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Abstract— It has been shown that a decentralized relay selec-
tion protocol based on opportunistic feedback from the relays
yields good throughput performance in dense wireless networks.
This selection strategy supports a hybrid-ARQ transmission ap-
proach where relays forward parity information to the destina-
tion in the event of a decoding error. Such an approach, however,
suffers a loss compared to centralized strategies that select relays
with the best channel gain to the destination. This paper closes
the performance gap by adding another level of channel feedback
to the decentralized relay selection problem. It is demonstrated
that only one additional bit of feedback is necessary for good
throughput performance. The performance impact of varying
key parameters such as the number of relays and the channel
feedback threshold is discussed. An accompanying bit errorrate
analysis demonstrates the importance of relay selection.

I. I NTRODUCTION

Message forwarding in multihop networks occurs over in-
herently lossy wireless links and coding strategies are needed
to meet the network QoS requirements. Hybrid-ARQ is such a
coding strategy that is especially effective in dense networks,
as intermediate nodes can act as relays, forwarding parity
information to the destination. If the destination detectsuncor-
rectable packet errors and broadcasts a retransmission request
to the network, the relays are well-positioned to transmit parity
information more reliably than the source.

Relay selection techniques have been studied extensively in
recent years [1]–[8]. In our previous work on this topic, we
proposed a decentralized selection strategy for relay selection
in dense mesh networks [14], where decoding relays contend
to forward parity information to the destination using rate-
compatible punctured convolutional (RCPC) codes [10].

Our random access-based approach, which is based on op-
portunistic feedback [9], is distinct from centralized strategies
that select the relay with the best instantaneous channel gain
to the destination [7], [8]. Such centralized strategies, though,
yield better throughput than our decentralized approach.
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To close this performance gap, we propose a refinement of
our selection strategy via channel feedback. In our previously
proposed approach, if a decoding relay successfully sends a
“Hello” message to the source in a minislot, it is declared to
be the “winner” for that minislot. The source then randomly
chooses a relay among the set of all “winners.” In this paper,
we refine the relay selection among the set of all “winners” by
biasing the selection towards those relays with channel gains
to the destination that are above a particular threshold. For
example, if the set of “winners” consists of one relay with a
channel gain above the threshold and one relay with a channel
gain below the threshold, the relay with a channel gain above
the threshold is more likely to be chosen by the source than
the other relay.

We briefly discuss how our previously proposed relay selec-
tion strategy differs from the notion of multiuser diversity [11],
[12]. The basic premise behind multiuser diversity is that in a
system with many users with independently fading channels,
the probability that at least one user will have a “good” channel
gain to the transmitter is high. Then, the user with the best
channel gain to the transmitter can be serviced, which will
yield the maximum throughput. In our setup, the analogous
approach would be to always choose the decoding relay that
has the best channel gain to the destination to forward parity
information. Our decentralized approach, though, allows any
decoding relay to have a chance of being selected to forward
parity information as long as it sends at least one “Hello”
message to the source and wins at least one minislot.

II. SYSTEM MODEL

Consider the setup in Fig. 1. Each relay operates in a half-
duplex mode and is equipped with a single antenna. We use
boldface notation for vectors. SNR represents the signal-to-
noise ratio.|h|2 denotes the absolute square ofh. Q(·) is the
standard Q-function, andPr(X ≤ x) denotes the probability
that a realization of the random variableX is at mostx.

Transmission occurs over a set of time slots{t1, ..., tm}
which are of equal duration. We use the ARQ/FEC strategy
in [10]. Initially, the source has a k-bit messagew that is
encoded as an n-bit codewordx. The source chooses code-
rates from a RCPC code family, say{R1, R2, ..., Rm} where
R1 > R2 > · · · > Rm.
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Fig. 1. Relay network.

Before t1, the source and destination perform RTS/CTS-
based handshaking to achieve synchronization. Duringt1, the
source transmits a subsetx1 of the bits inx such thatx1 forms
a codeword from the rate-R1 code. The destination observes

yr,1 = ht,rx1 + nr,1 (1)

while relay i ∈ {1, 2, ...,Kr} observes

yi,1 = ht,ix1 + ni,1. (2)

Here, ht,i is a Rayleigh fading coefficient for the channel
between the source and nodei, while ni,j is additive white
Gaussian noise with varianceN0 at nodei during time slot
tj . We assume that all fading coefficients are constant over
a time slot and vary from slot to slot; we also assume that
fading and additive noise are independent across all nodes.In
addition, we assume that all nodes have no prior knowledge
of fading coefficients and use training data to learn them.

The destination attempts to decodeyr,1. If decoding is suc-
cessful, the destination broadcasts an ACK message to all of
the relays and the source. Otherwise, the destination broadcasts
a NACK message; the source now has to select one of the
relays to forward additional parity information that will assist
the destination in recoveringw.

