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Abstract—As the number of wireless devices sharing a radio
band increases, so does the number N of potential co–channel
interferers. The receiver performance is then strongly dependent
on the total received interference power. While the statistics
of this power have previously been studied under the channel
assumption of independent shadowing, it is easy to show that
for large N the correlation among the shadowing paths cannot
be neglected. While this correlation may be simulated by matrix
decomposition, we show that an alternative approximately equiv-
alent algorithm using shadowing fields can achieve simulation
performance that scales much better with N and has additional
advantages.

Index Terms—co-channel interference, correlated shadowing,
algorithm optimisation

I. INTRODUCTION

In the last few years, the simulation and analysis of inter-
ference caused by N distinct co–channel interferers, with N
even in the hundreds [1], [2], has received significant interest.
The interference from a Poisson field of interferers, a very
similar problem, has been studied at least since [3], and still
receives attention today [4]. The nature of the interfering
nodes may be femtocells [1], sensor nodes, or any other
devices that aggressively share spectrum, often in a non–
coordinated and opportunistic manner. This type of scenario
is becoming increasingly relevant as wireless communications
move away from the traditional coordinated cellular model to
more heterogeneous and distributed paradigms, such as ad–
hoc networking and cognitive radio [4]. Thus the study of
interference from many co–channel interferers is essential for
the design of future wireless systems.

We notice however that the modeling in these types of
work, while incorporating wireless shadowing, usually does
not consider correlation between the shadowing paths [4].
We will demonstrate that the independence assumption, while
already known to give different results for small N [5], gives
very inaccurate results for large N , indicating that shadowing
correlation should be incorporated.

A significant problem in the simulation of many paths with
correlated shadowing is the computation time: specifically, the
most conventional approach [6], [7], Cholesky factorisation,

will require a computational time that scales as N3 [8], and a
memory usage of the order of N2 for storing the correlation
matrices. This paper demonstrates a Monte Carlo simulation
algorithm with fast execution time and reasonable memory
usage, both of which scale linearly with increasing N ; thus
the algorithm is useful for simulating future wireless systems
with always increasing spectrum reuse, which usually implies
an increase in the number of significant interferers.

In Section II, we describe the physical model to simulate. In
Section III, we argue why it is unrealistic to neglect shadowing
correlation when N is large. In Section IV, we describe both
the conventional and the proposed algorithm for simulating
interference with correlated shadowing. In Section V, we run
simulations using both algorithms and examine their time
performance and accuracy. We conclude in Section VI.

II. PHYSICAL MODEL

A. Physical Assumptions

The following are often assumed in interference analysis:

1) Given fixed propagation paths, the logarithm of the
shadowing on each path is well–modeled by jointly
Gaussian random variables. [5]–[7], [9], [10]

2) The total interference power is the sum of the individual
interference powers, as explained by incoherent signal
addition. [5], [7], [9], [11]

B. Interference Modeling

Consider N interferers located at r⃗i (ri = ∥r⃗i∥), distributed
randomly, independently and identically, according to a valid
density function g(r⃗), such that, without loss of generality,
the receiver is located at the origin. Consider power law
average pathloss with exponent β. To simplify the problem, we
assume each interferer transmits with equal unit power. Finally,
consider Si the shadowing experienced on path i. Assume
that the vector S⃗ = [Si]

N
i=1 is Gaussian when conditioned on

r⃗1, . . . , r⃗N , with



E {Si} = 0,

E
{
S2
i

}
= σ2

s ,

E {SiSj |r⃗i, r⃗j} = σ2
sh(r⃗i, r⃗j), i ̸= j,

(1)

where h is the shadowing correlation model. Then, the corre-
lation matrix of S⃗ conditioned on r⃗1, . . . , r⃗N is given by

KN×N = σ2
s [ρi,j ], ρi,j =

{
h(r⃗i, r⃗j) i ̸= j,

1 i = j.
(2)

Assuming that h is such that K is always a positive semidef-
inite matrix, it follows that the Gaussian vector S⃗ is always
feasible [10], i.e., it can always be constructed, and is fully
determined by (1). We are then interested in finding the
statistics of the total interference power given by

I =
N∑
i=1

Ii, Ii = cr−β
i eλSi , (3)

where λ = 0.1 ln 10 and c is the common constant gain
accounting for multiplicative constants such as antenna gains,
reference distance, and transmit power. Without loss of gen-
erality, we set c = 1.

