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Abstract— With the advent of EXtrinsic Information Transfer (EXIT)
charts, we are capable of analyzing, predicting and visually comparing
the convergence behaviours of different turbo Multi-User Detectector
(MUD)s. The different MUDs have diverse EXIT characteristics and
hence their superposition allows us to create a combined EXIT curve,
which closely matches that of the channel decoder. Hence a near-capacity
operation is facilitated by combining the benifits of different MUDs and
therefore to create a superior MUD. Thus in this contribution, we propose
a novel hybrid MUD combining scheme, which combines the advantages
of a high performance and low complexity in form of an advanced hybrid
MUD solution. The transmitted bits are unknown at the receiver, hence
it is not feasible to directly evaluate the mutual information gain of the
iterative MUD in consecutive iterations, hence we propose a realistic
algorithm for estimating this mutual information gain, which is then
used for activating the most appropriate constituent MUD as and when
it is necessary. The constituent MUDs are the Matched Filter (MF) based
Soft Interference Cancellation (SoIC) and the optimum Bayesian MUDs,
which are invoked in the scenario of Frequency-Domain-Spread Chip-
Interleaved (FDSCI) Multiple Carrier Code Division Multiple Access
(MC-CDMA). The resultant hybrid MUD is capable of outperforming
both the MF-SoIC and Bayesian turbo MUDs in the terms of the
attainable complexity and Bit-Error-Rate (BER) performance.

I. INTRODUCTION

The Frequency-Domain-Spread Chip-Interleaved Multiple Carrier
Code Division Multiple Access (FDSCI MC-CDMA) scheme consid-
ered may be interpreted as the multi-carrier version of the Interleave
Division Multiple Access (IDMA) philosophy developed by Ping et.
al. [1]. The IDMA scheme exchanges the classic position of DS-
spreading and interleaving employed in traditional CDMA systems,
leading to chip-interleaving instead of bit-interleaving. Hence the
different users are distinguished by their unique user-specific inter-
leavers πk, as seen in Fig. 1.

The IDMA receiver of [1] employs turbo-style iterative joint
Matched Filter based Soft Interference Cancellation (MF-SoIC) aided
Multi-User Detectector (MUD) combined with channel decoding,
where the MUD’s front-end processing is carried out on a chip-
by-chip basis. However, MF based detection constitutes a single-
user approach, which has a limited ability to exploit any extrinsic
information and hence its performance is interference-limited. In
contrast to the low-complexity MF-SoIC MUD, the optimal Bayesian
MUD imposes an exponentially increasing complexity as a function
of the number of users.

EXtrinsic Information Transfer (EXIT) charts [2] are capable
of analyzing the convergence characteristic of concatenated turbo
components and constitute a convenient semi-analytical performance
visualization technique. More explicitly, EXIT charts evaluate the
mutual information of the extrinsic output and a priori input of the
concatenated decoder components corresponding to the associated
bits s. The resultant extrinsic and a priori information exchange be-
tween the iterative Soft-In Soft-Out (SISO) blocks is then portrayed,
as detailed in [2]. Thus the different mutual information gain of
the MUDs serially concatenated with a SISO channel decoder may
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Fig. 1. The transceiver of chip-interleaved CDMA

be visualized at each step of the iterative detection process in the
EXIT chart. Therefore, an advanced scheme combining the benifits
of different MUDs may be created.

Hence the novelty of this contribution is that we propose a hybrid
MUD, which activates different MUDs in different iterations by
exploiting a low-complexity mutual information evluation technique.
Specifically, the proposed hybrid scheme enables us to circumvent
the performance limitations of the MF-SoIC MUD by exploiting
the superior performance of the Bayesian MUD during a few MUD
iterations only. This allows us to approach the optimum Bayesian
MUD’s performance at a modestly increased complexity in com-
parison to that of the MF-SoIC MUD. As a further novel feature,
we propose an algorithm for the real-time monitoring of the actual
mutual information exchange during the MUD process by evaluating
the average of the LLR magnitudes at the output of the MUD.