III. R ELAY SELECTION V IA L IMITED FEEDBACK

We briefly review our proposed relay selection strategy in
[14]. The framing structure for our relay selection strategy is
shown in Fig. 2. We assume in Fig. 2 that the destination sends
a NACK aftert1 andt2 to trigger the relay contention process.
LetRsel denote the set of relays that can participate in the con-
tention process. If relayi ∈ Rsel, then relayi has successfully
recoveredw and has a channel gain to the destination|hi,r|2
that is above a thresholdηopp. Relay i can determine|hi,r|2
by listening to the destination’s NACK, which is embedded in
a packet that contains training data.

All relays in Rsel use the sameK minislots for feedback
to the source. During minislotb, each relayi ∈ Rsel sends a
“Hello” message to the source with probabilitypi. We refer to
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Fig. 2. Framing structure for decentralized selection strategy.

this approach as a1-bit strategy, where the “Hello” message is
an ID number that has been assigned to each relay. Successful
contention occurs during minislotb if exactly one relayi ∈
Rsel sends a “Hello” message. The source then declares that
relay as the “winner” for minislotb. After minislot K, the
source randomly selects one of the “winners”it; if there are
no “winners,” the source will transmit duringt2.

In this work, we modify the1-bit strategy by appending
a check bit to the “Hello” message; the check bit is set to
‘1’ only if |hi,r|2 > βopp for βopp > ηopp. Again, successful
contention occurs during minislotb if exactly one relayi ∈
Rsel sends a “Hello” message. We refer to this approach as a
2-bit strategy.

After minislotK, if either all of the “winners” sent a check
bit of ’0’, all of the winners sent a check bit of ’1’, or there
are no “winners,” the2-bit strategy reduces to the1-bit strat-
egy. Otherwise, the source will randomly select one of the
“winners” it that sent a check bit of ’1’ with probability
q > 0.5; one of the “winners”it that sent a check bit of
’0’ is randomly selected with probability1 − q. Thus, the
2-bit strategy refines the1-bit strategy by further biasing the
selection process in favor of the relays with the best channel
gains to the destination.

During t2, relay it (or the source) transmits a subsetx2 of
the bits in x such thatx1 ∪ x2 forms a codeword from the
rate-R2 code in the RCPC family. The destination combines
yr,1 with

yr,2 = hit,rx2 + nr,2 (3)

and attempts to decodeyr,1∪yr,2 based on the rate-R2 code. If
unsuccessful decoding occurs again, the destination broadcasts
another NACK and the contention process repeats until either
the destination successfully recoversw or the rate-Rm code
has been used without successful decoding.

To compute the dimensionless effective rateRavg of this
strategy, we use [10, equation (16)]

Ravg =
k

n+M
· P

P + lAV
(4)



wherelAV is the average number of additionally transmitted
bits perP information bits. Here,M is the memory of the
mother code for the RCPC family. We refer toRavg as the
throughput of this strategy in the rest of this paper.

For simulation purposes, we employ the path loss model
described in [8]; thus, the received energy at nodei is

Ei = |hb,i|2Ex (5)

= (λc/4πd0)
2(db,i/d0)

−µEx (6)

whereEx is the energy in the transmitted signalx. Here,λc

is the carrier wavelength,d0 is a reference distance,db,i is
the distance between transmitting nodeb and receiving node
i, andµ is a path loss exponent.

We adopt similar simulation parameters as those in [8].
Here, we employ a carrier frequencyfc = 2.4GHz,d0 = 1m,
dt,r = 100m andµ = 3, wheredt,r is the distance between
the source and the destination. We then uniformly distribute
Kr = 20 relays in the region between the source and the
destination such that each relayi is di,r < dt,r units from the
destination. We also use the WiMAX signaling bandwidth,
which is roughly 9 MHz [15]; given a noise floor of -204
dB/Hz this yields a noise valueN0 = −134 dB. BPSK modu-
lation is used for all packet transmissions, and all of the relays
and the destination use ML decoding.

We use the codes of rates{4/5, 2/3, 4/7, 1/2, 1/3} from
the M = 6 RCPC family in [10]. We perform concatenated
coding, where the outer code is a (255, 239) Reed-Solomon
code with symbols fromGF (28); this code can correct at
most 8 errors. The mother code for the RCPC family is a rate-
1/3 convolutional code with constraint length 7 and generator
polynomial (145 171 133) in octal notation.

In this section and in Section IV, we define the average
received SNR at the destination as follows. Assume that the
source uses a transmit energy ofEt(γ) during time slott1
that yields an average SNRγ at the destination; then, all
transmitting nodes will use a transmit energy ofEt(γ) during
all subsequent transmission cycles.