C. Choice of Correlation Model
Consider the minimal angle of arrival separation

θ = |∠r⃗i − ∠r⃗j | ∈ [0◦, 180◦], (4)

and the arrival distance ratio in dB

R = |10 log10 ri/rj | = 10
ln 10 |ln ri − ln rj |. (5)

We choose a correlation model h that may be expressed in
terms of θ and R only, and that is separable with respect to
these dimensions. From the more general class of shadowing
correlation models given in [6], we propose using the follow-
ing subset:

hΘ(θ) =

{
1− θ/θ0 θ ≤ θ0,

0 θ > θ0.

hR(R) =

{
1−R/R0 R ≤ R0,

0 R > R0,

h(ri, rj) = hΘ(θ)hR(R),

(6)

with tunable parameters 0◦ < θ0 ≤ 180◦ and R0 > 0.
We chose this model among many others for the following

reasons:
1) In [10], we have shown that this model always yields

positive semidefinite correlation matrices K. This is not
the case for several of the existing models.

2) Furthermore in [10], we have argued that from among all
models that always give positive semidefinite correlation
matrices K, this was the model that seemed most
physically realistic.

3) The selected model has two tunable parameters, and
can therefore approximate a wide range of correlation
models with reasonable accuracy, as done in [6].

4) The mathematical form of this model lends itself partic-
ularly well to fast simulation using shadowing fields, as
we will demonstrate in Section IV.

III. STATISTICAL BEHAVIOUR FOR MANY INTERFERERS

In interference analysis, we are interested is studying the
statistical behaviour of the total interference power I . The
natural approach is first to establish its mean and variance:

A = e
1
2λ

2σ2
s E

{
r−β
1

}
,

B = e2λ
2σ2

s E
{
r−2β
1

}
,

C = E
{
eλ(S1+S2)r−β

1 r−β
2

}
,

E {I} = NA,

E
{
I2
}
= NB +

(
N2 −N

)
C,

VAR {I} = N(B − C) +N2
(
C −A2

)
.

(7)

We observe that, while for independent shadowing we have
C = A2 ⇒ VAR {I} = O(N), in general for correlated
shadowing VAR {I} = O

(
N2

)
. The mean power of I

remains the same regardless of correlation. Therefore what
was already observed for small N [5] will be even more
significant for large N : adding correlation changes (specifi-
cally, broadens) the distribution of I significantly. It follows
that, given a sufficiently realistic shadowing correlation model,
the distribution of I obtained using correlated shadowing will
be much more realistic than that obtained using independent
shadowing.

Also, because of the asymptotic behaviour of the mean
and variance, analysing I as N → ∞ requires the study of
the convergence of I/N (rather than (I − E {I})/

√
N in the

independent case). Because of the existence of correlation, the
classical Central Limit Theorem cannot be applied for large
N . Indeed I/N does not necessarily converge to a Gaussian
distribution, and may in fact converge to a distribution close
to a lognormal with large spread as we have observed in [7].

We can therefore conclude that correlation in shadowing
becomes a dominating factor in the distribution of I as N
becomes large.

IV. SIMULATION OF CORRELATED SHADOWING

In order to simulate I (and, in fact, Ii), there are two
very different approaches that nevertheless can give very close
results, namely matrix factorisation and shadowing fields. A
simulation can be fully specified by the parameters listed in
Table I.