The remainder of this contribution is organized as follows. In
Section II, our system model is introduced, while the EXIT chart
analysis is presented in Section III, which will be used in Section IV
for studying a range of different turbo MUD strategies. Our system
performance results and discussions will be presented in Section V,
followed by our conclusions in Section VI.

II. TRANSCEIVER STRUCTURE

The upper part of Fig. 1 portrays the transmitter of the system.
Assuming that BPSK modulation is adopted here, the kth user’s
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transmitted bit stream {bk(i); i = 1, 2, · · · , M} is firstly channel
encoded at a rate of R = M/Nc, yielding the encoded stream
{ck(i); i = 1, 2, · · · , Nc}. Then the resultant channel encoded stream
is Direct Sequence (DS) spread by a spreading code having a spread-
ing gain G, which is common for all users, yielding the sequence
{sk(i); i = 1, 2, · · · , N}. This sequence is then chip-interleaved em-
ploying a user-specific random chip-interleaver πk, in order to form
the chip stream {dk(i); i = 1, 2, · · · , N}. The resultant chip stream
is then transmitted through the multiple access channel supporting K
users. This is in contrast to the concept of a classic CDMA system,
where the interleaver is between the FEC coding and DS-spreading
stages. The latter classic philosophy corresponds to bit-interleaving,
which is also seen in the upper part of Fig. 1. Then each user’s signal
is OFDM modulated [3]. At the receiver, after OFDM demodulation
the u-th subcarrier’s received signal in the i-th OFDM symbol is
denoted by

y = Hd + ν, (1)

where H is the K dimensional Frequency Domain Channel Transfer
Function (FDCHTF) vector corresponding to the K users, while the
K users’ data vector is denoted by d. Furthermore, ν is the Additive
White Gaussian Noise (AWGN) having a zero mean and a variance
of 2σ2

n.

III. EXIT CHART ANALYSIS

EXIT charts were proposed by ten Brink [2] for analyzing the
convergence characteristic of turbo codes as a convenient visualiza-
tion technique. This technique computes the mutual information of
the output extrinsic and input a-priori components corresponding to
the associated bits s for each of the iterative SISO blocks. More
specifically, the mutual information of the LLRs and the legitimate
bipolar BPSK bits is given by [2]:

I =
1

2

∑
s∈{+1,−1}

∫ ∞

−∞
pL(x|s)

· log2

[
2pL(x|s)

pL(x| + 1) + pL(x| − 1)

]
dx, (2)

where pL(x|s) is the conditional probability distribution of the LLRs.
We can now substitute the conditional probability distribution of
the extrinsic information Le and that of the a-priori information
La into Eq.2 in order to derive the mutual information between
either IE or IA and the legitimate bipolar bits, respectively. The
required distribution of the LLRs in Eq.2 can be approximated by
the experimentally generated LLR histogram or using the ubiquitous
Gaussian distribution for modeling the LLR distribution.

IV. TURBO MUDS

A. MF-SoIC turbo MUD

The receiver of Fig. 1 consists of a Soft-In-Soft-Out (SISO) MUD
and a bank of K individual SISO channel DECoders (DEC), where
the soft information exchanged between the receiver components is
constituted by the extrinsic Log-Likelihood Ratios (LLRs). At the l-th
iteration, the MF outputs the extrinsic information Le

MUD(dk) based
on the channel’s output, combined with the a priori informantion
Le

DEC(dk) provided by the SISO DEC. The soft estimates d̂k of the
kth user’s signal are represented as:

E(dk) = tanh(Le
DEC(dk)/2), (3)

while their variance is given by:

V(dk) = 1 − E(dk)2. (4)

When considering user k as the user of interest, we have:

y = Hkdk + ξ, (5)

where ξ =
∑

j �=k Hkdk + ν denotes the interference plus noise. The
soft estimates of ξ can be represented as

E(ξ) =
∑
j �=k

HkE(dk), (6)

while the corresponding variance is expressed as :

V (ξ) =
∑
j �=k

|Hk|2V(dk) + 2σ2
n. (7)

Assuming that the received signal is Gaussian distributed around
the legitimate transmitted symbol values, the resultant extrinsic
information Le

MUD(dk) can be expressed as:

Le
MUD(dk) =

4R{H∗
k(y − E(ξ))}
V (ξ)

, (8)

where R denotes the real part of a complex variable. The calculation
of E(ξ) and V (ξ) requires totally 4(K − 3) additions and multipli-
cations, when considering a single transmitted chip.

