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Abstract—This paper investigates the connection between the
classical Sum-Product (SP) decoder for Low Density Parity Check
(LDPC) codes and the recently proposed Gradient Projection
(GP) decoding scheme presented in [1]. A graphical model for GP
is exhibited based on which we derive an intermediate algorithm
which establishes a bridge between graphical based algorithms
(SP and variants) and an optimization based algorithm (GP). A
more practical decoding algorithm with improved performance
and reduced complexity is also proposed. A complexity analysis
is provided and performance are studied through Monte-Carlo
simulations.

I. INTRODUCTION

LDPC codes are now established as one of the most power-
ful classes of error correcting codes. Noticeably, the DVB-S2
standard FEC scheme relies on a set of capacity approaching
LDPC codes. They are also present in the Wimax (802.16e)
and Wifi (802.11n) standards.

Near optimal decoding is usually achieved with the Sum-
Product (SP) algorithm which is also recommended in the
DVB-S2 standard. Essentially, the SP algorithm computes A
Posteriori probabilities of code bits if the Tanner graph asso-
ciated to the LDPC code is cycle free. Numerous simulations
have shown that the performance penalty induced by cycles is
reasonnable. The most common low complexity variant of SP
is the Min-Sum (MS) algorithm which typically performs 0.5
dB away [6].

Other decoding schemes have been proposed (Linear Pro-
gramming [9], Non-Linear Programming [10], Bit Flipping
[7]) which aim at finding the Maximum Likelihood codeword
without explicitely computing probabilities.

The GP decoder has recently been introduced in [1] as
an alternative decoding approach based on formulation and
optimization of an objective function which entails the code
constraints. Convex constrained optimization is achieved with
the GP iteration [8] and aim at finding a global extremum
at a vertice of the hypercube [0, 1]n that, by construction,
corresponds to a valid codeword.

We derive in this contribution a graphical model for GP
which can thus be viewed as a type of message passing
algorithm similarly to SP. Based on its graphical interpretation,
two variants of GP are derived. The first is not of practical
interest but highlights the connection between GP and SP.
The second algorithm is practical for it is simpler and better
performing than the original GP.

Section II provides the background on LDPC codes and the
notations used in the paper. Section III describes the SP and
the GP decoders and IV the intermediate algorithms and their
connection to them. Section V gives several simulation results
to assess the performances of the algorithms discussed here.
Section VI concludes this paper.

II. BACKGROUND AND NOTATIONS

LDPC codes are a special class of linear block codes. A
linear block code can be described by its parity-check matrix
H = (hji), of dimension (m,n). LDPC codes are character-
ized by very sparse parity-check matrices. The sparsity con-
straint keeps the decoder complexity manageable even for very
long codes, which need to be employed if Shannon bound is
to be approached. Based on H , we define several sets that will
be used throughout the paper: I = {1 · · ·n}, J = {1 · · ·m},
for every j ∈ J , Ij = {i ∈ I|hji = 1}, for every i ∈ I,
Ji = {j ∈ J |hji = 1} and E = {(i, j) ∈ I × J |hji = 1}. A
Tanner graph provides an alternative way to represent H . It is
composed of a set of n variable nodes (V-nodes) indexed by
I and a set of m check nodes (C-nodes) indexed by J . The
edges of the Tanner graph are indexed by E . An edge (i, j)
connects V-node i and C-node j if and only if code bit i is
involved in parity-check equation j.

In the paper, it is assumed a BPSK modulation of code
bits (ci)i=1..n into symbols (si)i=1..n (si = 1 − 2.ci) and an
AWGN channel. The channel observation is noted (yi)i=1..n.

The SP algorithm consists of iteratively passing messages
along the edges connecting V-nodes and C-nodes. The mes-
sages convey information about the likelihood of the code
bits being 1 or 0. The message concerning a code bit b
can be expressed in three different metrics (see [4]): prob-
abilities (Pr(b = 0) or Pr(b = 1)), Log-Likelihood Ratios
(LLR(b) = ln(Pr(b=0)

Pr(b=1) )) or soft-bits (B = tanh(LLR(b)
2 )).

