
Robust Adaptive Multiuser Detection for CDMA
Frequency-Selective Fading Channels

Hongwei Zhou†, Pei Xiao††

†Department of Civil Engineering, Imperial College London, SW7 2AZ, United Kingdom
E-mail: hongwei.zhou@imperial.ac.uk

††The Institute of Electronics, Communications and Information Technology
Queen’s University Belfast, BT3 9DT, United Kingdom

E-mail: pei.xiao@ecit.qub.ac.uk

Abstract— Robust adaptive multiuser detection schemes are
developed for direct-sequence code-division multiple-access (DS-
CDMA) multipath frequency-selective fading channels. Multiple
access interference (MAI) and intersymbol interference (ISI) are
presented in identical format in the expanded signal subspace,
which provides convenience for symbol-by-symbol multiuser de-
tection. The proposed multiuse detectors are designed in the ex-
panded signal subspace, and subspace estimation and Kalman fil-
tering algorithms are developed for their adaptive implementa-
tion. It is demonstrated by simulation that these adaptive detectors
are robust against subspace estimation error and can effectively
suppress both MAI and ISI and converge to the optimum SINR.

I. INTRODUCTION

Multiple access interference (MAI) has been a major
impedance to achieve the promised advantages of code-division
multiple-access (CDMA) technology in mobile communica-
tions. Intensive research interest has been attracted in recent
years to develop multiuser detection (MUD) technologies to
overcome MAI [1–5]. Multipath frequency-selective fading
channels cause further practical concerns for broadband CDMA
communications, which include the spreading waveform dis-
tortion and intersymbol interference (ISI). RAKE receiver [6]
is a typical approach to tackle multipath problem, however, it
is only optimum in single-user system. For multiuser systems,
the RAKE structure can still be adopted but the matched filter
bank is replaced by linear multiuser detector bank [7–9]. These
schemes hold a common assumption that ISI is negligible. This
paper aims at multiuser detection problem for multipath chan-
nels with arbitrarily long delay so that ISI is not negligible.

The development effort begins with deriving an analytical
one-shot signal model. Instead to suppress the echo multipath
components, an extended observation window and reformed
user spreading codes are adopted so that all multipath compo-
nents are used for the detection of one symbol. In this signal
model, the ISI and MAI appear in distinct format and hence
both can be suppressed by multiuser detection technology. Sub-
space technology is used in [3] to realize blind multiuser detec-
tion in additive white Gaussian noise (AWGN) channel. Wiener
minimum mean-square-error (MMSE) detector is well known
for being optimum in the MSE sense. It is proven in this paper
that it is also an optimum SINR detector and lies in the signal
subspace. This provides another angle to appreciate the MMSE
detector. For a system with fixed configuration, there exists a
SINR upper bound and it is expressed in closed form. This

motivates us to design multiuser detector in the expanded sig-
nal subspace. If the channel and the autocorrelation matrix of
the received signals are precisely known, then Wiener MMSE
detector is readily available [10], however, in practical systems,
accurate knowledge of the channel and autocorrelation matrix is
hardly available. Such inaccuracy will seriously deteriorate the
performance of the Wiener MMSE detector, as will be shown
by simulation. Adaptive multiuser detection strategies are pro-
posed in this paper. The subspace-based detector can be decom-
posed along all orthogonal directions in expanded signal sub-
space. Deflated batch processing method or the modified pro-
jection approximation subspace tracking (PAST) method [11]
can be used to estimate the signal subspace, and Kalman fil-
ter can be used to estimate the coefficients along each subspace
basis. These adaptive detectors are proven by simulation to be
efficient in suppressing both MAI and ISI and they approach
the optimum SINR performance in multipath channels.

II. SYSTEM MODEL

Consider a synchronous K-user DS-CDMA system employ-
ing BPSK modulation to transmit signals through multipath
channels. The symbol interval and chip interval are denoted
by T and Tc, respectively. The kth user’s spreading waveform
is

ck(t) =

N−1∑

n=0

ck(n)ψ(t− nTc), t ∈ [0, T ], k = 1, . . . ,K,

where N = T/Tc is the spreading factor; {ck(n)}N−1
n=0 is the

normalized signature code assigned to the kth user; ψ(t) is
a normalized chip waveform defined in [0 Tc]. The multi-
path channel is modeled by a tapped delay line with tap spac-
ing 1/W (W is the bandwidth of the spread-spectrum signals)
and tap coefficients {hk(l)}L−1

l=0 , where L is the number of
resolvable paths for each user. We consider the case when
W = 1/Tc, L = dTm/Tce, where Tm is the multipath delay
spread, and dxe denotes the value obtained by rounding x to
the nearest integer which is greater or equal to x. Transmitting
the signals through the multipath channel, the received signal
due to the kth user is given by

yk(t) =

∞∑

i=−∞

Akbk(i)

