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ABSTRACT

This paper considers the problem of lter design with secrecy
constraints, where two legitimate parties (Alice and Bob)
communicate in the presence of an eavesdropper (Eve), over
a Gaussian multiple-input multiple-output (MIMO) wiretap
channel. This problem involves the design of transmit and
receive lters which minimize the mean-square error (MSE)
between the legitimate parties, whilst assuring that the eaves-
dropper MSE remains above a certain level. We characterize
the form of the optimal transmit lter when both the legit-
imate receiver and the eavesdropper employ Zero-Forcing
(ZF) lters. By capitalizing on the dual problem, we also
show that the original matrix optimization problem can be
reduced to a simple scalar optimization problem, whose solu-
tion can be readily computed by employing a simple bisection
method. Numerical results illustrate the main conclusions.

Index Terms— Multiple-Input Multiple-Output, Wiretap
channel, Filter Design, ZF lters, Secrecy.

1. INTRODUCTION

Security constitutes one of the most important issues in wire-
less communication systems. In fact, due to the inherent
broadcast nature of the wireless medium, the wireless links
are much more susceptible to eavesdropping attacks, in con-
trast to their wire-line counterparts. The conventional secu-
rity techniques rely essentially on cryptographic solutions,
based on the intractability of certain functions, with little
or no relation to the remaining data communication tasks
and, therefore, state-of-the-art cryptographic algorithms are
insensitive to the physical nature of the wireless medium.
However, information-theoretic security – widely accepted
as the strictest notion of security – has, recently, attracted
an increasing amount of interest. This calls for the use of
physical-layer techniques exploiting the inherent randomness
of the communications medium to guarantee both reliable
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communication between two legitimate parties as well as
secure communication in the presence of an eavesdropper.
The basis of information-theoretic security, which builds

upon Shannon’s notion of perfect secrecy [1], was laid by
Wyner [2] and by Csiszár and Körner [3] who proved in sem-
inal papers that there exist channel codes guaranteeing both
robustness to transmission errors and a certain degree of data
con dentiality. Wyner characterized the rate-equivocation
region of the wiretap channel and its secrecy capacity (i.e.,
the maximum transmission rate between the legitimate par-
ties with the eavesdropper unable to obtain any information).
Ever since, the computation of the secrecy capacity of a range
of communications channels has been an important research
topic (e.g., see [4]).
This paper considers secure communications from the

estimation-theoretic view point. We consider the problem of
lter design with secrecy constraints in the classical wiretap
scenario, where the objective is to dimension transmit and
receive lters that minimize the mean-square error (MSE)
between the legitimate parties whilst guaranteeing a certain
eavesdropper MSE level, subject to the use of Zero-Forcing
(ZF) receive lters. Interestingly, this class of problems
represents a natural generalization of lter design for point-
to-point communications systems which has been considered
in the past by several authors (e.g. [5], [6]). Further work on
the topic of lter design in the wiretap channel scenario can
be found in [7].

2. PROBLEM STATEMENT

We consider a communications scenario where a legitimate
user, say Alice, communicates with another legitimate user,
say Bob, in the presence of an eavesdropper, Eve.
Bob and Eve observe the output of the real-valued MIMO

channels given, respectively, by1:

YM = HMHTX+NM (1)
YE = HEHTX+NE (2)

1We focus on real-valued MIMO channel models, but the extension to
complex-valued is straightforward.
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whereYM andYE are the nM and the nE-dimensional vec-
tors of receive symbols,X is am-dimensional vector of inde-
pendent, zero-mean and unit-variance transmit symbols, and
NM and NE are nM and nE-dimensional Gaussian random
vectors with zero mean and identity covariance matrix. The
nM × m matrix HM and the nE × m matrix HE contain
the gains from each main and eavesdropper channel input to
each main and eavesdropper channel output, respectively. The
m × m matrix HT represents Alice’s transmit lter. We as-
sume that HMHT and HEHT are full column rank, which
implies that nM ≥ m and nE ≥ m. This is necessary to
guarantee the existence of the solutions.
Bob’s and Eve’s estimate of the vector of input symbols

are given by:
X̂M = HRMYM (3)

X̂E = HREYE (4)

where the m × nM matrix HRM and the m × nE matrix
HRE represent Bob’s and Eve’s receive lters, respectively.
In particular we consider a scenario where:

HRMHMHT = I (5)
HREHEHT = I (6)

where I is them×m identity matrix. The justi cation for in-
cluding the ZF constraints in equations (5) and (6) is to elim-
inate crosstalk between the various streams. Note also that
the performance of linear ZF receivers is equivalent to that
of optimal Wiener receivers in the regime of high SNR. Yet,
one may still argue that a eavesdropper will always adopt the
optimal linear receive lter – the Wiener lter – rather than
the sub-optimal ZF receive lter. Interestingly, our numerical
analysis will show that a situation where the legitimate re-
ceiver and the eavesdropper employ ZF lters is always more
advantageous, in terms of information leakage, for the eaves-
dropper than the situation where the legitimate receiver and
the eavesdropper employ the optimal Wiener lter.
In this setting, we take as a performance metric the MSE

between the estimate of the input vector and the true input
vector given by:

MSE = E[‖X− X̂‖2] (7)

The objective is to design the transmit lter that solves the
optimization problem:

minMSEM = E[‖X− X̂M‖2] (8)

subject to the security constraint:

MSEE = E[‖X− X̂E‖2
] ≥ γ (9)

and to the total power constraint:

tr
(
HTH

†
T

) ≤ Pavg (10)

where E(·) denotes the expectation operator and (·)† denotes
the transpose.

It is important to note that this approach does not guar-
antee perfect information-theoretic security, in the sense of
[1], [2] and [3]. 2 The design of the lters based on the MSE
criteria is instead, a means to provide additional confusion
in a communications system. The rationale is based on the
fact that some applications require a certain maximum MSE
level to function properly, so that this approach would impair
further the performance of the eavesdropper by imposing a
threshold on its MSE level.

3. OPTIMAL RECEIVE FILTERS
The design of the receive lters is trivial. In particular, the
form of the receive lters follows immediately from the equa-
tions (5) and (6):

HRM

∗ =
(
H

†
TH

†
MHMHT

)−1
H

†
TH

†
M (11)

HRE

∗ =
(
H

†
TH

†
EHEHT

)−1
H

†
TH

†
E (12)

TheMSEs in the main and eavesdropper channels are then
given by:
MSEM

=E[‖X−HRMYM‖2] = tr

{(
H

†
TH

†
MHMHT

)−1
}

(13)

MSEE
=E[‖X−HREYE‖2

]
= tr

{(
H

†
TH

†
EHEHT

)−1
}
(14)

4. OPTIMAL TRANSMIT FILTER
In view of (13) and (14), the form of the optimal transmit lter
corresponds to the solution of the optimization problem:

min
HT

tr

{(
H

†
TH

†
MHMHT

)−1
}

(15)

subject to the constraints:
tr

{(
H

†
TH

†
EHEHT

)−1
}
≥ γ (16)

tr

{
HTH

†
T

}
≤ Pavg (17)

and HTH
†
T � 0. Note that by considering the change

of variables:
(
HTH

†
T

)−1
= Z,

(
H

†
MHM

)−1
= A and(

H
†
EHE

)−1
= B, it is possible to rewrite the optimization

problem as follows:

min
Z

tr {AZ} (18)

subject to the constraints:
tr {BZ} ≥ γ (19)

tr
{
Z

−1
} ≤ Pavg (20)

and Z � 0. One recognizes immediately that this is a stan-
dard convex optimization problem. The following theorem,
which stems directly from the Karush-Kuh-Tucker optimality
conditions [8], de nes the form of the optimal transmit lter.

2We consider this aspect in grater detail in section 6, where we analyze the mutual
information in the eavesdropper channel.
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Theorem 1 An optimal transmit lter is, without loss of gen-
erality, given by:

HT
∗ =

√
Pavg

tr
{
A1/2

}A1/4 ,

tr{A1/2}
Pavg

tr
{
BA

−1/2
}
> γ (21)

HT
∗ =

√√√√ Pavg

tr

{(
A− νB

)1/2}(
A− νB

)1/4
,

tr{A1/2}
Pavg

tr
{
BA

−1/2
} ≤ γ (22)

where the value of the Lagrange multiplier ν is such that:

tr

{
B
(
A− νB

)−1/2
}
·tr

{(
A− νB

)1/2}
= γ ·Pavg (23)

Remark: The solution embodied in Theorem 1 exhibits
two distinct regimes:

i) The regime where the security constraint is inactive( tr{A1/2}
Pavg

tr
{
BA

−1/2
}

> γ
)
, which typically occurs for

low available power values. In this scenario, the matrix
with left singular vectors of the transmit lter diagonalizes(
H

†
MHM

)−1. This solution corresponds to the solution
in [5].

ii) The regime where the security constraint is active( tr{A1/2}
Pavg

tr
{
BA

−1/2
} ≤ γ

)
, which typically occurs for

high available power values. In this scenario, the matrix with
the left singular vectors of the transmit lter diagonalizes[(
H

†
MHM

)−1 − ν
(
H

†
EHE

)−1
]
. This result generalizes the

result in [5].