For the description of the graph-based algorithms, we use the
following notations for the messages passing on the graph
model: vk

ij (LLR) and V k
ij (soft-bit) denote the message passing

along edge (i, j), from V-node i to C-node j at iteration k.
Similarly, the message from C-node j to V-node i is noted
ck
ji (LLR) or Ck

ji (soft-bit). The estimate at iteration k of the
A Posteriori probability of code bit i is noted vk

i (LLR) or
V k

i (soft-bit) and the A Priori probability derived from the
channel observation is noted fi (LLR) or Fi (soft-bit). With
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the channel assumptions made above, the latter quantities are
expressed by: fi = 2.yi

σ2 and Fi = tanh
(

yi

σ2

)
where σ2 is the

noise variance.

III. SUM-PRODUCT ALGORITHM AND GRADIENT

PROJECTION DECODING

A. Sum-Product and Min-Sum algorithms

In order to illustrate the connection between GP and SP
in section IV, we will use in this section both LLR and soft
bit metrics to describe SP. The simplification of SP into MS
is also discussed. Both SP and MS are iterative algorithms.
An iteration consists of three parts: the C-nodes and V-nodes
processing and the decision variable update. At the end of each
iteration, a candidate codeword is derived from the decision
variable. If the syndrom of that candidate is null, the algorithm
is stopped as the codeword is valid. In order to handle the case
of decoding failure, the algorithm is also stopped after a user-
defined number of iteration. This stopping criterion is assumed
for all the algorithms described in the paper. The SP algorithm
is summarized below.

for all i ∈ I do
for all j ∈ Ji do

v0
ij = yi

V 0
ij = Yi = tanh

(yi

2

)
while stopping criterion not satisfied do

Step 1: C-nodes processing
for all j ∈ J do

for all i ∈ Ij do

ck
ji = 2 · atanh


∏

i′∈Ij

i′ �=i

tanh

(
vk−1

i′j

2

)
Ck

ji =
∏

i′∈Ij

i′ �=i

V k−1
i′j

Step 2: V-nodes processing
for all i ∈ I do

for all j ∈ Ji do
vk

ij = yi +
∑

j′∈Ji

j′ �=j

ck
j′i

V k
ij = tanh


atanh(Yi) +

∑
j′∈Ji

j′ �=j

atanh
(
Ck

j′i
)



Step 3: Decision variables update
for all i ∈ I do

vk
i = yi +

∑
j∈Ji

ck
ji

V k
i = tanh


atanh(Yi) +

∑
j∈Ji

atanh
(
Ck

ji

)
Step 4: stopping criterion

In the LLR metrics variant, which is usually implemented,
complexity is driven by the C-nodes processing. The MS
simplification classically applied to SP consists in replacing
this processing by:

ck
ji =

∏
i′∈Ij

i′ �=i

ak−1
i′j · min

i′∈Ij

i′ �=i

(
bk−1
i′j

)

where messages vk
i′j are factorized into sign and magnitude:

vk
i′j = ak

i′j · bk
i′j with ai′j = sign(vi′j) and bi′j = |vi′j |. The

MS simplification is widely adopted and typically performs
0.5 dB away from the SP algorithm.

B. Gradient Projection Decoding

GP is a recently proposed approach for decoding LDPC
codes in which the decoding problem is formulated as a convex
constrained optimization that is solved by the classical gradient
projection algorithm (see [1] and [8]). The cost function
introduced below differs from the original one ([1]). It is
simpler for it has no longer a nested form and reduces the
computationnal load at no cost in performance. This function
depends on the n variables representing soft estimates of the
code bits and is constructed such that it entails the m parity
check equations. For i ∈ I , we denote in the following xk

i the
soft value representing an estimate of symbol si, at iteration
k. The cost function associated to some parity-check equation
j is:

fj

(
(xi)i∈Ij

)
=
∏
i∈Ij

xi

Since a parity-check equation is satisfied if and only if an even
number of bits involved are ′1′s, we can affirm that when all
xi are in {−1, 1}, the parity check equation j is satisfied if
and only if fj = 1 (recall that code bit ci is ′1′ if and only
if si, or equivalently xi is ′ − 1′). An overall cost function is
thus constructed as follows:

F (x) =
m∑

j=1

fj with x = [x1 · · ·xn] ∈ [−1, 1]n

The classical Gradient Projection algorithm, applied over
the set [−1, 1]n, enables to perform the maximization. The
variables xi are initialized with the soft output of the AWGN
channel yi and the GP algorithm modifies the xi values until
the closest local maximum of the cost function is found. Let
us denote u the projection operator over [−1,+1]: u (x) =
sign(x) if |x| ≥ 1 and u (x) = x if |x| < 1. Gradient
Projection decoding is described hereafter:

for all i ∈ I do

x0
i = u(yi)

while stopping criterion not satisfied do
Step 1: Gradient computation and soft information update
for all n ∈ I do
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Fig. 1. Graph description of the SP algorithm: (a) C-node processing (b)
V-node processing

∂F

∂xi
=

m∑
j=1

∂fj

∂xi
=
∑
j∈Ji


∏

i′∈Ij

i′ �=i

xk−1
i′




xk
i = u

(
xk−1

i + α · ∂F

∂xi

)
Step 2: stopping criterion

The soft values xi are used as decision variables. The
optimization theory assures that this algorithm will converge
toward a local maximum, which however does not always
correspond to a valid codeword (only global maxima are in
one to one correspondance with valid codewords). The choice
of a value for the step parameter α is a trade-off between
accuracy and convergence speed. If α is chosen sufficiently
small, the algorithm will always converge (see [8]).

Simulations show that the GP decoding method is subopti-
mal. It is however a promising new decoding technique for it
is significantly less complex.

IV. CONNECTION BETWEEN SP AND GP: INTERMEDIATE

ALGORITHMS

This section sheds light on the connection between SP
and GP decoders. In order to exhibit tight algorithmic links,
we introduce an intermediate algorithm (called modified SP)
in section IV-A. It is further shown that the piece-wise
linearization of this algorithm reduces to the original GP
algorithm, highlighting the connection between GP and SP.
Though this algorithm does improve the performance of GP,
it is not claimed to be a practical decoding alternative as it
is more complex than GP. However, it is shown in section
IV-B that the classical MS simplification is applicable to it and
that the resulting algorithm becomes less complex and better
performing than GP. The latter algorithm, called modified Min-
Sum, is claimed to be a practical alternative for decoding
LDPC codes.

A. Modified Sum-Product

The modification of SP algorithm proposed in this section
is to give up the extrinsic information principle. Instead
of updating a set of messages vij and a decision variable
vk

i , we only store and update an approximate A Posteriori
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Fig. 2. Graph description of the proposed algorithm: (a) C-node processing
(b) V-node processing

Probability, and this approximation is used as the message
itself. Graphically, the original SP algorithm and the proposed
modification are illustrated on Fig.1 and Fig.2. Only the V-
node processing and the decision variable update are modified
with regard to the standard SP algorithm and this modification
is inspired by the GP algorithm. The proposed algorithm is
described below.

for all i ∈ I do
v0

i =yi

V 0
i =Yi = tanh

(yi

2

)
while stopping criterion not satisfied do

Step 1: C-nodes processing
for all j ∈ J do

for all i ∈ Ji do

ck
ji =2 · atanh


∏

i′∈Ij

i′ �=i

tanh

(
vk−1

i′

2

)
Ck

ji =
∏

i′∈Ij

i′ �=i

V k−1
i′

Step 2: V-nodes processing and decision variables update
for all i ∈ I do

vk
i =vk−1

i + α ·
∑
j∈Ji

ck
ji

V k
i =tanh


atanh(V k−1

i ) + α
∑
j∈Ji

atanh
(
Ck

ji

)
Step 3: stopping criterion

The above algorithm can be view as an intermediate one
between SP and GP. The SP algorithm and its links to
the factor graph theory are described in [3]. The proposed
algorithm respects the behavioural model described in [3]
and thus has a graphical interpretation. However, it does not
comply with the probabilistic model as it does not produce an
exact APP distribution contrarily to SP on a cycle free graph.
The proposed modified SP algorithm repeatedly invokes the
tanh and atanh functions. If we replace these two functions
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Fig. 3. Linearization: (a) of the tanh function (b) of the atanh function