L−1∑

l=0

hk(l)ck(t− iT − l/W ),
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where Ak and bk(i) are the amplitude, the ith transmitted in-
formation bit of the kth user, respectively; bk(i) ∈ {+1,−1}
follows identical independent distribution (i.i.d.). The total re-
ceived signal is the superposition of the information-bearing
data signals of K users plus the additive white Gaussian noise
(AWGN), i.e., r(t) =

∑K

k=1 yk(t) + v(t), where v(t) is the
zero-mean white Gaussian noise with variance σ2. After chip-
matched filtering followed by chip-rate sampling, the discrete-
time format of the received signal is given by

r(j) =

K∑

k=1

yk(j) + v(j), (1)

where

yk(j) =

∞∑

i=−∞

Akbk(i)sk(j − iN);

sk(n) =
L−1∑

l=0

hk(l)ck(n− l); (2)

v(j) =

∫ (j+1)Tc

jTc

v(t)ψ(t− jTc)dt. (3)

On the transmitter side, the energy of each symbol is lim-
ited in duration NTc. However, on the receiver side, the energy
is spread over an extended interval (N + L − 1)Tc due to the
channel convolution effect, which can be observed from (2). We
aim to design a multiuser detector that detects the signals in a
symbol-by-symbol fashion and employ a processing window of
length N +L− 1 to model the received signal in a vector form.
Falling within the window are not only the information bits for
the current time instant, but also those before and after the cur-
rent time instant. The received signal vector thus contains ISI
from the past as well as the future symbols. In order to describe
it quantitatively, we define P = d(L − 1)/Ne. Then, 2P + 1
symbols from the desired user are included in the processing
window of length N + L− 1, including the current symbol, P
symbols before and P symbols after the current symbol. Tak-
ing into account of all the K users, there are (2P + 1)K sym-
bols involved in detecting one symbol of the desired user. The
(N + L − 1)-element received signal vector can be expressed
as

r(i) =

K∑

k=1

yk(i) + v(i), (4)

where

yk(i) = Akbk(i)sk +

P∑

j=1

Akbk(i− j)sk,j

+

P∑

j=1

Akbk(i+ j)sk,j ;

sk =
[
sk(0) . . . sk(N + L− 2)

]T
;

sk,j =
[
sk(jN) . . . sk(N + L− 2) 0 . . . 0

]T
;

sk,j =
[
0 . . . 0 sk(0) . . . sk(N + L− 2 − jN)

]T
;

v(i) =
[
v(iN) . . . v(iN +N + L− 2)

]T
.

Define

sk =
[
sk,1 . . . sk,P

]
; sk =

[

sk,1 . . . sk,P

]

;

S =
[

s1 s1 s1 s2 s2 s2 . . . sK sK sK

]T

;

A = diag{A1 . . . A1
︸ ︷︷ ︸

2P+1

A2 . . . A2
︸ ︷︷ ︸

2P+1

. . . Ak . . . Ak
︸ ︷︷ ︸

2P+1

};

bk(i) =
[
bk(i) . . . bk(i− P ) bk(i+ 1) . . . bk(i+ P )

]
;

b(i) =
[
b1(i) . . . bK(i)

]T
,

then (4) can be written in a compact form as

r(i) = SAb(i) + v(i). (5)

In (5), bk(i), bk(i − j), bk(i + j) are all from the kth user.
However, they can be regarded as statistically independent sig-
nals from different users which include the kth user with modi-
fied signature codes sk, and (2P + 1) virtual users with signa-
ture codes sk,j and sk,j . Performing eigendecomposition of the

autocorrelation matrix R = E[rrT ] yields

R =
[
Us Un

]
[
Λs + σ2Is 0

0 σ2In

] [
UT

s

UT
n

]

= UsΛsU
T

s + σ2I,

(6)

where Λs is a diagonal matrix whose diagonal elements are pos-
itive. Λs + σ2Is contains the most significant eigenvalues of
R that are not equal to σ2 and Us contains the corresponding
orthonormal eigenvectors; σ2In contains eigenvalues that are
equal to σ2 and Un contains the corresponding orthonormal
eigenvectors. Is, In and I are identity matrices. The columns
of Us span the signal subspace and the columns of Un span the
noise subspace. It is easy to understand that S and Us have the
same rank and span the same subspace.

