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Abstract—We study the effect of relay cluster selection on
throughout in multi-hop cooperative communications with one
source and one destination. We evaluate the effective relay
throughput as a function of the source transmission rate and the
network outage probability. Assuming channel side information
(CSI) only available at the receivers, we formulate the cluster
size optimization to maximize throughput. Furthermore, since the
bottleneck of the multi-hop relaying is at the first hop where
there is in general a lack of cooperation from the source, for
the scenario where CSI is available at the source, we may
incorporate opportunistic relay selection at the first hop in the
cluster optimization problem. Our results demonstrate how the
optimal selection of cluster sizes can significantly increase the
relaying throughput.

I. INTRODUCTION

Multi-hop relaying improves coverage and throughput, es-
pecially for large-scale extended networks [1]. Its application
arises in various type of networks, including ad hoc networks,
cellular networks, and vehicular networks. The benefit of user-
cooperation has been discovered from a different prospective
in the form of physical layer cooperative diversity, as a means
to combat fading [3], [4]. The problem has its roots in the
two-hop relaying, and it is shown that the relay node can be
used to improve signal reception reliability. The finding has
generated many interests in further analyzing the cooperative
gain in different variations of two-hop relay channels and how
to realize it with practical schemes [5], [6].

The potential of improved physical layer reliability using co-
operative diversity is especially appealing in multi-hop relaying,
where the potential packet loss is magnified by the possibility of
link failure over each hop. Most previous works use clustering
to achieve scalable routing or efficient energy consumption (in
sensor networks) at network layer, with simplified assumptions
on physical layer processing. If cooperative diversity gain can
be carefully incorporated, the multi-hop relaying will not only
enjoys more reliable performance but also results in potentially
much higher throughput. In this context, coding strategies ex-
ploiting node cooperation were developed for multiple relays in
[7] as the first information theoretic approach towards coopera-
tive multi-hop relaying. However, it remains an open problem to
quantify the capacity of multi-hop cooperative communication.
In [8], the authors took a step forward to study the scaling
behavior of achievable rate in a network combining distributed
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MIMO transmission with multi-hop relaying with clusters.
Multi-hop cooperative broadcasting/flooding is studied in an
asymptotic regime [9]. Cluster-based multi-hop sensor network
is proposed [10] to exploiting MIMO diversity using clustered
nodes with fixed cluster size. Most existing work either consider
single hop multiple relays, or multi-hop relay clusters with fixed
size. However, the cluster selection, including the cluster size
and number of hops, is critical to maximize the physical layer
cooperative gain and overall data rate. To our best knowledge,
this issue has not been studied and little is known on the effect
of cluster size on the multi-hop relay performance. This paper
presents a step towards this direction.

We study the effect of relay cluster size selection on the
end-to-end data rate in a multi-hop cooperative communication
setting with single source and destination. The relay nodes
employ the decode-and-forward (DF) relaying strategy, and are
grouped into clusters to pass source message to the destination.
The channel over each communication link undergoes slow
fading, and therefore subjects to outage. Assuming channel
side information (CSI) is only available at the receivers, we
formulate the cluster size optimization as a rate maximization
problem.

Constraining on each cluster having the same successful
decoding probability, we provide a simple suboptimal solution.
For the general optimization problem, we then present a two-
loop iterative procedure based on simulated annealing [11] to
search for the optimal solution. Our results demonstrate how
the optimal selection of cluster sizes can significantly increase
the end-to-end data rate. In addition, since the bottleneck of the
multi-hop relaying is at the first hop where there is in general a
lack of cooperation from the source, we propose to incorporate
opportunistic relay selection at the first hop in the cluster size
optimization, assuming CSI is available at the source.