by the piece-wise linear function u and the identity function
over [−1,+1] ( see Fig.4) in the modified SP expressed in
soft-bit metrics, we obtain the following algorithm:

for all i ∈ I do
V 0

i = Yi = u
(yi

2

)
while stopping criterion not satisfied do

Step 1:
for all i ∈ I do

V k
i = u


V k−1

i + α ·
∑
j∈Ji

∏
i′∈Ij

i′ �=i

V k−1
i′




Step 2: stopping criterion

It is interesting to note that the above algorithm is the origi-
nal GP algorithm except for the initialization step. Simulations
show that GP performs better if initialized with the channel
observation yi. This piece-wise linearization establishes a
bridge between a degraded SP algorithm and GP, giving
further insight into the recent GP decoding of LDPC codes.
Though the proposed intermediate algorithm relates SP and
GP decoding, it comes with an increased complexity with
regard to GP. However, it is shown in section IV-B that a
practical algorithm can be obtained by applying the classical
MS simplification to the C-nodes processing.

B. Modified Min-Sum algorithm

The modified SP algorithm presented in the previous section
involves the same C-node processing as the original SP.
It is then natural to apply the classical MS simplification.
Simulations show that the resulting modified MS has reduced
complexity and improved performance with regard to GP. In
order to support the claim that the proposed modified MS
algorithm is a practical decoding alternative, we conduct in
the following a complexity analysis in order to compare the
original SP and GP algorithms to the proposed modified MS.

The complexities of these algorithms are summarized in
TABLEI. For the complexity comparison, we have considered
a regular LDPC code of C-node degree ρ = |Ij | and of V-
node degree γ = |Ji|. The ’Min.’ operation corresponds to
finding the two lowest values among a set of ρ values which
correponds to the C-nodes processing in MS and modified MS.
The complexity of a decoder is also determined by the amount
of storage space required. We only consider in the following

Standard
Min-Sum

Modified
Min-Sum

Gradient
Projection

Multiplication X O(n) O(n.γ.ρ)
Addition O(n.γ.γ) O(n.γ) O(n.γ)
Min. operation O(n.γ) O(n.γ) X
Projection X X O(n)
Sign inversion O(n.γ.ρ) O(n.γ.ρ) X
Storage required O(n.(γ +4)) O(3.n) O(2.n)

TABLE I
COMPLEXITY COMPARISON
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10
−5

10
−4

10
−3

10
−2

10
−1

EbNo

B
LE

R
 (

B
lo

ck
 E

rr
or

 R
at

e)
 

 

Min−Sum, max. 160 it.
Min−Sum, max. 80 it.
modified Min−Sum (step 0.1), max. 120 it.
modified Min−Sum (step 0.25), max. 40 it.
Gradient Projection (step 0.1), max. 30 it.
Gradient Projection (step 0.25), max. 10 it.

Fig. 4. BLER performance of a (96,48) LDPC code

analysis the storage of real numbers. Hence we count only one
storage unit for the case where several messages have the same
magnitude but different signs. The MS and GP algorithms
typically require the storage of O(n.(γ + 4)) and O(2.n) real
numbers respectively . The modified MS algorithm requires
O(3.n) real numbers to be stored.

For the sake of fair comparison, one should also consider
the typical number of iterations required to achieve best
performance. To that respect, a desirable feature of GP and
modified MS is the existence of the step parameter which can
be tuned to increase the convergence speed. Quantified results
are given in the next section. The general rule is that GP is
the fastest decoder and MS the slowest.

