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ABSTRACT

Latency is, unfortunately, a reality when working with large data
sets. Guaranteeing imperceptible latency for interactivity is often
prohibitively expensive: the application developer may be forced to
migrate data processing engines or deal with complex error bounds
on samples, and to limit the application to users with high network
bandwidth. Instead of relying on the backend, we propose a simple
UX design—interaction snapshots. Responses of requests from the
interactions are asynchronously loaded in “snapshots”. With interac-
tion snapshots, users can interact concurrently while the snapshots
load. Our user study participants found it useful not to have to wait
for each result and easily navigate to prior snapshots. For latency up
to 5 seconds, participants were able to complete extrema, threshold,
and trend identification tasks with little negative impact.
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1 INTRODUCTION

Current interactive data visualization systems rely on fast response
times to provide a good user experience. This approach simplifies
the design of the visualization UI and ensures direct manipulation
interfaces that facilitate fluid user data exploration [20]. However, in-
teractive data visualization is increasingly an integral part of big data
analysis. The scale of the datasets and the required computational
power has made it necessary to shift the data processing and stor-
age to remote databases. In such a client-server architecture, client
interactions are translated into server requests that incur both data
processing and network latency. Ensuring ultra fast response times
in the face of all these latencies is often challenging if not impossible.
The interface therefore should have a backup plan should the latency
be high—the frontend needs to be resilient to high latencies.

Prior work, such as progressive visualization [7, 9, 13, 25, 30] and
optimistic visualization [23], have also utilized interface design to
deal with latency. However, these approaches still rely on consider-
able backend instrumentation, namely online aggregation [13,14,18]
and approximate query processing [1,6]. In many settings, designers
do not have the opportunity, desire, or resources to make changes to
the backend database systems.

Current UX-oriented solutions primarily address usability chal-
lenges stemming from a single user request. They focus on ways
to shorten the time between the frontend sending the request to the
backend and receiving the response. For instance, progressive visu-
alization updates a single selected visualization with more accurate
results over time. But what happens when the user wishes to make
another interaction while the previous is still being processed? We
now discuss the two predominant designs.

One such design is “blocking”, where users are not allowed to
perform a new interaction until the prior ones have rendered. This
design makes the most sense when the latency is negligible, which
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is often the case when the data is small and fits in memory, such as
the case for Vega [26] which runs on the browser, and Excel. The
design is easy to implement and puts the least amount of load on the
backend. As a result, even client-server systems like Tableau, which
may not always guarantee negligible latency, adopt it.

Another common design is to allow new requests to be made and
cancel previous requests. Allowing the user to interrupt existing
requests makes the interface more responsive and ensures that “time-
consuming operations that block other activity” can be aborted [16].
The interface renders the results of the most recent interaction only.

If the previous interaction is not cancelled, then more than one
pending request will be processed concurrently, which has potential
to reduce the overall latency and improve user experience. How-
ever, rendering interaction responses concurrently runs contrary to
direct manipulation [15, 28], a commonly held user-interface design
principle. Direct manipulation requires that “the object of interest is
immediately visible”, which in effect assumes a serial relationship
between a user’s action and the system’s response in a one-to-one
fashion. In contrast, allowing multiple responses to render concur-
rently behaves in an opposite manner—when a user interacts with a
number of visual elements, the system might not respond to these
interactions in the sequence the user’s actions are performed or to re-
place the results too quickly. Both of which can be confusing to users
by making it difficult to reason about the correspondence between
interaction and response and to make sense of the responses.

To harness the benefit of concurrent interactions, we must address
the design challenge it imposes. Our approach is to visualize the
coordination between asynchronous request and responses explic-
itly. We do so by capturing the interaction results in a sequence of
snapshots. This way, each new result of an interaction is appended
to a history of results. Snapshots provide a stable frame of reference
that helps users make sense of uncertain latencies. Given this easy
visual reference, the users could view the snapshots at a later time
once the response is received. Snapshots mediate the asynchronous
results through history and create a direct manipulation experience
for multiple concurrent interactions.