II. PROBLEM FORMULATION

A. Network Model

We consider a scenario where a source node S transmits
its message to a destination node D through N relay nodes
using multi-hop relaying. These N relay nodes can be randomly
located between S and D. We assume S is located at the origin,
and denote the location of relay node i by (xi, yi), for i =
1, · · · , N . The relay nodes are indexed based on the increasing
order of their distance from the source S, i.e. dS,i ≤ dS,i+1,
where dS,i =

√
x2

i + y2
i is the distance between S and node
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Fig. 1. Schematic of a sample network with one source-destination pair and
N relay nodes.

i. Similarly, the distance between the relay node i and j is
denoted by di,j .

We constrain ourselves to half-duplex transmission, where
a relay node is either in transmission or in reception but not
simultaneously. Furthermore, we employ a DF relaying strategy,
where each relay node decodes, re-encodes, and retransmits
the source message. In a K-hop relaying scenario, the N relay
nodes are grouped into K clusters according to certain selection
criterion. The grouping can be represented by {L1, · · · ,LK},
where Lk is the index set containing the index of those nodes
in the kth cluster, k = 1, · · · ,K. As jointly encoding and
decoding within a cluster can be practically challenging, we
consider a simple cooperation where, in the kth hop, each node
in the kth cluster receive the source message relayed from nodes
in the (k − 1)th cluster, and try to individually decode, re-
encodes and retransmit the message. Each node than transmits
the message using an orthogonal transmission (e.g. frequency,
time, or code).

With proper combining of received signals, the use of
multiple nodes in a cluster to relay the same message results
in increased received signal power at each receive node, thus
improves decoding performance. Fig. 1 shows an example of
such multi-hop DF relay scenario.

B. Channel Model

We assume a slow Rayleigh flat fading channel model, where
the channel hi,j is constant over the duration of the message
transmission. The received observation at a given node j in the
kth cluster from the (k − 1)th cluster is given by yij,k[n] =
hi,jsi,k−1[n] + zj [n], where the channel hi,j ∼ CN (0, σ2

h)
captures path-loss, shadowing, and small-scale flat fading. Its
amplitude αi,j = |hi,j | is Rayleigh distributed with power
E[α2

i,j ] = σ2
h = Ad−κ

i,j , where A is the path-loss constant; we
assume hi,j’s are independent for any i ∈ Lk−1 and j ∈ Lk

pair. We assume all nodes have the same transmission power
P . The transmitted signal from node i in the (k − 1)th cluster
is denoted as si,k−1[n]. Since all nodes transmit the same
message, si,k−1[n] is the same for all i ∈ Lk−1. The additive
noise at each node j is denoted by zj [n] with variance σ2

z .

C. Multi-hop Relay Performance

Assuming the source S transmits its message with rate Co,
we measure the performance of the multi-hop relaying by
the outage probability based on this given transmission rate.
Note that the choice of the clustering scheme can significantly
affect the outage probability. For a transmission rate Co, we
denote the probability of correct decoding at node j ∈ Lk by

Pcj,k
(Co,dj,k,Lk−1), where dj,k is a vector of the distance

between any node in the previous (k − 1)th cluster to node
j: dj,k = [di1,j , · · · , di|Lk−1|,j

] and Lk−1 = {i1, · · · , i|Lk−1|}.
We define the cluster decoding probability Pck

, for cluster k as
the probability that all relays in the cluster decode their received
message correctly. Hence, it can be expressed as

Pck
(Co,Dk,Lk) =

|Lk|∏

j=1

Pcj,k
(Co,dj,k,Lk−1), (1)

where D = [d1,k, · · · ,d|Lk|,k] contains the distances of all the
node pairs from the cluster k − 1 to the cluster k. An outage
occurs in the relaying between the clusters (k− 1) and k with
probability given by Poutk(Co,Dk,Lk) = 1−Pck