Overall, the proposed modified Min-Sum decoder is the
simplest algorithm of the three compared in the paper even
though the GP decoder ensures the fastest decoding which is
of interest for low latency applications. The best performing
algorithm remains the classical MS.

V. SIMULATION RESULTS

One irregular and two regular LDPC codes have been used
to conduct block error rate (BLER) Monte-Carlo simulations.
For GP and modified MS, we show that convergence can be
sped up by increasing the step parameter. The performance
gaps given below are at BLER 10−5 and compare the best
performing variants of each algorithm (dashed lines on Fig.4,
Fig.5 and Fig.6).

Results obtained with the shorter regular code (n = 96,
k = 48, ρ = 6 and γ = 3) are shown on Fig.4. The modified
MS algorithm performs 0.7 dB worse than the original MS
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Min−Sum, max. 350 it.
Min−Sum, max. 150 it.
modified Min−Sum (step 0.1), max. 180 it.
modified Min−Sum (step 0.25), max. 60 it.
Gradient Projection (step 0.1), max. 30 it.
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Fig. 5. BLER performance of a (504,252) LDPC code

and 0.5 dB better than GP. The results in solid lines show that
the algorithms can be stopped significantly earlier with a low
performance penalty. Noticeably, the modified MS and GP can
be stopped after few iterations (40 and 10 respectively) and
are therefore good candidates for low latency applications.

Performance results for the longer regular code (n = 504,
k = 252, ρ = 6 and γ = 3) are given on Fig.5. On this code,
the modified MS algorithm and GP trail the MS algorithm by
1 dB and 3.5 dB respectively which means that the proposed
modified MS brings a 2.5 dB improvement together with a
complexity reduction when compared to GP. However, GP
remains the fastest converging algorithm with a sufficient
maximum number of 10 iterations to be compared to the
required 60 and 150 for modified MS and MS respectively.

An irregular (n = 200 and k = 52) LDPC code has also
been simulated. Results are shown on Fig.6. Modified MS
outperforms GP by 4.4 dB but performs 1.3 dB worse than
MS. Note that on this code, only GP provides a significant ad-
vantage in decoding speed (with a maximum of 10 iterations).

Simulations show that the introduced algorithm significantly
reduces the performance gap between GP and MS and is often
faster (and at least not slower) than the classical MS algorithm.
These performance improvements come and support the graph-
ical interpretation of GP introduced in this paper.

VI. CONCLUSION

The connection between the recent GP decoding of LDPC
codes and the classical SP (and its variants) has been in-
vestigated. The main contribution is the construction of an
underlying graphical model for GP which establishes a bridge
between SP related algorithms and an optimization based
algorithm. The connection between two seemingly different
classes of algorithms has been highlighted by the introduction
of an intermediate algorithm which is essentially a degraded
SP algorithm and which reduces to the original GP after piece-
wise linearization. The existence of a graphical interpretation
to GP gives a new lead for further improvements of this low
complexity decoding of LDPC codes. Furthermore, based on
the introduced graph model, a practical algorithm has been
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Min−Sum, max. 300 it.
Min−Sum, max. 100 it.
modified Min−Sum (step 0.1), max. 300 it.
modified Min−Sum (step 0.25), max. 100 it.
Gradient Projection (step 0.1), max. 30 it.
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Fig. 6. BLER performance of a (200,52) LDPC code

derived which is of interest for low complexity, low latency ap-
plications (typically handheld terminals). It exhibits significant
performance improvement together with a reduced complexity
with regard to GP, at the cost of a reasonnable increase
in decoding delay. It suffers from reasonnable performance
degradation when compared to the classical MS. The adoption
of LDPC codes in the DVB-S2 standard make them good
candidates for future satellite mobile applications for which
the existence of fast and simple alternatives to the existing
decoders is a critical requirement. The work conducted in this
paper is one step toward the design of such alternatives.
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