The signal model and the detectors in this paper are derived
for synchronous multipath channels, however, if the user delays
are known or estimated, the asynchronous multipath channels
can be directly modelled in similar format as the synchronous
channels, and hence the developed adaptive multiuser detectors
can also be applied directly.

III. OPTIMAL MULTIUSER DETECTORS

Assume that user 1 is the interested user. Any linear mul-
tiuser detector for user 1 can be expressed as

d1 = Usα + Unβ = d1s + d1n, (7)

where α is a (2P + 1)K × 1 weight vector and β is a [N +
L − 1 − (2P + 1)K] × 1 weight vector, d1 = Usα is the
projection of the detector in the signal subspace and d1n =
Unβ is the projection in the noise subspace. We know that the
linear detector with optimum SINR performance must exist in
the signal subspace.

Proposition 1: MMSE detector is an optimum SINR detector
and lies in the signal subspace.

Proof: Assume that d1 is an optimum detector with maxi-
mum SINR. Let α = 1

dT
1
s1

. If d1 is the optimum detector with
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maximum SINR, then αd1 is also an optimum detector and has
the same maximum SINR

SINR(αd1) =
E[(αd1)

T A1b1(i)s1]
2

E[(αd1)T r −A1b1(i)s1]2

=
E[A1b1(i)αdT

1 s1]
2

E[αdT
1 r −A1b1(i)αdT

1 s1]2

=
A2

1

E[αdT
1 r −A1b1(i)]2

.

Define
dMMSE = αd1, (8)

it is straightforward to show that

dMMSE = arg max
d

A2
1

E[dT r −A1b1(i)]2
(9)

= arg min
d

E[dT r −A1b1(i)]
2, (10)

for which an implicit constraint is

dT s1 = 1. (11)

The solution to (10) is the MMSE detector. Note that, ac-
cording to (9), this MMSE detector also achieves the maximum
SINR. Therefore, this MMSE detector is optimum in terms of
both SINR and mean square error, and the MMSE detector is in
the signal subspace.

Discussion:
1. According to (8) and (10), for any optimum SINR detector

d1, d1/(d
T
1 s1) is the MMSE detector.

2. The solution to the constrained minimization problem
in (10) and (11) is

dCMMSE =
R−1s1

sT1 R−1s1
, (12)

where dCMMSE means constrained MMSE detector.
3. Without the constraint in (11), solving (10) leads to the

Wiener solution

dWMMSE = A2
1R

−1s1. (13)

Comparing (12) and (13), it can be seen that the Wiener de-
tector is scalar times of the constrained MMSE detector. Ac-
cording to Proposition 1, they should achieve the same maxi-
mum output SINR which is

SINR(dCMMSE) = SINR(dWMMSE)

=
A2

1

1/(sT1 R−1s1) −A2
1

(14)

But dCMMSE and dWMMSE have different mean square
errors, which are given by

MSE(dCMMSE) =
1

sT1 R−1s1
−A2

1

MSE(dWMMSE) = A2
1 −A4

1s
T

1 R−1s1

Theoretical value of the autocorrelation matrix can be com-
puted by

R = SA2ST + σ2I(N+L−1)×(N+L−1),

where

A2
(2P+1)K×(2P+1)K = diag{A2

1, . . . , A
2
1, . . . , A

2
K , . . . , A

2
K}.

IV. ADAPTIVE MULTIUSER DETECTORS FOR MULTIPATH
CHANNELS

From (12) and (13), it can be seen that to calculate the MMSE
detector, we first need know the autocorrelation matrix and then
do matrix inversion. In practice, the autocorrelation matrix can
be estimated by time average:

R = E[rrT ] ≈
1

M

M∑

i=1

r(i)r(i)T .

The largerM , the more precise estimation. However, a larger
M means longer delay, and matrix inversion involves higher
computation complexity especially when N + L − 1 is large.
The performance of the direct MMSE detector implementation
is affected by the estimation error to a great extend as will be
shown by simulation. The matrix inversion operation is also
expensive in terms of computational complexity. We propose
adaptive multiuser detection schemes for multipath channels.
As in (7), the desired detector can be decomposed in the signal
subspace R

(N+L−1)×(2P+1)K

d1 = Usα = s1 + Us,⊥w,

where Us,⊥ is a (N +L− 1)× [(2P +1)K− 1] matrix and its
column vectors are all in the expanded signal subspace and are
orthogonal with s1 ; w is a [(2P + 1)K − 1]× 1 weight vector.
To pursue a MMSE solution, the constraint in (11) is applied.
This constraint can be integrated into the expression of d1 as
follows

d1 =
s1

‖s1‖2
+ Us,⊥w.