(Co,Dk,Lk).
Note that this definition of outage is based on our assumption
that successful relaying between two clusters is defined as all
receiving nodes can decode the message. Although in practise
such constraint is not necessary for the message to be relayed
from hop to hop, it does, heuristically, pose a criterion for
cluster grouping to select those potentially most cooperative
relay nodes. In other words, the clustering should prevent
including ’non-cooperative’ relay node that has low probability
to decode message at current hop (thus render itself to be
useless). To achieve this, we essentially require the probability
of successful decoding for all nodes in the cluster to be higher
than a threshold (as we will see in Section III). In addition,
this constraint also helps reduce the search space for cluster
selection significantly. The effective throughput achieved by
multi-hop cooperative relaying now can be written as

R =
Co

K + 1

K+1∏

k=1

Pck
(Co,Dk,Lk), (2)

where K represents the total number of clusters and
PcK+1(Co,DK+1,LK+1) is the decoding probability at the
destination.

From (2), we see that, to maximize the rate R, ide-
ally, we want the successful cluster decoding probability
Pck

(Co,Dk,Lk) as close to 1 as possible and, at the same time,
K as small as possible. However, the relation of two factors are
involved: having a smaller hop count K is equivalent to having
a larger cluster size for each relay cluster, and thus reduces
Pck

(Co,Dk,Lk) if the individual node decoding probability
is the same. On the other hand, a receiving node will benefit
from a bigger transmitting cluster due to cooperative gain, and
will have improved decoding probability. Therefore, a trade-off
exists between the cluster size and the relay hop counts. Our
goal is to find the optimal cluster sizes to maximize the relay
throughput R. We can express the optimization problem as

(K∗, {|Lk|∗}K∗
1 ) = arg max

K,{|Lk|}K
1

Co

K + 1

K+1∏

k=1

Pck
(Co,Dk,Lk)

subject to
K∑

k=1

|Lk| = N.

(3)

In the following section we elaborate on the cluster size
optimization and its effect on the transmission rate.



III. CLUSTER SIZE OPTIMIZATION

In order to find the above optimization solution, we first
derive an expression for the cluster decoding probabilities
P∗ck

(Co,Dk,Lk). Then, constraining on all clusters having the
same cluster decoding probability threshold, we convert (3) to
a simple suboptimal optimization. For the general problem, we
then use a two-loop iterative method to search for the optimal
cluster size.

A. Evaluating Decoding Probability at Each Relay Node
Since the relay nodes in a cluster transmit the re-encoded

message through orthogonal transmissions, at a received node,
the maximum ratio combining technique can be used to add
coherently the received signal observations. Then, the received
message at node j in the kth cluster can be correctly decoded
if

1
|Lk−1| log2


1 + SNR

|Lk−1|∑
m=1

α2
im,j


 > Co. (4)

where SNR
∆=P/σ2

z and P is the transmission power at each
node. Node indexes in the (k−1)th cluster is given by Lk−1 =
{i1, · · · , i|Lk−1|}. The probability of successful decoding is
given by

Pck,j
(Co,dj,k,Lk−1) = P



|Lk−1|∑
m=1

α2
im,j > B(Co)


 , (5)

where B(Co) = (2|Lk−1|Co −1)/SNR. The distribution of the
combined channel power gain

∑|Lk−1|
m=1 α2

im,j can be obtained
based on the independent Rayleigh fading assumption. Each
channel power gain α2

im,j has exponential distribution with
mean Ad−κ

im,j : fα2
im,j

(x) = 1
Ad−κ

im,j

exp(− x
Ad−κ

im,j

) for x > 0
and 0 otherwise.

From the source S to the first relay cluster, since |L0| = 1,
we have P(α2

S,j > B(Co)) = exp(−B(C0)
dκ

S,j

A ). In general,
since the distance dim,j is different for different node in Lk−1,
the distributions fα2

im,j
(x) are not identical, and it is intractable

to derive a closed form for Pcj,k
(Co,dj ,Lk−1). Instead, we

use Lyapunov’s central limit theorem [12] to approximate
Pcj,k

(Co,dj,k,Lk−1) for k > 1.
Since α2

ij is an exponential random variable with mean
Ad−κ

ij , and variance A2d−2κ
ij . We can show that the sum∑|Lk−1|

m=1 α2
im,j satisfies the Lyapunov condition, and its

normized form can be approximated as Gaussian random
variable. Therefore, as the number of relay nodes N increases
and the cluster size |Lk| increases, our approximation becomes
more accurate.