Consider a cross-filter application, as shown in Fig.1. After a user
makes an interaction, a snapshot is created and appended beneath

Figure 1: Applying interaction snapshots to a cross-filter visualization.
Evaluation of US wildfire data. As users interact, snapshots are
created. Users can perform concurrent interactions where they do
not have to wait until the previous results arrive.
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the visualization dashboard. The snapshot is a scaled-down display
of the current visualization which continues to load while other
snapshots are appended. The snapshot gives a visual indicator (e.g.,
spinner) of whether the data is still being processed. When the
user sees the visual indication that the processing is complete, they
can click on the corresponding snapshot, which loads the processed
visualization into the main view for analysis. Users can also navigate
through the snapshots quickly with left and right arrows, which
“animates” through the selections.

We evaluated the efficacy of interaction snapshots on dashboards
with 6 participants. Traces of participant behavior demonstrate they
can make effective use of concurrent interactions and navigate to
different snapshots. Qualitative feedback reveals that participants
find the interaction snapshot design helpful in the face of latency.

2 RELATED WORK

Dealing with Interactive Latency: Prior work addressing the issue
of latency in interactive visualizations can be divided along two axes:
whether the solution is provided by the backend or the frontend, and
whether the query is evaluated on whole or samples of the data.

Backend techniques to reduce latency for queries over all of the
data include GPU-based compute [10,21,22], custom indices [19,29],
and prefetching [3,24]. Backend techniques for a probabilistic query
trade some amount of uncertainty for the reduction in processing
time. These include approximate query processing [1, 6] and online
aggregation engines [13,14] from which progressive visualization [7,
9, 14, 25, 30], which we discuss in the next paragraph, is based on.
While innovations in these backend techniques improve computation
capabilities, they do not eliminate the existence of latency in the real
world. Users could be dealing with legacy systems, large amounts
of data, or, sometimes, slow network connection.

Compared to the pure backend efforts, our work is more closely
related to progressive visualization, which streams partial results
(containing error bounds) to users. An augmentation to the streaming
design is Moritz et al.’s optimistic visualization, which allows the
user to first interact with an approximate query engine, and lets users
mark an interaction as “remembered” for a full, non-approximate,
evaluation to check later [23].

We take inspiration from these work’s approach of leveraging
design to adapt to the realities of “big data”. In particular, optimistic
visualization allows for users to optimize across interactions, from
which our design builds on. However, both progressive and opti-
mistic visualization rely on approximate query processing. Since
on-the-fly sampling cannot cover every small subset of data, many
approximate query techniques also involve precomputing samples,
sketches, or other summary structures [5]. The preprocessing steps
require time, computation, and storage for each precomputed result.
The additional effort may be worthwhile for developers who could
afford backend changes, e.g., adapting advanced engines like Sam-
ple+Seek. For those who would rather make changes just to the
frontend, interaction snapshots may be a more preferable trade-off—
developers just need to add the new UX technique and potentially
limit their interaction designs to avoid ones that would trigger a large
amount of interactions, such as continuous brushing.

Interaction History: Much prior HCI work has used interaction
histories to facilitate user actions. Work in the CSCW community
used trails of cursor positions to give temporal context to the actions
of remote participants [27]. In the visualization community, Heer et
al. model history as a sequence of movements through a graph of ap-
plication states, presented in thumbnails in Graphical histories [12].
Feng et al. externalized interaction history by showing the “foot-
prints” of interactions [8]. Optimistic visualization, as mentioned
earlier, also makes use of history (the “remember” feature) to help
users verify approximate results [23].

These prior work inform our design. Feng et al. observed that
a direct encoding of interaction history supports visual recognition

no latency

interaction history

render history

expected

A B C

A’ B’ C’

A

A’

latency + blocking interaction
A B C

A’ B’ C’

latency + 
async interaction & rendering 

A B C

A’ B’ C’

varying latency + 
async interaction & rendering

A B C

A’B’ C’

A’
actual

time

time

correspondence

1 2

4 5

latency

long completion time

�ashing updates

out of orderrequest-response mis-match

latency + async interaction + blocking rendering
A B C

C’

x x

3

Figure 2: A sequence of interaction requests and responses under
different conditions visualized on a horizontal time axis. Colored
arrows represent request/response pairs over time. Light vertical lines
highlight request times. Case (1) is the ideal no-latency scenario
commonly assumed by visualization designers—everything works as
expected. (2) With latency, the user waits for each response to load
before interacting. (3) With latency, the user interacts without waiting,
and in-flight responses are not rendered. (4) With latency, the user
interacts without waiting, and all responses are rendered. (5) With
latency, the user interacts without waiting and may see responses in
a different order than requests were issued.

of previous interactions. The visual history does not require users
to recall the past, which can be mentally taxing. The observation
inspired us to visualize interaction history to reduce the cognitive
challenges to asynchronous interactions. Graphical histories gave
us inspirations for how to design the snapshot for dashboards, and
optimistic visualization gives initial support that users do revisit
interaction history when exploring data.