It can be easily shown that dT
1 s1 = 1. Now the tasks are

to estimate the signal subspace basis Us,⊥ and the coefficient
vector w. We process estimation of w using Kalman filter first
and then present two methods to estimate Us,⊥.

A. Estimate w by Kalman Filter

Assume that Us,⊥ has been estimated. For stationary system,
the state space model is given by

w(i) = w(i− 1) state transition equation

y(i) = HT (i)w(i) + e(i) measurement equation

where

y(i) =
sT1 r(i)

‖s1‖2

HT (i) = −r(i)T Us,⊥

e(i) = dT

1 r(i) =
sT1 r(i)

‖s1‖2
+ rT (i)Us,⊥w(i),

where e(i) is the measurement noise. Its mean and variance are

µ = E[e(i)] = E[dT

1 (i)r(i)] = dT

1 E[r(i)] = 0

ϕ = cov[e(i)] = E{[e(i) − µ]2} = E[e2(i)] = E[dT

1 r(i)]2.

The mean square error of the detector is

ε = E[dT

1 r(i) −A1b1(i)]
2 = E[dT

1 r(i)]2 −A2
1.
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Hence

ϕ = A2
1 + ε.

When the detctor converges to the MMSE detector

ϕmin = A2
1 + εmin.

In high SNR scenario, the minimum mean square error
εmin = 1/sT1 R−1s1 −A2

1 ≈ 0, therefore ϕmin ≈ A2
1.

B. Estimate Us,⊥ by Batch Processing Method

Because Us,⊥ contains only subspace basis that are orthog-
onal with s1, the received signal can be deflated by projecting
the received signal onto s1 and then subtracting the projection
from the received signal as follows

r⊥(i) = r(i) − r(i)T s1
s1

‖s1‖2
. (15)

It is easy to verify that r⊥(i) and s1 are orthogonal, therefore
it can be expected that the subspace basis extracted from r⊥(i)
will automatically be orthogonal with s1 . The autocorrelation
matrix is estimated by time average as follows

R⊥ =
1

M

M∑

i=1

r⊥(i)r⊥(i)T .

By applying eigendecomposition to R⊥ , the (N +L− 1)×
[(2P + 1)K − 1] eigenvector matrix Us,⊥ is obtained. Here
we also have the problem of inaccurate estimation of R⊥ , but
the simulation will show that the Kalman filter-based multiuser
detector is robust against the subspace estimation error. Hence
a large batch M is not necessary.

C. Estimate Us,⊥ by Windowed PAST Algorithm

The batch processing-based subspace estimation methods ap-
proaches have time delay problem in signal detection, and the
required batch eigenvalue decomposition (ED) or singular value
decomposition (SVD) operation has computational complexity
O((N + L − 1)3) . Projection approximation subspace track-
ing (PAST) is a different approach which relies on a novel in-
terpretation that the signal subspace is the solution to an un-
constrained minimisation problem. This lends convenience for
adaptive implementation. PAST algorithm guarantees global
convergence and has linear complexity. To integrate the PAST
subspace tracking algorithm into the proposed multiuser detec-
tor, three modifications are made to it. First, the received sig-
nal is pre-processed by deflation operation as in (15) for the
same reason as stated earlier. Secondly, the recursive least
square (RLS) version of PAST does not guarantee that the out-
put eigenvectors are orthonormal, hence one explicit orthonor-
malization step is introduced. Thirdly, tracking window is im-
posed to the PAST algorithm, that is, the subspace tracking
process only lasts for limited time duration. Intuitive belief is
that the more data used for subspace tracking, the better ac-
curacy will be achieved and the better performance the detec-
tor will have. However, because Kalman filtering tracking and
the subspace tracking are two separate dynamic processes, and
the Kalman filtering tracking is based on the subspace track-
ing output, frequently changing the subspace basis affects the

convergence of the Kalman filter. The windowing scheme en-
ables initial subspace tracking and then stops it. This avoids
the error propagation in the Kalman filter tracking and allows it
to converge. Kalman filter has strong tracking ability based on
not-exactlyestimated subspace basis. This windowing scheme
also reduces the computational complexity. This algorithm is
summarized in Table 1.