Based on the above approximation, the probability of correct
decoding can be written as

Pcj,k
(Co,dj ,Lk)

= P

(∑|Lk−1|
m=1

(α2
im,j −Ad−κ

im,j)

(
∑|Lk−1|

m=1
A2d−2κ

im,j)
1/2

>
B(Co)−

∑|Lk−1|
m=1

Ad−κ
im,j

(
∑|Lk−1|

m=1
A2d−2κ

im,j)
1/2

)

= 1−Q

(∑|Lk−1|
m=1

Ad−κ
im,j −B(Co)

(
∑|Lk−1|

m=1
A2d−2κ

im,j)
1/2

)

where Q(·) is the Q-function.

B. Iterative Calculation of Cluster Sizes

The optimization in (3) is a non-convex integer programming
problem. We resort to numerical optimization to find the
solution, and will demonstrate the numerical results of this
optimization in Section IV.

In order to search for the solution, we now use a dif-
ferent angle to look at the optimization in (3). The vector
P∗c = [P∗c1

, · · · , P∗cK∗ ] contains the optimal cluster decoding
probability of the message. It is the result of the optimization in
(3). Given the optimal cluster decoding probability, we want to
find the minimum number of clusters K∗ so that the throughput
R is maximized. We want to form the kth cluster to include
as much nodes as possible so long as the cluster decoding
probability is no less than the optimal one. Thus, conditioned
on knowing P∗c, each optimal cluster size can be quantified as

|Lk|∗ = max |Lk| ∀ 1 ≤ k ≤ K∗

s.t.
|Lk|∏
m=1

P∗cjm,k
(Co,djm,k,Lk−1) ≥ P∗ck

and jm /∈
k−1⋃

i=1

Li,

k∑

i=1

|Li| ≤ N.

(6)

To solve the original optimization in (3), we need to search for
the optimal cluster decoding probability vector P∗c , and then the
optimal cluster size under P∗c . Since finding P∗c also depends
on the size of clusters, we use iterative method to the above
procedure to find the solution.

In the following, we first consider optimizing the cluster size
in a subspace of the original optimization problem by con-
straining all clusters having the same optimal cluster decoding
probability; then in the second part, we use heuristic iterative
method to search for the optimal cluster size.

1) Fixed threshold for cluster decoding probability Pck
: We

first consider the optimization in a simplified problem where
each cluster decoding probability is constrained to be equal.
In particular, we assume P∗ck

= Pth for all clusters. Under the
above simplified assumptions, the optimization problem can be
expressed as

(K∗, {|Lk|∗}K∗
1 , P∗th) = arg max

Pth,K,{|Lk|}K
1 ,

Co

K + 1
PK

th (7)

s.t. (a)
|L1|∏

j=1

e−
dκ

S,j
B(Co)

A ≥ Pth

(b)
|Lk|∏
m=1

Pcjm,k
(Co,dj,k,Lk−1) ≥ Pth for k > 1

(c)
K∑

k=1

|Lk| = N.

This optimization problem can be numerically carried out by
finding the minimum K for Pth ∈ (0, 1), and then obtaining the
(K∗, P∗th) that gives the maximum throughput R.



2) Variable threshold for cluster decoding probability Pck
:

Constraining on the same cluster decoding probability in the
previous section leads to a suboptimal but simplified rate
maximization problem. For the original optimization problem
in (3), we use a heuristic method to find the solution. Since
the search space is discrete, we use simulated annealing (SA)
[11] to search the global maximum. Since the maximization
problem is non-convex, there may be multiple local maxima.
Thus, the search consists of inner loop and outer loop iterations.
The outer loop is used to set a new initial point and the inner
loop is applying the SA iterations to search for a local maxima.
The initial starting point at the outer loop is set based on the
constraint of using the common threshold Pth for each cluster
decoding probability, described in the previous section. The
main procedure is listed below.

