. The number of tracked vehicles
is 2 for the majority of hypotheses (particles representing hypotheses with 2
partitions are filled with black color)

t=0.5s The particle filter tracks an additional vehicle on the right most lane.

A subset of the hypotheses includes already 3 vehicles (particles representing

orbit dislocation and ionospheric and tropospheric refrac-
tion. The different types of errors have a high correlation
when signals emitted from the same satellite at the same
time have a similar propagation path which is valid within
short distances between ego vehicle and target vehicle as it
is considered in this paper.

hypotheses with 3 partitions are filled with gray color) — Double differencing between satellites additionally elimi-
t=1s The particle filter tracks 3 vehicles. Almost all hypotheses have 3 tracked nates errors emerging from receiver clock offsets.

vehicles (particles representing hypotheses with 3 partitions are filled with . . . .
gray colo(r[)J P g hyp P « Carrier based relative positioning uses TDoOA on a carrier

basis. Besides single and double differencing, triple differencing
between epochs has to be considered in order to quantify integer
cycle ambiguity.
Depending of the type of application and its requirements a suitable
The multi-target tracking algorithm provides a highly accurat@pproach for the position relevant data has to be chosen and the
detection and ranging mechanism to track vehicles which are in tf@$pective messages have to be defined. For our initial simulations
field of view (FOV)of the autonomous sensor system (see fig. 2)e used absolute position based relative positioning.
But the tracking is restricted to the FOV of the autonomous sensor
system which is strongly limited in distance and angle, and obstacles ] ) )
that block the line-of-sight. These problems can be overcome by the®S @ proof-of-concept we implemented the muilti-sensor multi-
integration of an additional sensor system that is not subject to thd@Eget particle filter (mainly based on the work of Kreucher et al.

limitations. Thus, we propose to complement target tracking by thL8]) and coupled it to our existing traffic simulation environment.
integration of V2V communications as a virtual sensor. The core components are detailed in the following subsections.

One of the basic functionalities of future V2V communicatiory particle Filter

systems will be periodic beaconing. These beacons include among., particle filter implementation is based on &ample impor-

other status information the current position, speed and heading of the . . o ;
; C D ance resampling (SIRalgorithm which is a special case of the
vehicle. On the one hand this is used for application-related purposes o . - .
eequentlal importance sampling (SI&gorithm [9]. The posterior

for _safety, efficiency and comfort and, on the other han_d, for rouErobability distribution is represented by a set of 1000 weighted
maintenance on network layer [1]. Beacon messages distributed Vvia

V2V communications are usually propagated in an omnidirectiona%fmdes each of which forms an independent hypothesis of the state

S a given time, i.e. a representation of a possible situation. Updates
manner and thus are not affected by angular FOV limitations, 9 . P P P
. . are performed with 5 Hz.
Furthermore the propagation area is much larger than for autonomou . . . o
) > - .In principle three main components form our particle filter imple-
sensors; and may even be extended by multi-hop communications i . : : : . -
) . mentation for multi-sensor multi-target tracking which are described
required. Last, obstacles between the ego vehicle and target vehic .
. in the following.
have less bearing than for autonomous sensor systems.

. . . : . . 1) Hidden State Space (Situation Modelhe hidden state space
_Complementlng _the_ multi-target tracking deSCT'b.ed n se_ct|on .‘é based on partitioned hypotheses. Each partitioancloses the
with V2V communication hence overcomes the ]lmlta_tlon given bi’é\titudinal distance;,, the longitudinal distance;,,,, the movement
the autonomous sensor system and thus provide higher accur %ctionmh and the movement speed of a single tracked target.
better reliability and increased robustness against sensor failures.

Based on the fact that this cooperative detection and ranging strongly

I1l. TRACKING COMPLEMENTATION BY V2V COMMUNICATION

IV. IMPLEMENTATION

X = [Tiat, Tion, Th, To] (3)



v *

(a) Straight 3-lane road scenario: The majority of hypotheses comprise 6 tracked vehicles (b) Winding single-lane road scenario
(hypotheses with 6 partitions are filled with black color, other hypotheses are depicted gray)

Fig. 3. Multi-sensor Multi-target tracking: Vehicles located within the FOV of the autonomous sensor system and V2V communication area show a condensed
estimation of the target vehicles’ position. Vehicles located merely in the V2V communication area show a more spread position estimation but, nevertheless,
have a mean of the distribution with sufficient accuracy.