Table 1: Multiuser detector for multipath channels using
the windowed PAST subspace tracking and Kalman filter-based
weight tracking algorithms (β is the forgetting factor)

——————————————————————–
1. Initialize subspace parameters G(0) and Us,⊥(0);
Initialize Kalman filter parameter P(0) and weight w(0) .
2. /∗ w Parameter tracking and signal detection ∗/
FOR i = 1, 2, . . .
/* PAST-based subspace tracking */
IF i < M /∗ window width is M ∗ /

r⊥(i) = r(i) − r(i)T s1s1/‖s1‖
2

y(i) = UT

s,⊥(i− 1)r⊥(i)

h(i) = G(i− 1)y(i)

g(i) = h(i)/[β + y(i)T h(i)]

G(i) = 1/β[G(i− 1) − g(i)h(i)T ]

e(i) = r⊥(i) − Us(i− 1)y(i)

Us,⊥(i) = Us,⊥(i− 1) + e(i)g(i)T

Orthornormalize [s1 Us,⊥(i)].
END
/* Kalman filter tracking */

y(i) = sT1 r(i)/‖s1‖
2

HT (i) = −r(i)T Us,⊥

k(i) = P(i− 1)H(i)[H(i)T P(i− 1)H(i) + ϕmin]−1

P(i) = [I − k(i)H(i)T ]P(i− 1)

w(i) = w(i− 1) + k(i)[y(i) − H(i)T w(i− 1)]

/*signal detection*/

d1(i) = s1/‖s1‖
2 + Us,⊥w(i)

b̂(i) = sgn{d1(i)
T r(i)}

END
—————————————————————

V. NUMERICAL RESULTS

In the simulated system, there are 10 users (K = 10). User 1
is assumed to be the desired one and has fixed SNR 20dB (com-
pared with the noise). Compared with user 1, users 2 to 6 are
10dB stronger, users 7 to 9 are 20dB stronger, and users 10 is
30dB stronger, respectively. The spreading codes are randomly
generated and normalized, and the spreading gain is N = 31.
The multipath channel coefficients of each user are randomly
generated and normalized and have exponential decay profile.
All presented results are the average of 1000 Monte Carlo sim-
ulations.

Example 1: This example studies the effect of the batch
length in the batch processing-based subspace estimation on
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the detectors. The expanded subspace and Kalman filter-based
multiuser detector is compared with the Wiener filter in (13).
Batch processing method is used to estimate Us,⊥ for the for-
mer and is used to estimate the correlation matrix R for the
latter. Figure 1(a) shows the results when the multipath chan-
nel spread is 25, while Figure 1(b) corresponds to the channel
spread 56 (longer than one symbol duration). Batches of 100,
500 and 10000 symbols are tested for both detectors. It is seen
that the Wiener filter is very sensitive to batch length. More
symbols are used, more accurate the estimated correlation ma-
trix is. When batch length is 10000, the SINR performance
nearly approaches the SINR upper bound of any linear mul-
tiuser detector. The SINR upper bound is calculated accord-
ing to (14). Because the SINR bound is specific to the system
setting, and the system settings (channel coefficients and user
spreading codes) vary in each Monte Carlo run, hence the plot-
ted SINR bound is the average of all Monte Carlo simulations.
It is also seen that the expanded subspace and Kalman filter-
based detector is almost not affected by the batch length, in
other words, it is robust against the subspace estimation error.

Example 2: this example examines the effect of the window
length on the expanded subspace and Kalman filter-based mul-
tiuser detector in Table 1. In Figure 2, windows of 50, 150 and
500 symbols are examined for subspace tracking. The batch
processing-based adaptive multiuser detector inevitably has de-
lay, but it only need do Kalman filtering tracking once the signal
detection phase begins. The windowed PAST-based adaptive
multiuser detector in Table 1 has advantage in terms of no delay,
but during the window interval, it needs carry out both subspace
tracking and Kalman filter tracking in each signal detecting iter-
ation. Shorter window demands computation for shorter period.
The simulation results in Figure 2 show that windows of 50 and
500 achieve similar performance. It reflects the robustness of
the adaptive detector.

VI. CONCLUSIONS

Multiple access interference and multipath frequency-
selecting fading are the two impedances in high-speed CDMA
communications. Two adaptive multiuser detectors are devel-
oped in the expanded signal subspace by using subspace esti-
mation and Kalman filtering estimation algorithms. They effec-
tively suppress both MAI and ISI simultaneously and approach
the optimum SINR performance bound, and are much more ro-
bust against subspace estimation error than the Wiener MMSE
detector.
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(a) channel spread =25. (b) channel spread =56.

Fig. 1. (K = 10, N = 31,SNR= 20 dB) SINR performance of the expanded subspace Kalman filter-based adaptive detector and the Wiener MMSE detector in
multipath channels. Subspace and autocorrelation matrix are estimated by batch processing.

(a) channel spread =25. (b) channel spread =56.

Fig. 2. (K = 10, N = 31,SNR= 20 dB) SINR performance of the expanded subspace Kalman filter-based adaptive detector in multipath channels. Subspace
is estimated by windowed PAST algorithm.
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