B. Bayesian turbo MUD

Following the first MUD iteration, the a priori information con-
cerning the likelihood of all the legitimate Nb = 2K number of
BPSK modulated K-user bit sequences becomes available. The joint
PDF of the antenna array’s output y and the transmitted chip stream
d
(j)
k ∈ {±1}, j ∈ 1, . . . , Nb of user k at the output of the

channel encoder can be expressed as the superposition of all the
conditional Gaussian PDFs positioned at the legitimate noiseless
channel outputs corresponding to the transmitted symbols dk = +1
and dk = −1, multiplied by the j-th legitimate signal vector’s
probabilities, respectively, which can be expressed as [4]:

P (y, dk = ±1) =
∑

∀j:d
(j)
k

=±1

P (d(j)) e

(
− (‖y−ȳj‖)2

2σ2
n

)
. (9)

The entire set of Nb = 2K number of legitimate vectors of the
K users is partitioned into two subsets corresponding to dk = +1
and dk = −1. In Eq.(9), ȳj , j ∈ 1, . . . , Nb constitutes the
noiseless received signal vectors, where the Gaussian PDFs seen
in Eq.(9) are centered. The Euclidian distance measured from their
noiseless center to the received signal vector is used as the metric of
quantifying their corresponding probability. Furthermore, P (d(j)) is
the a-priori information to be defined more explicitly below. All the
other notations are defined as before.

Provided that the chips of all the K users are independent, the
probability P (d(j)) can be expressed as :

P (d(j)) =
K∏

k=1

P (d
(j)
k ), j ∈ 1, . . . , Nb, (10)

where P (d
(j)
k ) represents the probabilities of either P (d

(j)
k = 1) or

P (d
(j)
k = 0), depending on the l-th user’s bit at the j-th bit position,

j ∈ 1, . . . , Nb = 2L within the K-user transmitted chip vector, which
is the a-priori information provided by the k-th user’s SISO decoder.

Let us use the conditional likelihood of the received signal vector as
that of the estimated bit decision concerning the kth user’s transmitted
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Fig. 2. Exit charts and simulated trajectories of the proposed hybrid MUD
when supporting K = 12 users at Eb/N0 = 10dB.

bit. Then we have:

Le
MUD(dk) = ln

P (dk = +1|y)

P (dk = −1|y)
− ln

P (dk = +1)

P (dk = −1)

=ln

∑
∀j:d

(j)
k

=+1

(∏
∀l:l�=k P (d

(j)
l )

)
e

(
− (‖y−ȳj‖)2

2σ2
n

)

∑
∀j:d

(j)
k

=−1

(∏
∀l:l�=k P (d

(j)
l )

)
e

(
− (‖y−ȳj‖)2

2σ2
n

) . (11)

This will lead to the maximum-likelihood solution. Furthermore,
the complexity of the Bayesian turbo MUD can be reduced by
employing the techniques proposed in [5]. The complexity of the
above-mentioned Bayesian MUD is constituted by 2 ∗ 2K(2K − 1)
additions and multiplications required for computing the legitimate
channel output states ȳj , j ∈ 1, . . . , Nb and 7 ∗ 2K additions
of the Gaussian PDFs, plus the 2K exp function evaluations seen
in Eq.(11), when considering a single transmitted chip. Hence, we
can approximate the total complexity of the Bayesian MUD as
2K(4K + 6) operations.