A. Matrix Factorisation

Generating S⃗ in Monte Carlo simulations is traditionally [6]
done by solving for CN×N in the equation

K = CTC, (8)

for each particular realisation of K. We will write C = ∗
√
K.

The next step is to generate a vector Z⃗ = [Zi]
N
i=1 of

independent standard Gaussian N (0, 1) random variables. S⃗
is then obtained from

S⃗ = Z⃗C. (9)



TABLE I
SIMULATION PARAMETERS

Parameter Description

K Total number of Monte Carlo trials of I
N Number of interferers

Physical
g(r⃗) Statistical density of interferers’ positions
rmin, rmax Limits on interferers’ distances from receiver:

g(r⃗) = 0 ∀r⃗ : ∥r⃗∥ /∈ [rmin, rmax]

β Pathloss exponent
σs Shadowing standard deviation in dB
θ0, R0 Parameters of shadowing correlation model (6)

Shadow Fields
DΘ Number of discrete field points in θ dimension
DR Number of discrete field points in R dimension
FΘ Length of digital FIR filter in θ dimension

= nearest integer to DΘθ0/2π

FR Length of digital FIR filter in R dimension
= nearest integer to DRR0/10 log10 (rmax/rmin)

F FΘ × FR filtering kernel
= constant 1/

√
FΘFR for model (6)

This is implemented as follows:

MATRIX FACTORISATION ALGORITHM

Ensure: The histogram of I[k] approximates the pdf of I .
for k = 1 to K do

for i = 1 to N do
r⃗i ⇐ i.i.d. random from g(r⃗)
Zi ⇐ i.i.d. random N (0, 1)
K[i, i]⇐ σ2

s

for j = 1 to i− 1 do
K[i, j] = K[j, i]⇐ σ2

sh(r⃗i, r⃗j)
end for

end for
C← ∗

√
K

S⃗ ← Z⃗C
I[k]⇐

∑N
i=1 e

λSir−β
i

end for

Solving ∗
√
K can be performed efficiently by Cholesky

factorisation1 with complexity O
(
N3

)
[7], [8].

B. Shadowing Fields

A shadowing field is a random process in two dimensions
(properly, a random field), such that it is a Gaussian process
with a specific autocorrelation function. This autocorrelation
is such that, when interferers with positions r⃗i are placed on
the field, and the value of the field at the point r⃗i is taken as
the value of Si, then S⃗|r⃗1, . . . , r⃗N has the desired correlation
matrix K. This can be compared by analogy to gravitational

1While Cholesky factorisation fails for singular matrices K [8], [10], we
have observed in simulations here and in [7] that this event is extremely rare
using model (6) with double–precision arithmetic.

(electric, etc.) fields, where the field gives the acceleration of
a mass placed at any point, whether there actually is a mass
at that point or not.

The idea of generating shadowing fields has already been
explored [9], [12]–[14] with correlation functions of the form
h(r⃗i, r⃗j) = f(∥r⃗i − r⃗j∥). We have argued in [10] that such
models may not reflect true shadowing spatial correlation char-
acteristics. Furthermore, correlation as a separable function
of θ and R can be easily simulated by using a geometric
transformation. The accuracy of our method is limited only
by the quantisation level.

Consider a random field (a two–dimensional random pro-
cess) M̄ of continuous parameters (x, y). Let the random field
be stationary [15], with an auto–correlation function such that
the correlation between the field at two points M̄(xi, yi) and
M̄(xj , yj) correspond to the desired shadowing correlation
under some transformation.

Consider what we will call the log–polar2 transformation:

TLP : (θ,R) 7−→ 100.1R(cos θ, sin θ),

TLP : [0, 2π]× [10 log10 rmin, 10 log10 rmax]

7−→ {r⃗ : rmin ≤ r ≤ rmax}.
(10)

Let us choose the autocorrelation of M̄ as

ηx(ξ) =


1− |ξ|/θ0 |ξ| ≤ θ0,

0 θ0 ≤ |ξ| ≤ 2π − θ0,

1 + (|ξ| − 2π)/θ0 2π − θ0 ≤ |ξ| ≤ 2π.

