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 WordCloudEncoding

WordCloudProps = {

 encoding:<WordCloud


 encoding={{

  color: {field: ‘food’},

  size: { 

   field: ‘count’, 

   scale: {range: [0,48]}

  },

  text: {field: ‘food’}

 }}

 width={400}

 height={400}

 data={[

  {food:‘Burger’, count:80},

  {food:‘Noodle’, count:100}

 ]}

/>

WordCloudConfig = {

 color: [‘Color’, string];

 size: [‘Numeric’, number];

 text: [‘Text’, string];

}
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Figure 1: The architecture of a WordCloud component built with the help of Encodable. The colors show the roles of the component
author (blue), the Encodable library (orange) and the component user (purple). See Section 4 and 5 for more details.

ABSTRACT

There are so many libraries of visualization components nowadays
with their APIs often different from one another. Could these com-
ponents be more similar, both in terms of the APIs and common
functionalities? For someone who is developing a new visualization
component, how should the API look like? This work drew inspira-
tion from visualization grammar, decoupled the grammar from its
rendering engine and adapted it into a configurable grammar for in-
dividual components called Encodable. Encodable helps component
authors define grammar for their components, and parse encoding
specifications from users into utility functions for the implementa-
tion. This paper explains the grammar design and demonstrates how
to build components with it.

Index Terms: Information visualization, systems, toolkits, API
design, reusable visualization, visualization component

1 INTRODUCTION

The Grammar of Graphics (GoG) [37] introduced the idea of a single
language which could express all visualizations, rather than thinking
about visualizations as a catalog of charts (line, bar, pie, etc.) Visual-
ization libraries such as ggplot2 [36], and later Vega-Lite [32], grew
from this philosophy. This one-grammar-to-define-them-all works
really well for exploratory data analysis, which expressiveness and
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rapid iterations are the keys, and flourishes in the statistical and sci-
entific communities. Users can fluidly transform one visualization
into another by adding or modifying a few expressions.

However, the number of libraries that follow the chart-based ap-
proach, is still growing strongly in parallel. This includes everything
from a large library with an extensive suite of chart types [1,3,6,10]
to a tiny library with a single unique visualization. There are a few
reasons why they keep growing: First, when a developer already
have a specific chart in mind, picking that chart from a catalog and
setting a few options is more straightforward than learning how to
express the chart via the grammar. Second, when someone is de-
veloping a novel visualization technique, or converting a bespoke
visualization into a reusable component, he/she is likely to focus on
just a single component. Third, performance is often an important
factor for application development. A small library that does a few
things really well can be more preferred than a large library that
offers many unused functionalities.

Each of these chart-based libraries defines its own API for cus-
tomizing the charts. Most of the time, their APIs are different from
one another. Switching libraries means learning a new API. For
example, to specify how to get a value for x-position from the data:
Some libraries take a field name string. Some accept a lambda
function xAccessor. Some require each data entry to have a field
named x. They also often do not offer the same amount of common
functionalities. For instance, some libraries support logarithmic
scale, while others do not. In some cases, even components within
the same library have this discrepancy. For component users, are
there ways these components can converge in the future to have
similar APIs and common functionalities? For component authors,
if someone wants to develop a new bespoke component or library, is
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there a recommended way to define its API? From studying Vega-
Lite grammar, an idea came to mind. What if we build components
that have APIs similar to it, but can handle the rendering ourselves?
Instead of having a grammar that can define all graphics tightly
coupled with the rendering engine that transforms that grammar
into actual visualizations, what if we decouple the grammar from
the rendering engine and make it shareable among multiple compo-
nents? Each component then can configure the shared grammar to
define its scope, use that subset of grammar as its API and handle
the rendering independently.

Expanded from this idea, this work introduces Encodable, a con-
figurable grammar for encoding a component with data. With
this, component authors can: (a) Define and customize encoding
grammar for each component which conforms to the shared gram-
mar (b) Validate encoding specification from component users ac-
cording to the defined grammar (c) Parse encoding specification into
useful utility functions for implementing the component.

The rest of the paper is organized as follows: The next section
reviews relevant work, followed by an explanation of goals and
requirements. Then the solution is described in Section 4, accompa-
nied by a demonstration and a brief discussion before the conclusion.