3 DESIGN ITERATIONS

To design with latency, we first analyze different ways interactions
are handled in the presence of latency. The top diagram in Fig. 2
depicts a time-ordered model, where time increases from left to right.
User inputs are depicted along the top line (interaction history), and
the responses are rendered along the bottom line (render history). A
dashed arrow between the interaction and render history corresponds
to the time to respond to the request.

Fig. 2(1) shows the ideal case where requests respond instan-
taneously. However, when there is latency, a number of possible
scenarios can occur: (2) shows the blocking case where the user is
not allowed to submit a new request until the prior onecompletes;
(3) shows the non-blocking case where users freely interact with
the visualization and new requests supersede and cancel previous re-
quests; (4) shows the concurrent case where neither the input nor the

Figure 3: Pilot experiment: on the left is the basic design where
interaction results update in place, on the right is a design that displays
snapshots of interaction results as small multiples.
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Figure 4: Comparison of median users task completion times, with
the interaction snapshots condition being much faster than the others.

Figure 5: Completion time correlated with level of concurrency. A
negative correlation suggests that concurrent interactions may help
alleviate the effect of latency.

output is blocked. The benefit of this approach is that the total time
is shorter, but the downside is that the interface could be difficult to
interpret, especially when the amount of latency varies (5).

To address the dis-coordination between interaction request and
response, as seen in Fig. 2(4,5), we hypothesize that displaying past
interactions in snapshots could serve as a stabilizing visual anchor.
A simple mechanism is to encode the step by which the interaction
was made using a visual encoding channel. The right of Fig. 3 shows
an example where selections are rendered in snapshots.

We conducted a pilot study to verify the hypothesis. In the pilot,
participants used a simple visualization shown in Fig. 3: a bar chart
that displays sales data for a company across years, split into facets
of the months. There are three conditions: baseline, treatment 1 and
treatment 2. The first two uses the interfaces on the left of Fig. 3,
and the last one the right of Fig.3. The baseline is the blocking
interaction, as illustrated in Fig.2(2). Treatment 1 has the same UI
as baseline, but asynchronously renders the results, as in Fig.2(4,5).
Treatment condition 2 shows interaction snapshots.

Participants were asked to identify if any of the months crossed
the sales threshold of 80 units sold. We measured the accuracy of
the response and the total time to complete a task in seconds (the
time between when the participant is allowed to start interacting and
when the they submits an answer). We also logged all events on the
UI, such as interactions, responses received, and response rendered.

We recruited participants online through Amazon Mechanical
Turk (17 participants for baseline, and 30 for the two treatments,
58% with bachelors degree or higher, and 46% female, ranging from
23 to 67 years of age). Participants were compensated $0.30 per task,
with a $3-5 completion bonus, compliant with Californian minimum
wage. Participants were randomly sorted into either the baseline or
treatment group. They were shown instructions about the task and
trained to complete two sample tasks beforehand.

The differences were in task completion time, shown in Fig. 4. We
report the unsigned Wilcoxon Rank-Sum test: baseline median=37
sec (N = 31), treatment (condition 1) without snapshots median=33
sec (N=52), Z=0.63, p < 0.5, and treatment (condition 2) with snap-
shots median=17 sec (N=54), Z=3.22, p < 0.002 where N denotes
the count of the group. There were no significant differences in accu-
racy between the three conditions. We can see that participants were
able to complete the tasks much faster with the snapshots design. To

Baseline Snapshots

Figure 6: Each chart of the plot visualizes median task completion
time with 95% CI (y-axis).

understand why this was the case, we visualized the concurrency—
the percentage of task completion time where there was more than
one concurrent request. Fig. 5 show that participants with higher
concurrency tend to complete tasks faster, which is made possible
because of asynchrony and encouraged by the snapshot design.