ηy(υ) =

{
1− |υ|/R0 |υ| ≤ R0,

0 |υ| > R0,

E
{
M̄(x+ ξ, y + υ)M̄(x, y)

}
= ηx(ξ)ηy(υ),

(11)

for M̄ defined on [0, 2π] × [10 log10 rmin, 10 log10 rmax]. We
find that the field M̄, under transformation TLP, has the
correlation properties of (6), i.e.,

TLP : (xi, yi) 7−→ r⃗i, i = 1, 2, . . .

E
{
M̄(x1, y1)M̄(x2, y2)

}
= h(r⃗1, r⃗2).

(12)

Therefore, we may write

Si = σsM̄
(
T −1
LP (r⃗i)

)
, (13)

and Si’s will have the same correlation matrix as in (9).
For numerical purposes, M̄ can be approximated by a

discrete–parameter matrix MDΘ×DR , with a regularly–spaced
quantisation grid along θ and R. Correlation of the form (6),
triangular in both dimensions, can be obtained by using a
uniform square filter FFΘ×FR , ideally choosing FΘ and FR

so that we have exactly

FΘ/DΘ = θ0/2π,

FΘ/DΘ = R0/10 log10 (rmax/rmin),
(14)

with F equal everywhere to 1/
√
FΘFR.

2A polar representation of shadowing fields is suggested in [12].



To obtain the value of the discretised field M at some
point, we must round the coordinates T −1

LP (r⃗i) to the near-
est quantisation point. Therefore the algorithm is limited
in precision by the finite spatial quantisation. On the other
hand, the computational cost of generating one field grows
O(FΘFRDΘDR) = O

(
DΘ

2DR
2
)
, and so it is critical to

choose the number of quantisation points DΘDR properly to
balance precision and computational time.

C. Efficient Filtering for Triangular Correlation Functions

1) Separability: The nature of the correlation model (6)
is such that it can be expressed as the product of a function
of θ and a function of R. It follows [15] that the resulting
two–dimensional process in the θ–R plane is also separable.
It can therefore be simulated by filtering over each dimen-
sion separately, which reduces the general filtering cost from
O(FΘFRDΘDR) (as in, e. g., [13]) to O((FΘ + FR)DΘDR).

2) Optimised Box Filters: The triangular form in θ and
R of the correlation expression in (6) requires the use of
rectangular (box) filters applied to a white Gaussian process.
Computationally this is very efficient, as the filtering requires
no multiplications. Additionally, it can be implemented even
more efficiently [16], with the number of additions now
approximately 2DΘ and 2DR in each respective dimension,
rather than (FΘ − 1)DΘ and (FR − 1)DR respectively. This
is due to the fact that adjacent outputs of a box filter differ
only by two input values. This makes the total computation
cost for one field realisation O(DΘDR), which is independent
of the filter size, and hence of the correlation distances θ0, R0.

3) Optimised Shadow Fields Algorithm: Applying separa-
bility and optimised box filters gives the following algorithm:

BASIC SHADOWING FIELD ALGORITHM

Ensure: The histogram of I[k] approximates the pdf of I .
for k = 1 to K do

for i = 1 to N do
r⃗i ⇐ i.i.d. random from g(r⃗)

end for
M⇐ shadowing field realisation†.
for i = 1 to N do

Si ← σsM
[
T −1
LP (r⃗i)

]
end for
I[k]⇐

∑N
i=1 e

λSir−β
i

end for

The Shadowing field for the correlation model (6) can
be obtained efficiently [16] in the following manner:

†FAST SHADOWING FIELD GENERATION

Ensure: M is Gaussian, correlated approximately as (6).
ZDΘ×(DR+FR−1) ⇐ i.i.d. random N (0, 1)
Initialise a temporary matrix WDΘ×(DR+FR−1)

for m = 1 to DR + FR − 1 do
W[1,m]⇐

∑FΘ

n=1 Z[n,m]
end for
for n = 1 to DΘ − 1 do

for m = 1 to DR + FR − 1 do
n∗ ⇐ (n+ FΘ − 1) mod DΘ + 1
W[n+ 1,m]⇐W[n,m]− Z[n,m] + Z[n∗,m]

end for
end for
for n = 1 to DΘ do
M[n, 1]⇐

∑FR

m=1 W[n,m]
end for
for m = 1 to DR − 1 do

for n = 1 to DΘ do
M[n,m+ 1]⇐M[n,m]−W[n,m]+W[n,m+ FR]

end for
end for

V. ALGORITHM COMPARISON THROUGH SIMULATION

We now evaluate the performance of the two algorithms
in obtaining an estimate of the distribution of I . Matrix
factorisation is considered to be the benchmark algorithm,
because it is an exact realisation of the model described in
Section II as K →∞. We perform Monte Carlo Simulations
using the parameters listed in Table II. In Figure 1, cumula-
tive distribution functions obtained from both algorithms are
plotted on lognormal paper [7], [11], which illustrates well all
parts of the distribution. We observe that the two algorithms
give estimates of the distribution that are well within 2 dB
of each other (horizontally). Additionally, we plot what the
distribution would be if Si’s were independent, and we see
the widening gap as N increases, as predicted by (7).

We then measure the running time of these simulations for
varying N . We consider that the time required to perform
the matrix factorisation algorithm for N = 1 is the baseline
for simulation time (in our case, ≈ 70 seconds), which
depends strongly on implementation, and we thus consider
only the excess execution time above the baseline. We plot
these execution times in Figure 2, where we observe that
generating shadowing fields outperforms matrix factorisation
for approximately N ≥ 30. An initial investment of time (here
≈ 56 + 70 seconds) is required to generate the fields, after
which the required time grows slowly with N . On the other
hand, matrix factorisation becomes prohibitive for large N .

Execution time will of course vary with hardware and im-
plementation, but this comparison indicates that the execution
times for both algorithms grow at a different rate, and therefore
shadowing fields will always outperform matrix factorisation
for large enough N . These simulations were performed in
The MathWorks MATLAB version 7.6.0.324 on Microsoft
Windows XP (2002), on a 3.16 GHz Intel Core2 Duo CPU
with 3.25 GB of RAM.

VI. CONCLUSION

We have shown that shadowing fields can accurately ap-
proximate the distribution of the total interference power,
and do so in reasonable execution time when the number of
interferers becomes large. We have shown that, as this number
increases, shadowing correlation becomes a dominating factor



TABLE II
SIMULATION SETTINGS

Parameter Value

K 1 000 000

g(r⃗) uniform over an annular region with radii:
rmin 50

rmax 500

β 4

σs 10 dB

θ0 60◦

R0 6 dB

DΘ 30
DR 25
FΘ 5
FR 15
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Fig. 1. Monte–Carlo approximations of the distribution of I using both
algorithms.
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Fig. 2. Execution time for both algorithms, minus base time of 70s for
Matrix Factorisation with N = 1.

and needs to be included in the simulation and analysis of
future interference–intensive scenarios.

The correlation model used has good mathematical and
physical properties, is flexible, and proves to be easy to
implement using shadowing fields. However, other models,
particularly if separable, can be used along the same lines.

Also, the simulations can easily be extended to include other
factors such as variable transmit power and small–scale fading.

Shadowing fields have the additional advantages of requir-
ing only O(N) memory (rather than O

(
N2

)
for matrix fac-

torisation), and being able to accommodate interferer mobility
easily: indeed, while matrix factorisation only gives shadowing
values at the N specified locations, shadowing fields give the
value of the (potential) shadowing everywhere. This is also
useful when N is uncertain, random, or variable.
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