2 RELATED WORK

There are many ways to create a visualization. The programmatic
approaches, mainly on the web, can be grouped as follows:

A) Graphics Manipulation: Processing [28, 29] and others [11,
13] let a developer draw or interact with visual elements directly.
They have the maximum level of expressiveness and in return require
the most effort to produce the same visualizations.

B) Low-level Composition: D3 [21] learns from the early ap-
proaches [20, 22, 23] and introduces low-level building blocks, such
as selection, scales, formatting, etc. It leverages the common stan-
dards such as SVG instead of defining all constructs by itself. vx [19]
bridges D3 and SVG for React [14] framework. Visualizations can
be created from very flexible combinations of these building blocks.

C) Visualization Grammar: Heavily inspired by the Grammar
of Graphics [37], there is no concept of chart type. Developers learn
how to express the visualizations they desire in the given grammar,
i.e. a domain-specific language provided by each library that de-
scribes how to transform and encode data into visual marks and their
properties [4, 27, 31–36]. The most famous one is ggplot2 [35, 36]
which dominates the R and data science communities. Vega [31]
let users describe visualizations in JSON, and generate interactive
views using either HTML5 Canvas or SVG. Vega-Lite [32] provides
a higher-level grammar equivalent to ggplot2 level with interactions.

D) High-level Composition: Similar to the convention of MS
Excel [9], this group uses series to abstract a group of graphic ele-
ments that encode data. For example, bars in a cartesian coordinate
system form a series. More complex combinations such as candle-
stick, bullet or other chart types can also be abstracted as a series.
The data and options are often mixed within the series definition.
ECharts [25] and others [7, 12] employ the all-in-one JSON option
to declare a visualization. Many libraries such as Victory [18] and
others [2,15,17] provide similar level of abstraction in React syntax,
such as <XYPlot>, <CandleStickSeries>, or <XAxis>, that can be
composed into the desired visualizations.

E) Chart Templates: Google Charts [6] and others [1,3,8,10,16]
let developers choose a chart type from its catalog, prepare data in
the specified format and plug them together. Some libraries provide
multiple levels of abstraction. For instance, G2Plot [5] provides
chart templates on top of G2 [4] grammar.

Encodable was designed to complement these approaches. It does
not render the output and therefore cannot create a visualization
by itself alone. Instead, it bridges the gap between the component
authors and users. A component author uses Encodable to define
the component API, uses it again to parse the users’ specification

into an Encoder, then choose from the approaches A-D, or even E
under the hood for rendering (Section 4). The resulting component
fits into the chart templates (E) level.

There are also some GUI approaches for creating visualizations
with relevant concepts. Encodable is similar in spirit to Data-Driven
Guides [24] and the followings [26, 30] which let users pick visual
properties from any arbitrary shape and encode them with data.

3 GOALS & REQUIREMENTS

This project aims to provide the following convenience:
Component authors, who create reusable components, should

be able to create a component with encoding grammar that conforms
to this Encodable grammar, with little effort required to make the
component support the grammar.

Component users, who use the reusable components, should
benefit from the consistent encoding grammar across components
and standardized features even though the components are from
different authors. To avoid mistakes when providing an encoding
specification (spec) for a component, users should also receive syn-
tax verification that the spec is grammatically correct.

The goals above are broken down into the following requirements:

• R1: Provide a configurable grammar for encoding a compo-
nent with data. The component author can customize grammar
G to be tailored for component C as G(C). G(C) is still a subset
of G and ensures consistency across different components even
though they are implemented by different component authors, e.g.
G(C1),G(C2), ...,G(Cn)⊂ G

• R2: Handle specification parsing for the component author.
Parse the specification {S ∈ G(C)} into something that helps with
the component implementation. This will also reduce the incon-
sistencies due to implementation of the parser.

• R3: Provide mechanism to verify specification from the com-
ponent users. Learning a new grammar can take time and mis-
takes are inevitable. Immediate feedback when coding is very
valuable to reduce mistakes from providing invalid specifications.

• R4: The library should be lightweight. For this utility to be a
dependency of any reusable component, it should not be so large
that no one wants to import.