C. Hybrid Turbo MUD Design

Fig.2 portrays the EXIT curves of both the SoIC aided MF and
of the Bayesian MUDs, when supporting K = 12 users with
the aid of 4-chip Frequency-Domain (FD) spreading sequences at
Eb/N0 = 10dB. At the abscissa value of unity, the EXIT curves
of both constituent MUDs converge to the same point, coinciding
with that recorded for a single user. This reveals that the multiple
access interference (MAI) is completely eliminated by both the
MUDs, provided that perfect a priori information is available. At
the abscissa of zero, the Bayesian turbo MUD’s EXIT curve exhibits
a higher starting point than that of the MF-SoIC MUD and provides
a significantly wider EXIT tunnel, albeit this is achieved at a cost
of tremendously increased computational complexity. By contrast,
the MF-SoIC MUD results in reduced Ie MUD values in the EXIT
chart at a significantly reduced complexity requirement. Generally, if
there is an open tunnel between the EXIT curve of the MUD and
that of the channel decoder, the MF-SoIC MUD would impose a
lower complexity than the Bayesian turbo MUD, when aiming for
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Fig. 3. The mutual information I function of σLLR and its linear
approximation.

achieving a near-single-user performance. This implies that the MF-
SoIC MUD should be activated instead of the more complex Bayesian
MUD, when the former is also capable of achieving a sufficiently high
the iteration gain. However, at a low SNR value, there may not be
a sufficiently widely open convergence tunnel when using the MF-
SoIC MUD, but it may still be open when using the Bayesian MUD,
as seen in Fig.2.

Our novel proposition is to use the MF-SoIC MUD during the
first a few iterations and subsequently to activate the Bayesian MUD
for a few further iterations to avoid encountering the ”bottleneck”
region of the MF-SoIC MUD. Beyond the EXIT-chart’s bottle-neck
region we may then safely activate again the MF-SoIC MUD. As
an explicit benefit, the proposed Hybrid MUD becomes capable of
achieving a similar performance to that of the Bayesian MUD at
a decreased complexity in comparison to the conventional method,
since the Bayesian MUD is only activated during the critical MUD
iterations. In order to determine the activation instant of the different
MUDs, we have to monitor the mutual information gain between the
MUDs and the channel decoder, as shown in Fig.2. If the mutual
information improvements are monitored at the receiver, then it is
intuitive that the MF-SoIC MUD should be actived when its EXIT
curve is above that of the channel decoder, while the Bayesian
MUD should be activated when the EXIT curve of the MF-SoIC
MUD is below that of the channel decoder. However, in practice
the knowledge of the mutual information is generally unknown at
the receiver. Thus, we have to estimate of the extrinsic information’s
absolute value E(|Le

MUD)| generated by the MUD. Assuming that
the LLRs obey a Gaussian distribution at the output of the MUD
having a zero-mean and a variance of σLLR, the probability density
function (PDF) of the extrinsic information’s absolute value |Le

MUD|
can be expresseed as:

P (|LMUD|) =
2

σLLR

√
2π

exp

(
− (LMUD)2

2σ2
LLR

)
. (12)
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Hence, we have:

E(|Le
MUD|) =

∫ +∞

0

2x

σLLR

√
2π

exp

(
− x2

2σ2
LLR

)
dx

=

√
2

π
σLLR. (13)

Similarly, Eq.2 can be rewritten as [2]:

I(σLLR) = 1 −
∫ ∞

−∞

e

(
−(x−σ2

LLR/2)2

2σ2
LLR

)

√
2πσLLR

· log2 (1 + e−x)dx.

(14)

The function I(σLLR) is monotonically increasing with the LLR
variance σ2

LLR, as shown in Fig.3. It is also seen in Fig.3 that the
mutual information I(σLLR) can be accurately approximated by a
linear fuction in the range of 0.1 < I(σLLR) < 0.8 as:

I(σLLR) ≈ 0.3043 · σLLR − 0.1303. (15)

This range of [0.1, 0.8] typically includes the IeMUD values expe-
rienced during the iterative process. Furthermore, using Eq.13, we
arrive at:

IeMUD(E(|Le
MUD|)) ≈ 0.3043

√
π

2
E(|Le

MUD|) − 0.1303, (16)

where IeMUD ∈ [0.1,0.8]. Hence, we can contrive a low-complexity
scheme of estimating the extrinsic mutual information at the output
of the MUD based on Eq.16. More explicitly, the average value
of |Le