5. COMPUTATIONAL PROCEDURE

The computation of the optimal transmit lter embodied in
Theorem 1 requires nding the solution of the non-linear
equation in (23), in order to determine the value of the La-
grange multiplier ν. We shall now put forth a simpler proce-
dure to design the optimal transmit lter based on the dual of
the optimization problem.
Consider the Lagrangian of the optimization problem in

(18) – (20):
L (Z, ν, μ) = tr (AZ) + ν

(
γ − tr (BZ)

)
+ μ

(
tr
(
Z

−1
)− Pavg

)
(24)

Consider also the dual function of the optimization problem
in (18) – (20):

L (ν, μ) = inf
Z>0

L (Z, ν, μ) (25)

where ν ≥ 0 and μ ≥ 0. It is straightforward to show that the
dual function reduces to:

L (ν, μ) = 2
√
μ tr

{(
A− νB

) 1

2

}
− μPavg + νγ

,
(
A− νB

) ≥ 0

L (ν, μ) = −∞ , otherwise

The dual problem of the optimization problem in (18) - (20)
is now given by:

max 2
√
μ tr

{(
A− νB

) 1

2

}
− μPavg + νγ (26)

subject to:
ν ≥ 0 (27)
μ ≥ 0 (28)(

A− νB
) ≥ 0 (29)

We can employ a two step procedure to express the solution:
i) optimization over μ for a xed ν; ii) optimization over
ν for the optimal μ. It is straightforward to show that the
optimal value of μ is given by:

μ =
1

Pavg
2

(
tr

{(
A− νB

) 1

2

})2

(30)

Consequently, the dual optimization problem reduces to:

max
1

Pavg

(
tr

{(
A− νB

) 1

2

})2

+ νγ (31)

subject to:
ν ≥ 0 (32)(

A− νB
) ≥ 0 (33)

or, equivalently,

max
1

Pavg

(
tr

{(
A− νB

) 1

2

})2

+ νγ (34)

subject to:
0 ≤ ν ≤ λmin

(
B

− 1

2AB
− 1

2

)
(35)

This is due to the fact that the positive semide nite con-
straint

(
A − νB

) ≥ 0 is equivalent to the constraint ν ≤
λmin

(
B

− 1

2AB
− 1

2

)
, where λmin

(
M

)
denotes the minimum

eigenvalue of the positive de nite matrixM.
The solution to the optimization problem (34) – (35) can

be computed in a straightforward manner using, for example,
the bisection method [9].
The optimal values of μ in (30) and ν then de ne the op-

timal transmit lter as follows:
Z

∗ =
√
μ
(
A− νB

)− 1

2 (36)

In turn, the optimal transmit lter de nes the ZF receive lters
through (11) and (12).

6. NUMERICAL RESULTS
We shall now present a set of numerical results in order to
provide further insight into the problem of lter design with
secrecy constraints. We consider a 2 × 2 MIMO Gaussian
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wiretap channel where the main and the eavesdropper channel
matrices are given by:

HM =

[
4 −1
1 2

]
, HE =

[
2 −1
1 1

]
(37)

Figure 1 depicts the values of the MSEs in the main and
in the eavesdropper channels and the input power to the chan-
nels vs. the secrecy constraint with Pavg = 1. Note that the
solution clearly depicts the two operational regimes unveiled
in Theorem 1: i) the regime where the power constraint is ac-
tive but the security constraint is inactive (for smaller values
of γ); and ii) the regime where the power and security con-
straints are active (for larger values of γ). We also include
the results for the scenario where the legitimate receiver and
eavesdropper use the optimal linear Wiener lters in Figure 1
(see also [10]). Interestingly, in the relevant regime of large γ,
the use of ZF lters rather than Wiener lters leads to a better
MSE in the main channel without the violation of the security
constraint. This is due to the fact that the transmitter can use
all of the available power in such a scenario, in order to drive
the MSE to a lower value.
Yet, the use of all the available power also leads to a

higher eavesdropper mutual information leakage, as shown in
Figure 2. This situation, which is absent in the Wiener lters
scenario, also provides a rationale for the eavesdropper to use
a ZF lter rather than the optimal linear one to improve the
information leakage.

7. CONCLUSIONS
The design of lters that minimize the MSE between the le-
gitimate parties whilst guaranteeing a minimum MSE at the
eavesdropper, subject to a power constraint, appears to be a
viable option to provide reliability and a certain additional de-
gree of security in communications systems. By concentrat-
ing on a scenario where legitimate receiver and eavesdropper
receiver employ linear ZF lters, as opposed to the optimal
linear Wiener lters [10], it is possible to characterize the
form of the optimal transmit lter as well as derive consid-
erable operational insight.
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Fig. 1. Main and Eavesdropper channel MSEs vs. secrecy
constraint and input power vs. secrecy constraint.
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Fig. 2. Eavesdropper mutual information vs. available power,
with γ = 1.The input is assumed to be real Gaussian with
mean zero and identity covariance matrix.

3443