Fig. 3 compares the throughput yielded by the1-bit and
2-bit strategies. We also plot the throughput yielded by the
GPS-based HARBINGER method [8] and by a centralized
strategy that always selects the decoding relay with the best
instantaneous channel gain to the destination to forward parity
information. We haveK = 10 minislots. For the1-bit and2-bit
strategies, we setηopp = −91dB; we also setβopp = −86dB.
We set the feedback probabilitypi = 0.3 for both strategies.
In addition, we set the “winner” selection probabilityq = 0.75
for the 2-bit strategy. We see that the2-bit strategy closes the
performance gap between the1-bit strategy and the centralized
approach. Thus, using a limited amount of channel feedback
improves the performance of our relay selection strategy.

We also observe that the1-bit and 2-bit strategies offer
comparable performance to the HARBINGER method. Note
that the2-bit strategy outperforms the HARBINGER method
for some values of the received SNR. The intuition behind
this result is that the HARBINGER method optimizes the av-
erage received SNR at the destination by selecting the closest
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Fig. 3. Comparison of 1-bit and 2-bit feedback strategies.

decoding relay to the destination. This method, though, does
not necessarily select the “best” decoding relay that has the
highest instantaneous channel gain to the destination. Also,
the inherent randomness of the1-bit and2-bit strategies allows
for the possibility of choosing the “best” decoding relay. Thus,
the HARBINGER method does not necessarily outperform our
selection strategies for all received SNR values.

IV. PERFORMANCE IMPACT OF VARYING SYSTEM

PARAMETERS

A joint optimization of all of the key system parameters
would enable computation of the maximum throughput yielded
by the1-bit and2-bit strategies. This optimization, though, is
fairly difficult to perform; instead, in this section we provide
some insight for system designers by varying some of the key
parameters in isolation and illustrating the resulting impact on
the throughput.

Fig. 4 illustrates the throughput of the2-bit strategy for
various values of the check bit thresholdβopp. Here we have
Kr = 10 relays andK = 3 minislots. We have an average
received SNR at the destination of 8dB. We see that ifβopp

is close toηopp, the performance of the2-bit strategy suffers
since the2-bit strategy essentially reduces to the1-bit strategy.
Also, we see that ifβopp is too large, the performance of
the 2-bit strategy suffers. This is because the probability of
selecting a decoding relayi such that|hi,r|2 > βopp decreases
asβopp increases, which causes the2-bit strategy to reduce to
the 1-bit strategy again. Thus, it is apparent that there is an
optimal value ofβopp for each value of the average received
SNR that maximizes the throughput of the2-bit strategy.

Fig. 5 illustrates the throughput of the1-bit strategy for a
varying number of relay nodes. We haveK = 3 minislots
and an average received SNR of 6dB at the destination. We
see that there is an optimal number of relay nodes for which
the throughput is maximized. Note that if the number of relay
nodes is small, the probability that any of them decode the
source message and send a “Hello” message to the source is
also small. On the other hand, if the number of relay nodes
is large, the probability that at least two relays decode the
source message and attempt to send a “Hello” message to the
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Fig. 4. Throughput as a function of check bit threshold.

source in each minislot is also large; thus, a collision is likely
to occur in each minislot.

Fig. 6 also illustrates the effect on the performance of the
1-bit strategy of varying the number of relay nodes. Instead
of considering the throughput, though, we consider the bit
error rate (BER); we focus on transmission during time slot
t2 where the rate-2/3 code from the RCPC family is used. Here
we haveK = 2 minislots and we set the feedback threshold
ηopp = −98dB. Again, we notice that the performance of the
1-bit strategy suffers when the number of relay nodes is either
small or large.

V. BER ANALYSIS

Assume that we employ Viterbi decoding at the relays and
at the destination. Recall thatP is the puncturing period of the
RCPC family. LetPd be the probability that an incorrect path
of weight d is selected by the Viterbi decoder, and letdfree
be the free distance of the member of the RCPC family that
is currently being used for decoding. Also, letcd be the total
number of non-zero information bits on all paths of weightd.
From [10, equation (9)] we see that the bit error ratePb can
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be upper-bounded as

Pb ≤
1

P

∞
∑

d=dfree

cdPd. (7)

Let γr denote the received SNR at the destination. Since we are
essentially dealing with a binary-input AWGN channel with
binary output quantization, we use [13, equation (12.39b)]to
see thatPb can be further upper-bounded as

Pb <
1

P

∞
∑

d=dfree

cd

(

2
√

p(1− p)
)d

(8)

=
1

P

∞
∑

d=dfree

cd · (9)

(

2

√

Q
(

√

2γr

)(

1−Q
(

√

2γr

))

)d

.