MUD| within the transmission block is computed after each
MUD iteration, yielding E(|Le

MUD|). Then, the corresponding value
of the mutual information IeMUD can be dervied using Eq.16. In
order to construct our hybrid MUD, we record the extrinsic mutual
information gain GI(l), namely that of the incremental value of
Ie,l

MUD during l-th iteration compared to Ie,l−1
MUD of the previous (l−1)-

th iteration, which is expressed as:

GI(l) = Ie,l
MUD − Ie,l−1

MUD

≈ 0.3043

√
π

2
[E(|Le,l

MUD|) − E(|Le,l−1
MUD|)]. (17)

Initially we activate the MF-SoIC MUD, but once the extrinsic mutual
information gain GI(l) of the l-th iteration becomes lower than an
experientially determinated threshold of GI(l) < δ = 0.05, and
simultaneously the current Ie,l

SoIC value is below the experimentally
determined value of IeSoIC = 0.6, then the more complex but
more powerful Bayesian MUD is activated. This allows the MUD to
traverse through the ”bottleneck” region of IeSoIC ∈ [0.1,0.3] seen
in Fig.2. Subsequently, when the extrinsic mutual information gain
GI(l) of the l-th iteration becomes higher than another experientially
determinated threshold of GI(l) > Δ = 0.12, then the low-
complexity MF-SoIC MUD is reactivated for the sake of reducing
the overall complexity. In order to avoid any potential failure to
converge, the requirement of maintaining a sufficiently high extrinsic
mutual information gain of GI(l) after switching to the MF-SoIC
MUD should remain always valid. As and when this condition is not
satisfied, the Bayesian MUD should be reactivated. In other words,
the proposed hybrid MUD will activate the MF-SoIC MUD during
the entire iterative MUD process, when the SNR value is sufficiently
high. Nonetheless, it achieves a similar performance to that of the
Bayesian MUD at a lower complexity, since it only activates the
Bayesian MUD, when the MF-SoIC MUD would result in a BER
floor. The complexity of the hybrid MUD is determinated by the
complexity of the MF-SoIC MUD and that of the Bayesian MUD
weighted by the corresponding number of iterations.
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Fig. 4. Exit charts and simulated trajectories of the proposed hybrid MUD
when supporting K = 8 users at Eb/N0 = 6dB.
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MC-CDMA System Parameters
Number of users 8,12
Number of receiver antennas 1
Spreading factor 2
Channel impulse 3-path SWATM
response symbol-invariant [3] p.78
Number of subcarriers 128
Length of cyclic prefix 32
Modulation BPSK
Channel Coding
Type NSC, RSC
Code rate 1/2
Constraint Length 4
Turbo interleaver
block length 20,480

TABLE I
SYSTEM PARAMETERS.
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V. SIMULATION RESULTS AND DISCUSSIONS

In this section, the attainable performance of the proposed hybrid
MUD is investigated in comparison to the two constituent turbo
MUDs, namely that of the MF-SoIC MUD and the Bayesian MUD.
Our system parameters are summarized in Table I. Each user has a
different random interleaver. We will demonstrate that the proposed
hybrid MUD strikes an attractive trade-off between the constituent
MUDs employed as benchmarkers.

As seen in Fig.2, the simulation-based trajectory closely follows
the EXIT curves of the receiver components. During the initial
three iterations, the MF-SoIC MUD is activated. As the incremental
extrinsic mutual information gain of each additional iteration is
reduced, which is evaluated using the average absolute extrinsic LLR
difference between the current and previous iterations with the aide
of Eq.17, the Bayesian MUD is activated, in order to overcome the
MF-SoIC MUD’s EXIT tunnel constriction. When the consecutive
iteration gains of the Bayesian MUD become sufficiently high again,
the MF-SoIC MUD is reactivated in the interest of reducing the
complexity imposed.

Fig.4 shows both the EXIT curves and the associated simulation-
based trajectories of all the MUDs concerned when supporing K = 8
users at Eb/N0 = 6dB. At this particular SNR there is no need to
activate the Bayesian MUD, since even the lower-complexity MF-
SoIC MUD is capable of maintaining an open EXIT tunnel, hence
lending to an infinitesimally low BER.