1) Initialize Pth = 0, Rmax = 0. Let vector R be M×1
initialized by 0, where R records the throughput R in
the recent M iterations. Set maximum iterations Imax.

2) Set P∗ck
= Pth as the common threshold for the cluster

decoding probability for each cluster. Let T be the system
temperature. Set T = To. Set iteration counter i = 1.

3) Solve the cluster size optimization problem in (7), except
that Pth is now fixed, instead of being optimized between
(0, 1), i.e.,

(K∗, {|Lk|∗}K∗
1 ) = arg max

K,{|Lk|}K
1 ,

Co

K + 1
PK

th

subjects to the same three conditions given in (7). Obtain
K, |L|∆={|Lk|}K

1 , and R. Let K∗ = K, |L|∗ = |L|, and
Rmax = R, respectively.

4) Let P∗old
ck

= P∗ck
. Add random perturbations to P∗ck

. Solve
the optimization in (6) to obtain Knew, {|Lk|new}. If more
than K∗ clusters are needed in the optimization, pad
P∗ck

= Pth, for k > K∗. Derive the rate R using (2).
a) If R > Rmax: Let Rmax = R, |L|∗ = |L|new and

hop count K∗ = Knew. Left shift values in R by 1,
and add R to the end of R.

b) Otherwise, we are in a “bad” state: Let ∆R = R∗−
R.
i. With probability 1−e−

∆R
T , let P∗ck

= P∗(old)
ck

,
i.e., return to the previous cluster decoding
probability threshold. No change for K∗ and
|L|∗.

ii. With probability e−
∆R
T , accept “bad” state,

and update Rmax = R, |L|∗ = |L|new and
hop count K∗ = Knew. Left shift values in
R by 1, and add R in the end of R.

5) Compute average rate R̄ = mean(R). Repeat steps 3-5
until |Rmax − R̄| < δ.

6) Let i = i+1. If i ≤ Imax, decrease T : T = T −∆T and
repeat 3-6.

7) Store the Rmax obtained from this iteration. While Pth <
1, let Pth = Pth + ∆Pth, and repeat steps 2-7.

8) Compare R’s obtained from each outer loop iteration, and
find the optimal solution.

The vector P∗c is a close approximation [11] to the optimal
cluster decoding probabilities that give the maximum through-
put to the optimization problem. As we will see in Section IV,
the simpler suboptimal solution in Section III-B1 with common
P∗c,k can be a good approximation to the general optimization
problem.

IV. NUMERICAL RESULTS

For numerical illustration, we consider a rectangular network
topology as shown in Fig. 1, where nodes are placed in M
rows and Kmax columns with equal column distance. The total
number of nodes is N = MKmax. We assume the distance
between the source and the destination is dSD = 11m, and
the horizontal separation of the relay nodes equals d = 1m.
Hence, the number of relay nodes sharing the same horizontal
coordinate follows M = N d

dSD−d . A path loss exponent of
κ = 4 is considered. The relay nodes have a common transmit
power resulting SNR = P/σ2

z = 10dB.
We first study the suboptimal solution that uses a common

decoding threshold in all the clusters as in (7), assuming N =
50, 100, 200. In Fig. 2, we plot the effective throughput R at the
destination computed in (2) vs. the source transmission rate Co.
For each N , the plot shows that the achieved throughput first
increases with increased transmission rate Co, then decreases
with it. This shows that if the sender transmits at a lower bit-
rate than the optimal value, C∗o , the cooperative gain is not
fully exploited. On the other hand, if the transmission rate
exceeds the optimal C∗o , the outage probability at each relay
node increases, leading to deteriorated system throughput.