4 PROPOSED SOLUTION

A grammar and parser was written in TypeScript (TS), which is a
strict syntactical superset of JavaScript (JS) that adds static typing
and transcompiles to JS. By using TS, the grammar (R1) can be
defined as type definitions and utilize static type checking to compare
incoming specifications against the type definitions. This will ensure
that the component users have specified the specifications that are
grammatically correct (R3). The overall architecture of Encodable
can be seen in Fig. 1. Encodable components assume the datasets
are in tabular format such as:

[ {"kind":"Cat", "count":9}, {"kind":"Dog", "count":11} ]

The code snippets in this paper are simplified for explana-
tion purposes and may omit some details for brevity. Please
see the supplementary materials for more details or repository
(github.com/kristw/encodable) for the full and latest implementation.

4.1 The Grammar
The first principle of Encodable is each visualization has one or more
channels to encode data, such as color, x, y, etc. For example, a
simple word cloud component has size and text channels. If there is a
grammar to describe what size and text can be, one can describe how
to encode this word cloud component with the given data based on
these two channels. Hence, in its simplest form, Encodable grammar
is defined as key-value pairs of channel names and their definitions.

https://github.com/kristw/encodable


4.1.1 Channel Definition

This work was heavily inspired by Vega-Lite, which includes
channel definitions as part of its grammar. Its grammar is also pure
JSON and can be serialized into a simple text file. In Vega-Lite, this
is how to encode a bar chart that shows number of each animal:

1 const vegaLiteBarSpec = { "mark": "bar",
2 "encoding": {

3 "x": {"field": "kind", "type": "ordinal"},

4 "y": {"field": "count", "type": "quantitative"} }};

In the example above, the first channel name is x and its channel
definition is {"field": "kind", "type": "ordinal"}, telling
the rendering engine to encode the kind field for x-position and
count field for y-position, or bar height. Encodable adopts a subset
of grammar from Vega-Lite for channel definition (ChannelDef).

1 interface ValueDef {
2 value: number | string | boolean | Date | null; }
3 interface FieldDef {
4 field: string; format?: string; title?: string; }
5 interface ScaleFieldDef extends FieldDef {
6 type: 'quantitative'|'ordinal'|'temporal'|'nominal'
7 scale?: ScaleDef; /* See Supp. Materials */ }

8 interface PositionFieldDef extends ScaleFieldDef {
9 axis?: AxisDef; /* See Supp. Materials */ }

10 type ChannelDef =
11 ValueDef | FieldDef | ScaleFieldDef | PositionFieldDef;

According to the grammar defined above, a channel definition
can be one of the followings:

(a) Fixed value (ValueDef) – such as making color of text in a
word cloud always red.

(b) Dynamic value based on a field in the data (FieldDef) –
such as using the field kind for each word in word cloud.

(c) Dynamic value with scale (ScaleFieldDef) – Many channels
use scale to map input value into output such as mapping kind into
color, count into fontSize. Inside the scale field, the component
users can define how they want to customize the scale. The type
field in channel definition will help the filler choose the appropriate
scale or format when not specified. E.g., a quantitative field uses
a linear scale with number formatter by default while a temporal
field uses a time scale with time formatter by default. The two scale
types handle ticks and domain rounding differently.

(d) Dynamic value with scale and axis (PositionFieldDef) –
Channels such as x or y can optionally include definition for axes.

1 const color:ValueDef = { value: 'red' };
2 const text:FieldDef = { field: 'kind' };
3 const color:ScaleFieldDef = {
4 type: 'nominal', field: 'kind',
5 scale: { type: 'ordinal', range: ['pink', 'blue']} };
6 const fontSize:ScaleFieldDef = {
7 type: 'quantitative', field: 'count',
8 scale: { range: [0, 36]} };

9 const y:PositionFieldDef = {
10 type: 'quantitative', field: 'count',
11 scale: { nice: true }, axis: { orient: 'left' } };

4.1.2 Define Component-specific Channels
At the time of this writing, Vega-Lite has 35 channels (x, y, color,
etc.) Even so, there are still edge cases that are beyond these fixed set
of channels. For example, if the developer is trying to encode data
into font-family, there is no such channel in Vega-Lite and therefore
you cannot use it. So a fixed number of channels does not sound
like a good idea. Earlier in Section 4.1.1, Encodable grammar is
defined broadly as a key-value object (Encoding) with key being
channel name and value being channel definition. This basically
allows unlimited number of channels.

interface Encoding { [channelName: string]: ChannelDef }

However, this is too ambiguous and problematic. channelName
can be any string. There is nothing to enforce component users
to specify the correct channel names, which basically violates R3.
Users may specify channel color when there is no such channel in
the component. Also each channel may support only a subset of the
ChannelDef type. E.g., a text channel does not care about axis or
scale and should only be ValueDef or FieldDef.