Fig.5 portrays the attainable BER performances of the MF-SoIC
MUD, of the Bayesian MUD and of the proposed hybrid MUD as
a function of the SNR as well as of the number of users supported.
Observe in Fig.5 that at a high normalized user-load of γ = K/Sf =
12/4, the MF-SoIC MUD fails to converge, while the proposed
hybrid MUD and the Bayesian MUD achieves an infinitesimally low
BER for Eb/N0 > 10dB.

Explicitly, when supporting for example K = 12 users with the aid
of Sf = 4-chip spreading sequences, the MF-SoIC benchmarker fails
to provide an adequate performance, while the proposed hybrid MUD
achieves an infinitesimally low Bit Error Rate (BER) for Eb/N0 >
10dB at a high normalized user-load of γ = K/Sf = 12/4, when
supporting K = 12 users. This user-load is three times higher than
the number of chips per FD spreading sequence. Furthermore, the
Bayesian MUD is also capable of supporting K = 12 users, but
imposes a higher complexity than that of the proposed hybrid MUD.
A comparison between the complexity and BER performance of the
different MUDs supporting K = 8 users at Eb/N0 = 6dB as well
as supporting K = 12 users at Eb/N0 = 10dB is listed in Table II.1

The complexity was derived by taking into account the complexity
of the specific MUDs employed and their associated number of
iterations, while the complexity imposed by the channel decoder may
be deemed insignificant compared to that imposed by the MUD. It
is clearly seen that the proposed hybrid MUD outperforms both the
MF-SoIC MUD and the Bayesian MUD in terms of the complexity
imposed, while maintaining a simillar BER performance to the latter.

VI. CONCLUSION

In this paper we proposed a novel hybrid turbo MUD scheme,
which combines the benefits of different MUDs, namely that of low
complexity and high performance. We analyzed and compared the
convergence behaviours of different MUDs With the aid of EXIT
charts, and then designed a novel hybrid MUD, switching between
different MUDs by monitoring the mutual information gain achieved

1It is worth noting nonetheless that according to Fig.4 at Eb/N0 = 6dB
the MF-SoIC and Bayesian MUDs required ISoIC = 9 amd IBayesian = 5
iterations, respectively.

K = 8, Eb/N0 = 6dB
Type of MUD Complexity (Operation) BER
SoIC 9 ∗ 4 ∗ (8 − 3) = 180 2.75e-05
Bayesian 5 ∗ 28 ∗ (4 ∗ 8 + 6) = 48, 640 2.33e-05
Hybrid 9 ∗ 4 ∗ (8 − 3) = 180 2.651e-05

K = 12, Eb/N0 = 10dB
Type of MUD Complexity (Operation) BER
SoIC 3 ∗ 4 ∗ (12 − 3) = 108 0.341
Bayesian 7 ∗ 212 ∗ (4 ∗ 12 + 6) = 1, 548, 288 4.051e-06
Hybrid 5 ∗ 4 ∗ (12 − 3)+ 4.074e-06

4 ∗ 212 ∗ (4 ∗ 12 + 6) = 8, 849, 16

TABLE II
COMPARISONS BETWEEN THE COMPLEXITY AND THE BER

PERFORMANCE OF DIFFERENT MUDS.

by each iteration. Since it is not feasible to measure the mutual
information directly, we proposed a realistic estimation of the mutual
information gain. Fortunately, the mutual information was found to
be a near-linear function of the extrinsic LLR values, when assuming
Gaussian distributed LLRs at the output of the MUD. The MF-
SoIC MUD and the Bayesian MUD were combined in order to
create an advanced hybrid MUD. The simulation results guantified
the performance advantage of employing the hybrid MUD, which was
capable of supporting a high normalized user-load of γ = K/Sf =
12/4. At this load the MF-SoIC MUD failed to converge, whereas the
proposed hybrid MUD achieved an infinitesimally low BER, which
was similar to that of the Bayesian MUD, while imposing only about
half the complexity.
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