To ensure that the result also generalizes to other tasks, we con-
ducted a second pilot study to include two more tasks: identifying
the month with a maximum value, and the month with a certain
trend. These two tasks represent the “find maximum/extremum” and
“characterize distribution” tasks in Amar et al.’s analytic activity
taxonomy [2]. Both of these tasks are known to be more challenging
than the threshold task in the first pilot study, which falls under
“retrieve value” in the taxonomy. Each participant completed the
tasks with either no snapshots (baseline) or with snapshots designs
(treatment). We also have two latency conditions: one is uniformly
sampled from 0 to 1 second (short), and the other is uniformly sam-
pled between 0 to 5 seconds (long). Each participant completes three
conditions (none, short, and long). For each group, we recruited
50 Mechanical Turk participants. Again, we found that there were
no significant differences in task accuracy. Task completion time,
however, was very different, as shown in Fig. 6. We see that partic-
ipants complete all tasks significantly faster in the with-snapshots
condition when there was long latency.

More qualitatively, participants commented that completing the
tasks with latency with no snapshots is “painful”, “frustrating”,
“tedious”, and “awful”. Some explained that responses were hard to
remember—“I had a hard time remembering what I’d just seen a
second ago.”. In contrast, participants commented on the ease of use
when snapshots are present—“The ability to load several months at
once definitely offsets any loading latency – difficulty was roughly
the same as one month with no latency. One month with latency
was a bit painful.”. Interestingly, the perceived speed of loading
seemed to have changed as well—“Some of the tasks loaded really
slow, single month got irritating waiting. Most of the multiple tasks
loaded fairly quickly.” While the perception of latency is not the
focus of this study, the feedback suggests the benefits of the use of
interaction snapshots beyond improving task-completion times [11].

The interaction snapshots design was not free from fault. One
participant commented that “It took a few tries to get used to how
it worked”. We also see evidence of this in Fig. 6—under the no-
latency condition, participants took on average longer to complete
tasks when using the new design compared to baseline.

4 DASHBOARD SNAPSHOTS: DESIGN AND EVALUATION

The pilots evaluated interaction snapshots’ effectiveness on a single
visualization for fixed tasks. We now evaluate the technique for a
more complex setting—dashboard—with open ended exploration.

One key design challenge with snapshots for dashboard is space.
Replicating the interaction results as small multiples is not feasible
for dashboards. We address this constraint by creating a separate rep-
resentation of the snapshot—a smaller “thumbnail” view, much like
Graphical Histories [12] and Pangloss [23], which can be clicked
on and expanded. Figure 1 is an example application of the tech-
nique on a cross-filter visualization of wildfires in the US [17]. The
interaction details and code are included in supplementary materials.

4.1 Methods
Rather than assigning participants specific tasks (as in previous pi-
lots), we observe how participants explore data and report qualitative
metrics. First is whether and how much the participants make use of
concurrent multiple interactions. A higher usage would suggest that
the snapshots design is able to facilitate concurrent interactions, and
that it is useful to the participants. Second is how often snapshots
are revisited—the more participants engage in older snapshots, the
more they are leveraging interaction snapshots’ unique capabilities.
Third is direct feedback.



Figure 7: On the left is a visualization participants’ interaction traces while exploring US wildfire data. The traces visualized are interactions—which
contains both concurrent interactions (concInteract), and non-concurrent interactions (interact). On the right is the percent of concurrent
interactions of all interactions made.

We conducted a first-use study with 6 users, all college students
who have taken data science courses, with a self-reported “somewhat
experienced” with visual data analysis on a 5-point Likert scale
(µ = 3.0,σ = 0.89). Due to the COVID-19 “shelter-in-place” order,
we conducted the studies over video. We began each study with a
5-minute tutorial of the interaction snapshot enabled dashboard on
mass mobilization protest data [4], and then asked participants to
analyze US wildfires using a similar dashboard (Fig. 1). Participants
were prompted with a specific question (“identify the states with
the most wildfires in the years 2000 to 2004”) followed by free-
form exploration for about 8 minutes. Then, participants verbally
summarized their findings. All interaction latency was set to between
5 to 7 seconds. At the conclusion of the study, we administered an
exit survey to measure the effectiveness of the interface and to
debrief participants about their experiences. The session took 20-25
min and participants were compensated $15 in Amazon gift cards.