For the case where near-optimal decoding threshold prob-
abilities are determined using simulated annealing, we plot
the effective throughput vs. the source transmission rate in
Fig. 3. For each N , similar to Fig. 2, the general trend for
R is first increasing and then decreasing. More importantly,
we note that the main performance metric of interest in many
systems is the maximum achievable throughput by optimizing
the transmission rate Co. In this regard, by comparing the
peak values of each plot in these two figures, we observe that
the common-threshold simplification achieves between 80%
to 90% of the maximum achievable throughput by simulated
annealing.

For baseline comparison, we compute using (2) the maxi-
mum achievable throughput for two naive relaying alternatives.
In the first alternative, a single relay in each column is cho-
sen to participate in node-by-node forwarding. The maximum
throughput in this case is 0.0106 bits/s/Hz. In the second
alternative, all M relays in each column form a cluster. The
maximum throughput in this case is 0.014, 0.017, and 0.019
bits/s/Hz for N = 50, 100, 200, respectively. In comparison
with the peak throughput shown in Figures 2 and 3, the above
demonstrates the significant advantage of optimizing the cluster
sizes in multi-hop cooperative relaying.

Furthermore, we have observed that in all cases, the optimal
cluster size for each hop first increases and then decreases,
as the message is relayed from the source to the destination.
Clearly, since the earlier and later hops benefit less from the
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Fig. 2. Throughput vs. transmission rate. Common decoding threshold
probability at the clusters.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

C
o
(bits/s/Hz)

m
ax

 th
ro

ug
hp

ut
 R

 (
bi

ts
/s

/H
z)

 

 
N=50
N=100
N=200

Fig. 3. Throughput vs. transmission rate. Optimal decoding threshold
probabilities by simulated annealing.

cooperation of multiple nodes, a smaller cluster size is needed
there to maintain an acceptable cluster decoding probability.
The figure is omitted due to page limitation. Next, we briefly
discuss an opportunistic relaying method for the first hop, which
alleviates this problem.

V. FIRST-HOP OPPORTUNISTIC RELAY SELECTION

In multi-hop cooperative relaying, the first hop is clearly
the communication bottleneck. This is due to the fact that the
source S is the only transmitting node, and therefore relaying
does not benefit from cooperation of multiple nodes. The first
hop can severely limit the performance gain attained via coop-
eration. A natural way to increase the multi-hop communication
rate is to harness the fading diversity gain in the first hop. In (6),
the decoding probability for each relay is derived based on the
fading statistics. Hence, when CSI is available at the source,
by choosing those with “good” channel conditions between the
source and relay nodes, both R and the decoding probability
P∗cS,1

(Co,dS,1, |L0|) would increase.
We denote the channel power gain between two nodes by

gi,j = α2
i,j , and the mth largest random variable among a set

of ordered variables by g
(m)
ij . The optimization in (6) can be

modified as follows to compute |L1|:
|L1|∗ = max |L1| (8)

s.t.

(
1− F

g
(1)
ij

(B(Co))

)
· · ·

(
1− F

g
(|L1|)
ij

(B(Co))

)
≥ P∗c1

|Lk|∏
m=1

P∗cjm,k
(Co,djm,k, |Lk−1|) ≥ P∗ck

and jm /∈
k−1⋃
i=1

Li and
k∑

l=1

|Ll| ≤ N for k > 1

where Fg(j)(·) is the cumulative distribution function of the
jth largest channel gain. By adopting such a channel aware
communication scheme, the selected relay nodes in the first
cluster will have much stronger links towards the source, and
the source can therefore transmit at a significant higher rate.

VI. CONCLUSION

In this work, we have evaluated the effect of cluster-size
selection on multi-hop cooperative relaying performance. The
DF relay strategy is considered. We show how the choice
of optimal cluster sizes could significantly improve the relay
throughput. Assuming CSI at the receivers only, we use heuris-
tic and iteration methods to search for the optimal cluster sizes.
Moreover, we have proposed incorporating opportunistic relay
selection for the first hop in cluster-size selection to further
improve the system throughput.
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