Additionally, the number of partitiong’, i.e. the number of tracked d¥ is the dimension of the measurement set provided by sensbr

targets, completes the notation of the hidden stase time k: time k.
N _— ) X X X In our current implementatior* consists of measurements from
S*T={X"T"} with X" ={x1,...,x7} (4)  two different sensors namely the radar system and the complementing

VV communication but may be easily extended in the future.
n accordance to equation 2 the update step for the multi-sensor
Iti-target tracking is defined by:

p(ZFIXE, TH)p(XH 2 )

Thus, the number of partitions appears as an additional discrgt
random state variable that defines the dimensionality of the hypoth-
esis. Consequently, the state space has different dimensionality ot
different values ofT" which can change dynamically. This differs ©6)
from traditional particle filter implementations with a static notation p(ZF|Z1k-1)

of hypotheses. Measurements come into the play in the update step of the dynamic
2) State Transition Model:The state transition model first per-giate estimation. For the update step the measurement likelihood

forms a transition of the random varialdle This allows the detection p(Z*¥|X*, T*) has to be determined. Informally, the questiotHsw

of new targets and the gating of outdated targets. In our implemgfke|y are the measuremeng&* given a certain target constellation?”

tation T" is incremented/decremented byboth with a probability Thereby we rely on the strict causal relation from the target to the

of 10% which allows a fast enough acquisition of new targets andeasurements and thus do not establish any direct association of

gating of outdated targets. a single measurement to a specific target but merely estimate the
In the next step the partitions are adjusted to the new vali€. of jikelihood of a measurement set given a specific target constellation.

A new partition is created if" have been incremented or an existing The measurement sets of different sensors are independent given
randomly chosen partition is removedf has been decremented.the target state, i.e.

If a new partition is created, a random sample according to the

p(Xk, Tk ‘lek) —

. S S . R L (Zk 7k dar 7 7 dk\Xk Tk): (7)
prior distribution is set as initial instantiation. The initial instantiation P\Z1,15- -5 21 gk A1y - -5 215 - -5 B gk 5 O ’
during runtime is similar to the initial instantiation at system startup n

i initi iti (zFq, ..., 2", df|XP,TF)

but displaces the initial target positions more towards the edges of HP i1 ey By gk (i )
the sensor detection zone as this is more probable during runtime. =1

Subsequently, for all partitions a point rotation of,; andzy,, ~1hus we evziluate ez;ch sensor nkleasurement set independently by
according to the change in the ego vehicle heading is perform@yaluatingo(z; s, ..., z; ., di’|X",T"). For the evaluation we iterate

Additionally a point translation is performed which is subject t®ver the individual measurements and calculate the probability that
Gaussian noise. The point translation mainly depends on the sp##@g measurement is caused by one (or more) of the targets. A certain
and movement direction of the own and the target vehicle. In orderngnimum likelihood assert the occurrence of false positives due to
gain more precise movement models additional information, such elgtter, reflections, etc.

speed and heading of the target vehicle which is also included in itsA larger target set would get a higher weight because mea-
V2V beacons, can be exploited dynamically in the point translatiofrements become more likely although this does not reflect the
We did not model the dependencies of the movement related to tg@l situation. That is why we additionally compare the number of
movement of other target vehicles. So there is no synchronizatigigets7* with the number of caused measuremetifs For this

between the movement models up to now. we have to consider that there does not need to be a 1:1 relation of
3) Observation Model:For time k a set of measuremeng® is targets and measurements as described in section Il. Furthermore, the
provided byn sensors: surveillance areas of our sensors are not concordant and, hence, this

. . . N . i i comparison should only take the targets into account that are within
Z" =Azia 2y gy di} UL U202 g, dn} (B)  the surveillance area of the respective sensor. Thus, for the radar
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The more complete and more accurate relative position information

of the vehicles in the vicinity (extending the FOV of autonomous

sensors) can be used as a basis for future situation-aware driver

assistance in order to predict hazardous or inefficient situations in

time. The already mentioned cooperative adaptive cruise control as

an example can hence react on vehicles abruptly changing the lane

or driving maneuvers of vehicles that cause the preceding vehicle to

slow down fast (e.g. because of an upcoming traffic jam).
This information can not only be used by a cooperative adaptive

cruise control but also to warn the driver of a potential risk of a

collision, detect traffic jams or enable autonomous driving. The multi-

sensor multi-target tracking can thus be seen as a basic functionality

which paves the way for a multitude of driver assistance systems.