4.2 Quantitative Results
We instrumented the interface to log all user interactions, including
interactive selections of elements in the charts, navigating to prior
interaction states, and scrolling through the snapshots. To analyze
this data, we visualized the traces in Fig. 7. For the interactions that
happened before the previous interaction was loaded (since there
is a 5 to 7 second delay), we mark them as concurrent interactions
(concInteract, as labeled in the Chart) the rest of the interactions as
interact. We also provide a distribution of the percent of concurrent
interactions out of all interactions in the bar chart to the right, with
(µ = 0.38,σ = 0.10). Participants interacted with the interface on
average 20 times (µ = 20.33,σ = 5.99) during the session, and
navigated twice that on average (µ = 43.17,σ = 17.49).

On 5-point Likert scales, participants positively rated the inter-
face overall (µ = 4.33,σ = 0.47), as well as the history feature
(µ = 4.17,σ = 0.69). In terms of how frustrating the delay was,
participants rated it as only a little (µ = 2.0,σ = 0.58).

4.3 Qualitative Results
We observed participants quickly grasped how to make use of con-
current interactions through the snapshots. One common pattern
was to make multiple interactions concurrently when the partici-
pants had a question in mind. P3 mentioned that it was “nice to
have [the interaction result] pre-loaded”, and that reminded them of
“opening search results in multiple tabs [in the background] when
browsing web pages.” P6 also indirectly commented that “Tabs [i.e.,
snapshots] made the wait less painful/annoying.”

However concurrent interactions are not always used. When
participants had a specific question or targets in mind, such as “I
want to compare how different causes of fires differ geographically”,
they knew exactly what interactions they would need and opted for
concurrent interactions. When the participants did not have such a
question, they relied on the results to their immediate selections to
generate ideas for further interactions. Hence they waited for the
response to load instead of making other interactions while waiting.
Interestingly, the snapshots still proved useful while they waited. P4
mentioned that when they were waiting for the result to load, they
would “look at the history to remember what I was doing earlier

to keep track of what I’m looking for”. P1 also used the delay to
positive effect, saying that “the delay gives my brain a time to reflect
on what I’m expecting and what to do. I think it’s actually better
[than instantaneous response].” None of the participants found the
delay to be more than a little frustrating.

All of the participants browsed through history when summariz-
ing their findings (the final task), recalling relevant insights they
made prior. This can be seen in the dense patches of navigate ticks
towards the end of the sessions in Fig. 7. P6 mentioned that “History
tool allowed me to go back to my previous thoughts easily, and made
it easy to reference observations.”

Participants also desired more features. P4 mentioned that the
snapshots quickly became visually cluttered and difficult to navigate,
which detracted from the positive aspects of history. P3 suggested
ways to introduce more guides for the snapshots, such as adding
text to describe the interaction , or a way to either arrange or color
encode the snapshots by the chart interacted with. P3 and P4 asked
about the ability to remove snapshots that they found irrelevant.

5 THE INTERACTION SNAPSHOT DESIGN PROCESS

Having presented examples of interaction snapshots, we now con-
clude with a generalized design process. Interaction snapshots re-
quire three elements: (1) the user’s past interactions, (2) the effect
of each interaction, and (3) the temporal ordering of the interactions.
Together, they show the correspondence between the user’s interac-
tion requests and the response of the system over time. There are
different ways to satisfy these requirements. For the bar chart, we
used the position encoding channel, which can be applied to other
single visualizations. For the dashboard, we used snapshots, which
can be applied to other multiple coordinated visualizations.

Through many pilots and design iterations, we explored aspects
of the design space for multiple concurrent interactions. We found a
positive answer to our initial question of whether frontend design
alone could offer some alleviation to the pain of latency. We have
also opened up new questions. One idea is to more systematically
study how snapshots change user behavior in terms of rates of obser-
vations, drawing generalization, and forming hypothesis, following
prior work [20] and compare interaction snapshots and progres-
sive/optimistic visualizations. Another idea is to further develop
controls around the snapshotssuch as editing and organizing. We
could also augment the linear history with when users “branched” off
into a different interaction to capture richer context—the snapshots
could double as an interaction provenance graph. More broadly, in-
teraction snapshots present opportunities to bring features common
in literate computing to interactive visualizations.
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