Sinceg(γr) = Q(
√
2γr)(1−Q(

√
2γr)) is a monotonically

decreasing function for non-negativeγr, we see thatPb mono-
tonically decreases for increasing values of the received SNR.
This demonstrates the utility of relay selection, as transmission
from relay nodes will yield a higher average received SNR at
the destination than transmission from the source.

To illustrate this point, consider the following simple ex-
ample. We have the same simulation parameters as in Section
III, except that now we haveKr = 1 relay,K = 1 minislot
and a feedback probabilitypi = 1. We place this relay at a
location that is 25 meters from the source and 75 meters from
the destination. During time slott1, the source uses a transmit
energy that is 101dB above the noise floorN0, which yields an
average received SNR at the destination ofγt,r = 0.952dB.
We consider the1-bit strategy here and setηopp = −91dB.

Consider time slott2, where we assume that the destination
did not successfully recoverw during t1. Now, if the relay is
selected to forward parity information duringt2, the average
received energy at the destination is

Er =

(

3 · 108
2.4 · 109 · 1

4π

)2(
1

75

)

−3

10(−134+101)/10

≈ 1.17 · 10−13.



Thus, we have an average received SNR at the destination of
γ1,r = Er/N0 ≈ 4.7dB.

From [10] we can determine the bit weight enumerating
function (WEF) weightscd for the rate-2/3 code from the
RCPC family. In particular, we see from [10, Table II(c)] that
the only non-zero values ofcd are

cd = {12, 280, 1140, 5104, 24640, 108512}

for d = {6, 7, 8, 9, 10, 11}. Now we substitute these values of
cd andd along withγr = γ1,r into (9). We find that the BER
Pb is upper-bounded asPb < 5.42 · 10−4.

SincePr(γr < γ1,r) = 0.368, we want to evaluate the
performance of our selection strategy for a wider range of
γr. In particular, we find thatPr(γr < 2) = 0.492; if we
substituteγr = 2 into (9) we havePb < 0.0688.

On the other hand, assume that the source forwards parity
information duringt2. If we substituteγr = γt,r into (9), we
find that the BERPb is upper-bounded asPb < 5.55.

Again, sincePr(γr < γt,r) = 0.368, we evaluate the
performance of this approach for a wider range ofγr. We
find thatPr(γr < 0.85) = 0.495; if we substituteγr = 0.85
into (9) we havePb < 64.7. Thus, it is apparent that relay
selection leads to significant gains in BER performance.

Since relaying leads to significantly improved BER perfor-
mance, we want to determine the probability of relay selection
for this example. Here, the relay is selected if it recoversw
in t1 and has a channel gain to the destination|h1,r|2 > ηopp.

Recall our assumption that all channels in our setup undergo
Rayleigh fading. First, the probability that the relay has a
sufficiently high channel gain to the destination is

P2 =

∫

∞

ηopp

1

γ1,r
e−χ/γ1,rdχ (10)

≈ 1.

Thus, we only have to consider the probabilityP1 that the
relay recoversw in time slott1. From [10, equation (20)], the
probabilityPerr that the relay cannot recoverw in t1 is

Perr < 1−
(

1− 1

P

∞
∑

d=dfree

cdPd

)n+M

(11)

where the non-zero values ofcd are for the rate-4/5 code from
the RCPC family. By using (9),P1 is lower-bounded as

P1 = 1− Perr
= (1 − Pb)

n+M (12)

>

(

1− 1

P

∞
∑

d=dfree

cd · (13)

(

2

√

Q
(

√

2γr

)(

1−Q
(

√

2γr

))

)d)n+M

In particular, we see from [10, Table II(c)] that the only non-
zero values ofcd are

cd = {24, 376, 3464, 30512, 242734, 1890790}

for d = {4, 5, 6, 7, 8, 9}. We haveP = 8, n = 2040, M = 6
and the average received SNR at the relay during time slott1
is γt,1 ≈ 19dB. If we substitute these values ofP , n, M and
γr = γt,1 into (13) we see thatP1 ≈ 1.

Again, sincePr(γr < γt,1) = 0.368, we evaluate the
performance of our selection strategy for a wider range of
γr. In particular, we find thatPr(γr < 5) = 0.0608; if we
substituteγr = 5 into (13) we see thatP1 > 0.851. Thus, we
have a good chance of reaping the benefits of relay selection.

VI. CONCLUSION

In this paper we presented a strategy for improving the
throughput of our previously proposed decentralized relayse-
lection protocol. We modified our protocol by using a limited
amount of channel feedback to close the performance gap be-
tween our protocol and centralized strategies that select the re-
lay with the best channel gain to the destination. To understand
the performance impact of different system parameters, we
presented simulation results and discussed their applicability
to system design. We performed a simple BER analysis to
further illustrate the gains achieved by relaying.
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