Therefore, the second principle of Encodable is the component
authors can define channel names and definitions specific to their
components via a configuration below.

1 type ChannelType = 'X'|'Y'|'Numeric'|'Category'|'Color'|'Text';
2 type Output = number | string | boolean | null;
3 interface EncodingConfig {
4 [name: string]: [ChannelType, Output, 'multiple'?];
5 }

Component authors must list their channel names with their types,
expected output type, and whether it can take multiple (array of)
definitions (such as a tooltip channel can accept multiple fields to
be displayed). For example, to create a word cloud component that
can be encoded by color and font size and accept multiple fields for
tooltip, the component author will write this configuration (Fig. 1-A)
and derive the encoding grammar from the config (Fig. 1-B).

1 import { DeriveEncoding } from 'encodable';
2 interface WordCloudConfig {
3 color: ['Color', string];
4 fontSize: ['Numeric', number];
5 text: ['Text', string];
6 tooltip: ['Text', string, 'multiple'] }
7 type WordCloudEncoding = DeriveEncoding<WordCloudConfig>;

In DeriveEncoding (Fig. 1-B), each ChannelType in the config is
mapped to an appropriate subset of channel definition as follows:

Channel Type Channel Definition
X, Y PositionFieldDef|ValueDef

Numeric, Category, Color ScaleFieldDef|ValueDef

Text FieldDef|ValueDef

X and Y channel types represent x- and y- positions. Numeric
channel type means a numeric attribute, e.g., size, opacity. Category
channel type defines a categorical attribute, e.g., visibility, shape.
Color channel type defines a color attribute, e.g., fill, stroke. Text
channel type defines a plain text attribute, e.g. tooltip, label. The
grammar WordCloudEncoding derived from the WordCloudConfig
is equivalent to the manually-defined WordCloudEncoding below.
However, the extra information in config that a channel is a Color
type, not an ordinary Category will be useful during parsing, which
the manual one cannot capture.

1 type WordCloudEncoding = {
2 color: ValueDef | ScaleFieldDef<string>;
3 fontSize: ValueDef | ScaleFieldDef<number>;
4 text: ValueDef | FieldDef<string>;
5 tooltip: (ValueDef | FieldDef<string>)[]; /* array */}

4.2 The Encoder
Encodable takes encoding config (Fig. 1-A) from the author and
encoding specification from the user (Fig. 1-F), and parses it into
an Encoder (Fig. 1-K) that encapsulates the logic how to encode
each channel from data (R2). During parsing, each channel def-
inition is parsed separately. Since many fields are optional, the
filler (Fig. 1-I) will expand the incoming definition into a completed
definition via smart defaults and inference. After that, each chan-
nel definition is parsed into a ChannelEncoder (Fig. 1-J), which



is a utility class that provides several useful functions, such as:
encodeDatum(datum) which converts input datum into output value
for that channel and getValueFromDatum(datum) which returns the
raw field value from input datum, or fixed value, for that channel.
All ChannelEncoder instances are nested under an Encoder instance
and referred to by encoder.channels[channelName]. The author
then can use the Encoder and these ChannelEncoder to help with the
rendering (Fig. 1-L) of the visualization.

The Encodable library, at the time of this writing, is 25.2kB
(minified), which is relatively small (R4). In comparison, Vega-Lite
is 237.1kB, G2 is 414.9kB and Echarts is 817kB.

5 DEMONSTRATION

The code below demonstrates how to implement the rendering
logic of the word cloud component. It is the completed version
of Fig. 1-L. Line 5 defines encoding grammar of this component as
the WordCloudEncoding defined earlier in Section 4.1.2. Line 8 parse
incoming encoding specification into an Encoder. Line 9 sets the
domain from data. For example, if color is based on the field count,
this call will set the domain of the color channel to [min(count),
max(count)]. This single call applies the same operation to all chan-
nels. When rendering the HTML <span> (line 11-16), the three
ChannelEncoder: size, color and text are used to computed the
output for each channel from each datum. Whether the color is a
fixed value, comes from what field, uses a quantized scale or other
scales, the component author does not need to know because these
logic are encapsulated within the ChannelEncoder. Although the
example is based on React, Encodable is independent from React
and can work with other frameworks, or even plain JS.

1 import { createEncoder } from 'encodable';
2 export function WordCloud({
3 encoding, width, height, data

4 }: {
5 encoding: WordCloudEncoding;

6 width: number; height: number; data: object[];

7 ) {
8 const encoder = createEncoder<WordCloudConfig>(encoding);
9 encoder.setDomainFromDataset(data);

10 return (<div style={{ width, height }}>
11 {data.map(d => (<span style={{
12 color: encoder.channels.color.encodeDatum(d),

13 fontSize: encoder.channels.size.encodeDatum(d),

14 }}>

15 {text.getValueFromDatum(d)}

16 </span>))}
17 </div>);
18 }

Encodable greatly reduces the overhead in adding or removing
encoding channels. Adding a fontWeight channel to the word cloud
above requires only two small changes: (1) Add the fontWeight
channel to WordCloudConfig. (2) Add fontWeight property to the
<span> on line 14 above. With this lighter overhead, the author can
develop a prototype with the core visual elements first and decide
on adding, changing or removing encoding channels later. This also
helps with standardizing and converting an existing component or
custom graphics into a reusable component by substituting hard-
coded value or old code with an encoding channel.

While the word cloud example is easier to explain, it does not
represent the full potential of this work. Encodable is capable of
enabling more complex components. In the China map example
(Fig. 2), the author builds a traditional map component that has
several encoding channels, then a user encodes fill channel with
numStudents, resulting in a choropleth map with a sequential color
scale. The coffee chart (Fig. 3) allows different parts of a coffee cup
to be encoded by data. A user then encodes the cups to represent his
productivity and coffee consumption over the week.

Figure 2: A China map component with a mini-map. The SVG render-
ing and zoom/pan interactions are implemented with React. The visual
encoding is handled by Encodable. The component author includes
the following channels: location, fill, stroke, texture and tooltip.
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Productivity

Figure 3: A bespoke visualization component of coffee cups. The
visual encoding is handled by Encodable with the following channels:
drinkLevel, label, drinkColor and useToGoCup.

1 <ChinaMap data={data} encoding={{
2 location: { field: 'province' },
3 fill: { field: 'numStudents', type: 'quantitative' } }} />
4 <CoffeeChart data={productivityData} encoding={{
5 label: { field: 'day' },
6 drinkLevel: { field: 'numCoffee', type: 'quantitative' },
7 drinkColor: { field: 'productivity', type: 'quantitative' },
8 useToGoCup: { field: 'goToOffice', type: 'ordinal' } }} />

For real applications, Encodable was used to build several compo-
nents (scatter plot, box plot, line chart, map, etc.) for the open-source
project Apache Superset. The components are now part of the offi-
cial application release. The package encodable is also available on
npm registry with 3,000 weekly downloads.

6 CONCLUSION AND FUTURE WORK

This work envisions a world where visualization components from
different authors can have consistent APIs and behavior. This does
not limit to traditional charts, but also applies to bespoke visual-
izations. Inspired by Vega-Lite, a new configurable grammar in-
dependent from rendering called Encodable is introduced. It lets
a component author declare a grammar for encoding channels of
his/her component, which looks like a subset of Vega-Lite grammar.
To ease the implementation burden, the grammar is accompanied
with a parser that parses specifications from component users into
utility functions to help with the rendering. To provide feedback for
the component users, the specifications can also be verified against
the grammar. The demonstration shows that it is easy to configure
encoding channels and can support a broad range of components,
making component authoring convenient and flexible.

Looking ahead, there are still many things that could be added to
this configurable grammar, such as legend and axis support, more
features in the channel definition, etc. Expanding these new ideas
while keeping the library lightweight will be an interesting challenge.
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